MA 331 Homework 3 Hint:

(3) (Challenging!) Suppose that (X, d_X) , (Y, d_Y) and (Z, d_Z) are all metric spaces. Give $X \times Y$ the metric $d_P = \max(d_X, d_Y)$. Let

$$\begin{array}{rcl} \pi_X & : & X \times Y \to X \\ \pi_Y & : & X \times Y \to Y \end{array}$$

be the projections $(x, y) \mapsto x$ and $(x, y) \mapsto y$ respectively. Suppose that $f: Z \to X \times Y$ is a function such that the compositions

 $\pi_X \circ f \colon Z \to X \text{ and } \pi_Y \circ f \colon Z \to Y$

are both continuous. Prove that f is continuous.

Proof hint. Let $z_0 \in Z$ and let $\varepsilon > 0$. We must show that there exists $\delta > 0$ such that $f(B_{\delta}(z_0)) \subset B_{\varepsilon}(f(z_0))$. For convenience, let $(x_0, y_0) = f(z_0)$.

Since $\pi_X \circ f$ and $\pi_Y \circ f$ are continuous, there exist $\delta_1, \delta_2 > 0$ such that

$$egin{array}{lll} \pi_X \circ f(B_{oldsymbol{\delta}_1}(z_0)) &\subset & B_{oldsymbol{arepsilon}}(x_0) \ \pi_Y \circ f(B_{oldsymbol{\delta}_2}(z_0)) &\subset & B_{oldsymbol{arepsilon}}(y_0) \end{array}$$

Let $\delta = \min(\delta_1, \delta_2)$. We must show that for all $z \in B_{\delta}(z_0)$ we have $f(z) \in B_{\varepsilon}(x_0, y_0)$.

 $\langle \text{ Do some work } \rangle$

Thus, we conclude that $f(B_{\delta}(z_0)) \subset B_{\varepsilon}(f(z_0))$. Hence *f* is continuous at z_0 . Since z_0 was arbitrary, we conclude that *f* is continuous.