## MA 331 HW 14: Connected and Path Connected

## 1. DEFINITIONS

A topological space $X$ is path-connected if for every $x, y \in X$ there exists a map $f:[0,1] \rightarrow X$ so that $f(0)=a$ and $f(1)=b$.

Suppose that $X$ is the disjoint union of copies of the interval $I=[0,1]$. The vertices of $X$ are the copies of $\{0\}$ and $\{1\}$ in each copy of the interval. The edges of $X$ are the copies of the intervals $[0,1]$. Let $\sim$ be an equivalence relation on $X$ such that if $x \sim y$ and $x \neq y$ then both $x$ and $y$ are vertices of $X$. By definition the quotient space $X / \sim$ is a (topological) graph. The images (under the quotient map) of the vertices of $X$ are called the vertices of $X / \sim$. The images of the edges of $X$ are called the edges of $X / \sim$.

## 2. Problems

(1) (*) Suppose that $X: Y$ is a surjective (continuous) map between topological spaces $X$ and $Y$. Assume that $X$ is path connected, prove that $Y$ is path connected.
(2) (*) Suppose that $X$ is a path-connected topological space. Prove that $X$ is connected.
(3) $\left(^{*}\right)$ Suppose that for each $\alpha \in \Lambda, X_{\alpha}$ is a topological space. Let $X=\prod_{\alpha \in \Lambda} X_{\alpha}$ with the product topology.
(a) If each $X_{\alpha}$ is connected, prove that $X$ is also connected. (See Theorem 2.12, page 118 of Mendelson)
(b) If each $X_{\alpha}$ is path connected, prove that $X$ is also path connected.
(4) (Challenging!) Let $C$ be the union of the circles $C_{n}$ of radius $1 / n$ and center $(0,1 / n)$ in $\mathbb{R}^{2}$. Let $p \in C$ be the point where they are all tangent. Prove that there is a path $\gamma:[0,1] \rightarrow C$ so that $\gamma(0)=\gamma(1)=p$ and the image of $\gamma$ is all of $C$.
(5) (Challenging!) Attempt to prove that a topological graph $G$ is path connected if and only if for every $a, b \in G$, there is a (finite) sequence of edges $e_{1}, \ldots, e_{n}$ such that $a \in e_{1}, b \in e_{n}$ and for all $i \in\{1, \ldots, n-1\}$, the edges $e_{i}$ and $e_{i+1}$ share a vertex. (Note we are not assuming that $G$ has only finitely many edges.)

If you are unable to prove the theorem, articulate what the difficulties are and what you would need to know to get past it.

