MA 331 HW 14: Connected and Path Connected

1. DEFINITIONS

A topological space *X* is path-connected if for every $x, y \in X$ there exists a map $f: [0,1] \to X$ so that f(0) = a and f(1) = b.

Suppose that *X* is the disjoint union of copies of the interval I = [0, 1]. The **vertices** of *X* are the copies of $\{0\}$ and $\{1\}$ in each copy of the interval. The edges of *X* are the copies of the intervals [0, 1]. Let \sim be an equivalence relation on *X* such that if $x \sim y$ and $x \neq y$ then both *x* and *y* are vertices of *X*. By definition the quotient space X / \sim is a (topological) **graph**. The images (under the quotient map) of the vertices of *X* are called the **vertices** of X / \sim .

2. PROBLEMS

- (1) (*) Suppose that X: Y is a surjective (continuous) map between topological spaces X and Y. Assume that X is path connected, prove that Y is path connected.
- (2) (*) Suppose that X is a path-connected topological space. Prove that X is connected.
- (3) (*) Suppose that for each $\alpha \in \Lambda$, X_{α} is a topological space. Let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$ with the product topology.
 - (a) If each X_{α} is connected, prove that X is also connected. (See Theorem 2.12, page 118 of Mendelson)
 - (b) If each X_{α} is path connected, prove that X is also path connected.
- (4) (Challenging!) Let *C* be the union of the circles *C_n* of radius 1/*n* and center (0,1/*n*) in ℝ². Let *p* ∈ *C* be the point where they are all tangent. Prove that there is a path *γ*: [0,1] → *C* so that *γ*(0) = *γ*(1) = *p* and the image of *γ* is all of *C*.
- (5) (Challenging!) Attempt to prove that a topological graph *G* is path connected if and only if for every $a, b \in G$, there is a (finite) sequence of edges e_1, \ldots, e_n such that $a \in e_1, b \in e_n$ and for all $i \in \{1, \ldots, n-1\}$, the edges e_i and e_{i+1} share a vertex. (Note we are not assuming that *G* has only finitely many edges.)

If you are unable to prove the theorem, articulate what the difficulties are and what you would need to know to get past it.