MA 331 HW 17: Taking the path less travelled

1. READING

Read Sections II. 1 of Edelsbrunner and Harer. Pay particular attention to:

- the definition of orientable vs. non-orientable surface

2. PROBLEMS

(1) Do problem 2 on page 24 of Edelsbrunner-Harer.
(2) (*) Let $I=[0,1]$. Let X be a path connected topological space and let $* \in X$. Let $P(X, *)$ be the set of all paths

$$
\{\gamma: I \rightarrow X: \gamma(0)=\gamma(1)=*\}
$$

For $\gamma, \alpha \in P(X, *)$, define $\gamma \sim \alpha$ if and only if there is a homotopy $F: I \times$ $I \rightarrow X$ with the following properties:

- For all $t \in I, F(t, 0)=\gamma(t)$ and $F(t, 1)=\alpha(t)$.
- For all $s \in I, F(0, s)=F(1, s)=*$.

We can concatenate paths as follows. Let $\gamma, \gamma^{\prime} \in P(X, *)$. Define

$$
\gamma^{\prime} \cdot \gamma(t)= \begin{cases}\gamma(2 t) & t \in[0,1 / 2] \\ \gamma^{\prime}(2 t-1) & t \in[1 / 2,1]\end{cases}
$$

Prove the following:
(a) \sim is an equivalence relation on $P(X, *)$
(b) If $\alpha \sim \beta$ and $\gamma \sim \phi$, then $\gamma \cdot \alpha \sim \phi \cdot \beta$.
(3) Prove that a contractible space is path-connnected. (Hint: the homotopy realizing the contraction, for a fixed point in the space, will trace out a path.)
(4) Suppose that $\gamma: S^{1} \rightarrow S^{n}$ (for $n \geq 2$) is continuous and that there is a point $N \notin \gamma\left(S^{1}\right)$. Prove that there is a homotopy from γ to a constant map. (i.e. the path γ is contractible.)

