MA 331 Exam 1 Study Guide

1. **DEFINITIONS**

Know the following definitions:

- (1) Metric
- (2) continuity for a function between metric spaces
- (3) limit of a sequence in a metric space
- (4) sequential continuity for a function between metric spaces
- (5) open set in a metric space
- (6) subspace metric
- (7) product metric
- (8) topology on a set
- (9) open set, closed set in a topological space
- (10) neighborhood
- (11) limit point of a set

- (12) closure of a subset of a topological space
- (13) interior of a subset of a topological space
- (14) subspace topology
- (15) product topology
- (16) quotient topology
- (17) continuous function between topological spaces
- (18) open function between topological spaces
- (19) homeomorphism
- (20) dense subset of a topological space
- (21) basis for a topology
- (22) Hausdorff

2. Theorems

Be able to give proofs of the following theorems.

- (1) Sperner's Lemma
- (2) Brouwer Fixed Point Theorem (assuming Sperner's Lemma)
- (3) If (X, d_X) and (Y, d_Y) are metric spaces, then $(X \times Y, d_P)$ is a metric space where $d_P((x_1, y_1), (x_2, y_2)) = \max(d_X(x_1, x_2), d_Y(y_1, y_2))$ is the product metric.
- (4) The intersection of topologies on X is a topology on X

- (5) If X and Y are metric spaces then $f: X \to Y$ is continuous in the metric sense if and only if it is continuous in the topological sense if and only if it is sequentially continuous.
- (6) If $f: X \to Y$ is a constant function then f is continuous.
- (7) The composition of continuous functions is continuous (in topological spaces)
- (8) The definitions of the closure of $A \subset X$ as the set of limit points of A and as the smallest closed subset of X containing A are equivalent.
- (9) For a subset $A \subset X$ of a topological space there is a largest open set of X contained in A.
- (10) The subspace topology is a topology
- (11) The product topology is the smallest topology for which all the projection functions are continuous.
- (12) The interval [0,1] with the euclidean metric is sequentially compact.
- (13) The product of finitely many sequentially compact spaces is sequentially compact.
- (14) The image under a continuous function of a sequentially compact space is sequentially compact.
- (15) The space $[0,1]/\{0,1\}$ (with the quotient topology) is homeomorphic to the circle $S^1 \subset \mathbb{R}^2$.
- (16) If X is an infinite set then $\mathscr{T} = \{U \subset X : U^C \text{ is finite }\}$ is a topology on X.
- (17) Prove that if $N \in S^1$ then $S^1 \setminus \{N\}$ is homeomorphic to \mathbb{R} .
- (18) Let \sim be the equivalence relation on \mathbb{R} given by $x \sim x + n$ for all $n \in \mathbb{Z}$. Then the quotient map $q \colon \mathbb{R} \to \mathbb{R} / \sim$ is open.
- (19) The Cantor set is a closed subset of \mathbb{R} .