
MA 331: Introduction to Homology

Throughout we work with finite dimensional vector spaces over F = Z/2Z. Such
vector spaces are all of the form:

Fn = Z/2Z×Z/2Z×·· ·×Z/2Z

Recall that every vector space has an element 0 = (0,0,0, . . . ,0). Much of what we
do can be done in a similar spirit using Z, R, or Q in place of F.

1. CHAIN COMPLEXES

Suppose that we have a sequence of vector spaces (Cn) over F with linear transfor-
mations ∂n : Cn→Cn−1 as below:

∂n+1→ Cn
∂n→Cn−1

∂n−1→ ··· ∂3→C2
∂2→C1

∂1→C0
∂0→{0}

Such a sequence is a chain complex if for every n, ∂n ◦∂n+1 = 0. That is, following
two arrows in a row puts you at 0. Equivalently, for every n, im∂n+1 ⊂ ker∂n.

Example:

Let C2 = F2 and C1 = F3 and C0 = F2. Let ∂1 and ∂2 be the linear transformations
given by the following matrices:

[∂1] =

(
1 0 1
0 1 1

)
and

[∂2] =

1 1
1 1
1 1


Observe that (since we are working modulo 2), the product [∂2][∂1] is the zero
matrix. Thus, we have a chain complex:

{0}→C2
∂2→C1

∂1→C0→{0}

2. QUOTIENT VECTOR SPACES

Recall that a vector space is (informally) a set V and a way of making linear com-
binations of elements of V using scalars in F. That is, if a,b ∈V and k, l ∈ F then
ka+ lb ∈V . Suppose that V is a vector space and that W ⊂V is a subspace. Define
an equivalence relation ∼W on V by declaring:

a∼W b⇔ (a−b) ∈W.
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We let V/W denote the set of equivalence classes. So an element [v] ∈V/W is the
set of all vectors in V that differ by an element of W . Saying the same thing in
other words, we consider two vectors v1 and v2 to be “the same” (and write them
as [v1] or [v2]) if they differ by an element of W .

It turns out that V/W is itself a vector space with the following definition of addi-
tion and scalar multiplication (where v,u ∈V and k ∈ F):

[v]+ [u] = [v+u]
k[v] = [kv]

Of course, it needs to be verified that these definitions are well-defined and make
V/W into a vector space. But they do!

Example 1. For this example, we use vector spaces over R rather than F.

Let V = R2 and W = {(x,y) ∈ V : y = x}. Observe that W is a line through the
origin in V . In V/W , the class [(a,b)] is the line parallel to W and passing through
(a,b). Thus, V/W is 1-dimensional (and isomorphic to R). In fact, the space is
isomorphic to the orthogonal complement of W in V . The isomorphism takes a
point (a,b) of W⊥ to the class [(a,b)] ∈V/W .

Example 2. Again we use vector spaces over R. Let V =R3 and let W be the span
of the vector (1,1,1). Then, in V/W , the class

[(a,b,c)] = {(a,b,c)+ t(1,1,1) : t ∈ R}.

Once again these are lines and we can find a vector space isomorphism between
V/W and the orthogonal complement of W in V (i.e. the plane perpendicular to
V ). Hence, V/W is 2-dimensional.

The phenomenon we observed in the two examples is general. For convenience,
we return to working with vector spaces over F.

Theorem 3. Assume that V is a vector space over F and W ⊂ V is a subspace.
Assume also that V has an inner product. Then the quotient vector space V/W
is isomorphic to W⊥. In particular, if V is finite-dimensional, then dimV/W =
dimV −dimW .

Proof. Let φ : W⊥ → V/W be given by φ(u) = [u]. We claim that φ is a vector
space isomorphism.

Claim 1: φ is linear.

Let u,u′ ∈W⊥ and k,m ∈ F. Then

φ(ku+mu′) = [ku+mu′] = k[u]+m[u′] = kφ(u)+mφ(u′).

