MA 331 HW 24

Suppose that X is a path connected space (perhaps a surface?) and suppose that \tilde{X} is another space such that there is a surjective map

$$
p: \tilde{X} \rightarrow X
$$

with the property that for each point $x \in X, p^{-1}(x) \subset \tilde{X}$ is a discrete subset of \tilde{X}, and there is an open set $U \subset X$ with $x \in U$ such that $\tilde{U}=p^{-1}(U) \subset \tilde{X}$ is homeomorphic to $U \times p^{-1}(x)$ and the restriction of p to each $U \times\left\{\tilde{x}_{i}\right\}$ (where the \tilde{x}_{i} are the points in $p^{-1}(x)$) is a homeomorphism onto U. Let q be a basepoint in X and let $\tilde{q}_{0} \in p^{-1}(q)$.

Prove that if $\gamma:[0,1] \rightarrow X$ is a path with $\gamma(0)=\gamma(1)=q$ then there is a path $\tilde{\gamma}:[0,1] \rightarrow \tilde{X}$ such that the following hold:
(1) $\gamma=p \circ \tilde{\gamma}$
(2) $\tilde{\gamma}(0)=\tilde{q}_{0}$

Furthermore, if $\phi:[0,1] \rightarrow X$ is a path from $\phi(0)=\phi(1)=q$ and if γ is homotopic to ϕ by a basepoint-preserving homotopy, then there is a homotopy $\tilde{F}:[0,1] \times$ $[0,1] \rightarrow \tilde{X}$ such that the following hold for all $s, t \in[0,1]:$
(a) $\tilde{F}(t, 0)=\tilde{\gamma}(t)$
(b) $\tilde{F}(t, 1)=\tilde{\phi}(t)$
(c) $\tilde{F}(0, s)=\tilde{\gamma}(0)$
(d) $\tilde{F}(1, s)=\tilde{\gamma}(1)$

