MA 331 HW 7: Keep an open mind – study topology!

1. Some definitions

Definition 1.1. Suppose that *X* is a topological space and that (x_n) is a sequence in *X*. We say that (x_n) **converges** to $x \in X$ if for every open set *U* with $x \in U$, there is $N \in \mathbb{N}$ such that for all $n \ge N$, we must have $x_n \in U$. (That is, the sequence converges to *x* if it is eventually contained in any open set containing *x*.)

Definition 1.2. Suppose that *X* has a topology \mathscr{T} . A subset $\mathscr{U} \subset \mathscr{P}(X)$ is a **basis** for \mathscr{T} if every element of \mathscr{T} is the union of elements from \mathscr{U} .

(Note that if \mathscr{U} is a basis for a topology \mathscr{T} , then the intersection of any finite number of sets in \mathscr{U} must be the union of sets in \mathscr{U} , so we don't have to worry about the finite intersection axiom.)

Definition 1.3. Suppose that $A \subset X$ and that *X* is a metric space. The **boundary** of *A* (denoted Bdry *A*) is the set of points $x \in X$ such that every open set *U* in *X* with $x \in U$ has the property that there exists a point $a \in A$ and a point $b \in X \setminus A$ with $a, b \in U$.

It is possible to prove that the boundary of *A* is equal to the boundary of $X \setminus A$.

2. PROBLEMS

- (1) A topological space (X, \mathscr{T}) is **Hausdorff** if for every $a, b \in X$ with $a \neq b$, there exist open sets U_a and U_b such that $a \in U_a$, and $b \in U_b$, and $U_a \cap U_b = \emptyset$. In Mendelson problem 1, page 74 you proved that a metrizable topology is Hausdorff.
 - (a) Suppose that (X, \mathscr{T}) is a Hausdorff (but not necessarily metrizable) topological space. Suppose that (x_n) is a sequence in X which converges to a point $x \in X$. Prove that x is the *unique* limit of the sequence.
 - (b) Give an example of a non-Hausdorff space (X, \mathcal{T}) and a sequence (x_n) which converges in X to two distinct points.
- (2) Let X be an infinite set. Let 𝒞 be the set of subsets of X whose complement is finite. Prove that 𝒜 is a basis for a topology 𝒯 on X. Is this topology neccesarily Hausdorff? (Be sure to prove the answer is yes, or give a counter-example to show the answer is no.)
- (3) Let X be a topological space and let $A \subset X$. Is it the case that $Bdry(Bdry(A)) = \emptyset$? Either prove the answer is yes (no matter what X and A are) or give

a counterexample to show the answer is no. If the answer is no, can you figure out what the right statement about Bdry(Bdry(A)) is and prove it?

(4) Given topological spaces X and Y, a function $f: X \to Y$ is **continuous** if and only if for every open set $U \subset Y$, the set

$$f^{-1}(U) = \{ x \in X | f(x) \in Y \}$$

is open.

- (a) Prove that if *X* and *Y* are metric spaces then a function is continuous with this definition if and only if it is continuous with the definition involving metrics.
- (b) Suppose that X,Y,Z are topological spaces (not necessarily metric spaces). Prove that if f: X → Y and g: Y → Z are continuous, then g ∘ f: X → Z is continuous.