Claim 2: φ is injective.
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Suppose that φ(u) = φ(u′). Then [u] = [u′] which means that there is w ∈W such
that u′− u = w. However, W⊥ is a subspace of V and so w ∈W⊥ ∩W . Hence,
w = 0 and so u = u′.

Claim 3: φ is surjective.

Choose a basis U of W⊥ and a basis V of W . Then (after indexing the elements)
U ∪V is a basis for V . Let [x] ∈ V/W and write x as a linear combination of
(finitely many) of the elements from U ∪V :

x = ∑
v∈U ∪V

kvv

where kv ∈ F and all but finitely many of the kv are equal to zero. Let u = ∑v∈U kvv
(i.e. the projection of x onto W⊥). Observe that x− u ∈W , so [x] = [u]. Hence,
φ(u) = [u] = [x], as desired. �

3. HOMOLOGY GROUPS

Let
C : · · · ∂n+1→ Cn

∂n→Cn−1
∂n−1→ ··· ∂3→C2

∂2→C1
∂1→C0

∂0→{0}
be a chain complex. We define the nth homology group Hn(C ) to be the quotient
vector space (ker∂n)/(im∂n+1). The nth (mod 2) Betti number is the dimension
of Hn(C ).

Example 4. We consider the example from section 1. Let C be the chain complex:

{0}→C2
∂2→C1

∂1→C0→{0}
where C2 = F2 and C1 = F3 and C0 = F2. The boundary maps ∂1 and ∂2 are the
linear transformations given by the following matrices:

[∂1] =

(
1 0 1
0 1 1

)
and

[∂2] =

1 1
1 1
1 1


Calculations show that ker∂2 has the vector (1,1) as a basis. The image of ∂3 is
just 0, so

H2(C ) = (ker∂2)/(im∂3) = {(t, t) : t ∈ F}/{0}= {t[(1,1)] : t ∈ F}
so dimH2(C ) = 1.

Similarly, {(1,1,1)} is a basis for ker∂1 and also for im∂2 so H1(C ) = {0}. Hence,
dimH1(C ) = 0.

Finally, ker∂0 = C0 and im∂1 has a basis {(1,0),(0,1)}. Since this implies ∂1 is
surjective, again we have H0(C ) = {0}.
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We now explain how to define the homology groups of a simplicial complex K.

Let K be a finite simplicial complex. For each n, we let Cn(K) = Fm where m is
the number of n-dimensional simplices in K. (If there are none, we take Cn(K) =
{0}. We identify each of the standard basis vectors of Fn with an n-dimensional
simplex of K. Thus, if σ and τ are both n-dimensional simplices, then σ + τ is
the vector in Fm obtained by adding the standard basis vector corresponding to σ

to the standard basis vector corresponding to τ . Recall that since we are working
mod 2, σ +σ = 0.

For an n-dimensional simplex σ , we let ∂nσ be the sum of the (n−1)-dimensional
faces of σ and extend ∂n linearly to all of Cn(K). Thus, ∂n : Cn(K)→Cn−1(K) is a
linear map.

Lemma 5. Let Cn(K) and Cn−1(K) be as above. Then ∂n−1 ◦∂n = 0.

Proof. Let σ be an n-dimensional simplex, with (n−1)-dimensional faces τ0, . . . ,τn.
For each τi, there is exactly one vertex vi of σ not in τi and τi is the convex hull of
the vertices of σ other than vi.

For some fixed i, let κ0, . . . ,κn−1 be the (n− 2)-dimensional faces of τi. For each
κ j, there is a vertex v j 6= vi such that κ j is disjoint from v j and vi and is the convex
hull of the vertices of σ other than vi and v j. Thus, κ j is also an (n−2)-dimensional
face of τ j and is not an (n−1)-dimensional face of any τk with k 6= i, j.

We have:
∂n−1 ◦∂n(σ) = ∂n−1(τ0 + τ1 + · · ·+ τn)

= ∂n−1(τ0)+ · · ·+∂n−1(τn).

By the previous paragraph, each (n−2)-dimensional face κ j of σ occuring in the
sum above occurs exactly twice. Since we are working modulo 2,

∂n−1 ◦∂n(σ) = 0.

