MA 331 Homework 7: Seeking closure.

1. READING

(1) Read 3.4 of Mendelson. Note that we took Theorem 4.5 as the definition of closure. Theorem 4.6 (and its proof) is worth remembering.

2. PROBLEMS

- (1) On page 86 and following of Mendelson, do:
 - Problem 2. (Here C(A) means the complement of A)
 - Problems 4 and 5.
- (2) Suppose that X is a set and that $\mathscr{U} \subset \mathscr{P}(X)$ is a collection of subsets of X with the property that for all $n \in \mathbb{N} \cup \mathbb{N}$, whenever $U_1, U_2, \ldots, U_n \in \mathscr{U}$, then their intersection $U_1 \cap U_2 \cap \ldots \cap U_n \in \mathscr{U}$. (That is, \mathscr{U} is closed under finite unions). Prove that there is a topology \mathscr{T} on X such that $\mathscr{U} \subset \mathscr{T}$ and so that every set in \mathscr{T} is the union of (perhaps infinitely many) sets in \mathscr{U} .

(We say that \mathscr{U} is a **basis** for \mathscr{T})

(Hint: *X* is the empty intersection of the elements of \mathscr{U} and \varnothing is the empty union of the elements of \mathscr{U} . So you just need to prove that if you take finitely many sets which are unions of elements of \mathscr{U} then there intersection is also the union of elements of \mathscr{U} .)