Since this is true for each basis element σ of Cn(K), we have ∂n−1 ◦∂n = 0. �

Thus, we have a chain complex

C (K) : · · · ∂n+1→ Cn(K)
∂n→Cn−1(K)

∂n−1→ ··· ∂3→C2(K)
∂2→C1(K)

∂1→C0(K)
∂0→{0}

and we define Hn(K) = Hn(C (K)).

Lemma 6. Let K be a finite simplicial complex. Then β0 = dimH0(K) is the
number of connected components of K.

Proof. By definition, H0(K) = ker∂0/ im∂1 =C0(K)/ im∂1. Consider two vertices
v1 and v2. They are related if and only if v1−v2 = v1+v2 ∈ im∂2. The sum v1+v2
is in the image of ∂2 if and only if there is an edge path e1,e2, . . . ,em joining v1 to
v2, for then

∂1(e1 + e2 + . . .+ em) = v1 + v2.
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Thus in C0(K)/ im∂1, we have [v1] = [v2] if and only if there is an edge path joining
v1 to v2. So H0(K) is generated by a vertex from each path component of K. Since
K is a simplicial complex, its path components are precisely its components. �

We can also see that in graphs β1 = dimH1(K) measures the number of independent
loops in the graph.

Lemma 7. Let G be a connected graph and let T ⊂ G be a maximal tree. Then
β1 = dimH1(K) is equal to the number of edges of G\T .

Proof. We have H1(K) = ker∂1/ im∂2. Since K is a 1-dimensional simplicial com-
plex, im∂2 = {0}. A collection of edges e1, . . . ,em is in ker∂1 if and only if each
vertex appearing as an endpoint of some ei appears as the end point of an even num-
ber of the ei. That is, the union e1∪·· ·∪em is a collection of (possibly non-simple)
loops in K.

Choose a vertex v ∈ T and for each vertex w ∈ T , let αw be the unique edge path
having no backtracking from v to w. Let αw be the same edge path, but traversed
in the reverse direction. Let e be an edge of G \T with endpoints u and w. Then
γe = αu + e+αw is an element of ker∂1. We claim that the set {[γe] : e ⊂ G \T}
generates H1(K).

To see this, let e1+ . . .+em be the sum of the edges lying in loop α (each appearing
exactly once). Possibly after renumbering, we may assume that e1, . . . ,ek lie in
G\T and ek+1, . . . ,em lie in T . Then

α + γem = e1 + . . .+ ek−1 + e′k + . . .+ e′m′

where e′k, . . . ,e
′
m′ is a collection of edges in T since we are working mod 2 and all

edges of γem lie in T except em. Continuing in a similar vein, the sum

α + γe1 + · · ·+ γem

can be written as the sum of edges lying entirely in T . It is in the kernel of ∂1 and
so it forms a collection of loops lying in the tree T . Every edge of a loop in a tree
must appear an even number of times and so α + γe1 + · · ·+ γem = 0. Hence,

α = γe1 + · · ·+ γem

and so {[γe1 ], . . . , [γem ]} spans H1(K) as desired.

If {[γe1 ], . . . , [γem ]} were linearly dependent, then some γe j is the sum of some of
the others. However, this is impossible as none of the others contains e j. Thus, we
have our basis.

�

We have a similar result for surfaces:

Lemma 8. Suppose that K is a simplicial complex with its geometric realization
|K| homeomorphic to a closed surface S. Then any embedded curve γ ⊂ S which
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is the union of edges of K represents a non-trivial element of H1(S) if and only if
it is non-separating.

Proof. Let γ be an edge loop in K. Then γ ∈ ker∂1 since it is a closed loop. Since
every edge of K is adjacent to exactly two triangles, splitting S along γ creates a
surface S′ with two copies of γ in its boundary. Since S is closed, ∂S′ consists
exactly of two copies of γ . If γ is separating, let T1, . . . ,Tn be the triangles in one
component of S′. Then ∂2(T1 + . . .+Tn) = γ and so [γ] = 0 ∈ H1(K). On the other
hand, if γ is non-separating and if T1, . . . ,Tm are triangles with γ = ∂2(T1+ . . .+Tn)
then T1∪ . . .∪Tn must be a surface having boundary exactly equal to γ . However,
there is no such surface for splitting S along γ , produces a surface S′ = T1∪ . . .Tn
with ∂S′ the union of two copies of γ . In which case ∂2(T1+ . . .+Tn) = 2γ = 0. �

Finally, we consider the second homology group of a surface.

Lemma 9. Let K be a simplicial complex with geometric realization homeomor-
phic to a connected surface S. If ∂S =∅, then β2 = dimH2(K) = 1 and if ∂S 6=∅,
then H2(K) = {0}.

Proof. Recall that H2(K) = ker∂2/ im∂3. Since K is 2-dimensional, im∂3 = {0}.
Thus we need only identify those sums of triangles in K which are in the kernel of
∂2. If a 2-chain σ1 + . . .+σn (with each σi a triangle of K) lies in ker∂2, then if
an edge of K appears in ∑∂ (σi), it must appear an even number of times. Since
there is at most two triangles adjacent to each edge of K, this means that each edge
appearing in the sum, must appear exactly twice. Hence, each edge appearing in
the sum is adjacent to exactly two triangles. If ∂S 6=∅, then no non-trivial 2-chain
can lie in ker∂2 and so ker∂2 = {0} implying H2(K) = {0}. If ∂S = ∅, then any
non-trivial 2-chain appearing in ker∂2 must contain all the triangles of K and so
there is exactly one such 2-chain. Hence ker∂2 contains one-element – the whole
surface. Thus, H2(K) is 1-dimensional, as desired. �

4. INVARIANCE

The following theorem is quite challenging to prove and requires a new tool called
“singular homology” - we don’t go into it here.

Theorem 10 (BIG Theorem). If K and L are finite simplicial complexes with |K|
and |L| homeomorphic. Then for all n, Hn(K) is isomorphic to Hn(L).

This theorem implies that euler characteristic is a topological invariant. Recall that
the euler characteristic of a simplicial complex is

χ(K) = ∑
n
(−1)n(# of n -dimensional simplices)

and that the nth (mod 2) Betti number is βn = dimHn(K).
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Theorem 11 (Euler Characteristic). χ(K) = ∑n(−1)nβn. Consequently, χ(K) is
invariant under homeomorphism since the homology groups are.

Proof. Let dn = dimCn(K) and kn = dimker∂n and rn = dimim∂n. By Theorem 3,
βn = kn− rn+1. By the rank-nullity theorem from linear algebra, dn = kn + rn. By
the definition of Cn(K), dn is equal to the number of n-dimensional simplices in K.
Consequently

χ(K) = ∑n(−1)ndn
= ∑n(−1)n(kn + rn)
= ∑n(−1)nkn +∑n(−1)nrn
= ∑n(−1)nkn + r0 +∑n(−1)n+1rn+1
= r0 +∑n(−1)n(kn− rn+1)
= r0 +∑n(−1)nβn
= ∑n(−1)βn

where the last equality arises from the fact that r0 = 0 as ∂0 is the 0 function. �

5. INDUCED MAPS

Theorem 12. Suppose that K and L are simplicial complexes and f : K→ L is a
simplicial map. Then, for all n, there is an induced linear transformation

f∗ : Hn(K)→ Hn(L)

Proof. We begin by defining a linear map f∗ : Cn(K)→Cn(L) and we’ll show that
it gives rise to the desired linear map f∗ : Hn(K)→ Hn(L).

Recall that the generators of Cn(K) are identified with the n-simplices of K. Let σ

be an n-simplex. Since f is simplicial, f (σ)= τ is a simplex of dimension at most n
in L. If τ is an n-simplex, define f∗(σ) = τ and if τ has dimension strictly less than
n, let f∗(σ) = 0 ∈Cn(L). For the sum σ1+ . . .+σk of n-simplices in Cn(K), define
f∗(σ1 + · · ·+σk) = f∗(σ1)+ · · ·+ f∗(σk). It is evident that f∗ : Cn(K)→Cn(L) is
linear.

Consider the diagram:

· · · Cn+1(K) Cn(K) Cn−1(K) · · ·

· · · Cn+1(L) Cn(L) Cn−1(L) · · ·

∂n+1 ∂n

∂ ′n+1 ∂ ′n

f∗ f∗ f∗

It is not difficult to show, using the fact that f is simplicial, that it commutes.
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Suppose, therefore, that σ = σ1 + · · ·+σk ∈ ker∂n, where each σi is an n-simplex
of K. We wish to show that f∗(σ) ∈ ker∂ ′n. Since σ ∈ ker∂n, we have:

∂
′
n( f∗(σ)) = f∗(∂n(σ)) = f∗(0) = 0,

using the linearity of f∗ and the commutativity of the diagram.

Now suppose that σ ,τ ∈ [σ ]∈Hn(K). We want to show that f∗(σ), f∗(τ)∈ [ f∗(σ)].
By th definition of Hn(K), there exists an (n+1)-dimensional chain ω ∈Cn+1(K)
such that ∂n+1(ω) = σ − τ . By the commutativity of the diagram,

f∗(σ)− f∗(τ) = ( f∗(σ − τ) = f∗(∂n+1(ω)) = ∂
′
n+1( f∗(ω)).

Thus, f∗(σ) and f∗(τ) differ by an element in the image of ∂ ′n+1, as desired.

Consequently, the induced map f∗ : Hn(K)→ Hn(L) defined by f∗([σ ]) = [ f∗(σ)]
is well-defined. It is easy to check that it is linear. �

Taking for granted that all this works, even when we don’t have a triangulation
in sight (i.e. using singular homology), we can prove the Brouwer fixed point
theorem, via the following theorem (which is important in its own right).

Theorem 13 (No retraction theorem). If M is a compact, non-empty 3-manifold,
then there is no map r : M→ ∂M such that for all x ∈ ∂M, r(x) = x. (Such a map
is called a retraction of M onto ∂M.

We make use of the following fact, which you are invited to ponder:

Fact: If X is a non-empty compact manifold, without boundary, of dimension m,
then Hm(X) is one-dimensional (over1 F).

Proof. Suppose, for a contradiction, that r : M → ∂M is a retraction of an n-
dimensional manifold to its boundary. Since M is non-empty, ∂M cannot be empty.

Let i : ∂M→ M be the map induced by inclusion. Then, by the definition of re-
traction,

r ◦ i : ∂M→ ∂M
is the identity map. The identity map on a topological space induces the identity
isomorphism on homology groups, so we have that

r∗ ◦ i∗ = (r ◦ i)∗ : Hn−1(∂M)→ Hn−1(∂M)

is an isomorphism.

However, since, in M, ∂M bounds an n-manifold, and since the class [∂M] is a
generator for Hn−1(∂M), the map

i∗ : Hn−1(∂M)→ Hn−1(M)

is the 0-map. Since ∂M 6=∅, there is no way that (r◦ i)∗= r∗◦ i∗ can be the identity
map on a 1-dimensional space. This contradiction implies that the map r cannot
exist. �

1This is not true if we change the coefficient field, in which case the result depends on orientability
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Observe that the requirement that M is compact is essential as there is a retraction
from the upper half plane or R2 onto the x-axis.

We can now prove:

Theorem 14 (Brouwer Fixed Point Theorem). Suppose that B is an n-dimensional
ball. If r : B→ B is continuous, then there exists x ∈ B such that f (x) = x.

Proof. We prove this by contradiction. Suppose that f : B → B does not have
a fixed point. For each z ∈ B, consider the ray emitting from f (z) and passing
through z. Since f does not have a fixed point, there is a unique such ray. Let
g(z) ∈ ∂B be the point where the ray intersects ∂B. The map g : B→ ∂B is clearly
continuous, since f is. It is also a retraction from B to ∂B which is impossible. �
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