MA 331 Extreme Value Theorem

Lemma 1. If X is a Hausdorff space and if $P \subset X$ is compact, then P is closed.
Lemma 2. Suppose that X is compact and that for each $n \in \mathbb{N}, K_{n} \subset X$ is closed and non-empty. Furthermore, assume that for all $n, K_{n+1} \subset K_{n}$. Then

$$
\bigcap_{n \in \mathbb{N}} K_{n} \neq \varnothing
$$

Theorem 3 (Extreme Value Theorem). Let K be a non-empty compact topological space and let $f: K \rightarrow \mathbb{R}$ be continuous. Then there exist $m, M \in K$ such that for all $x \in K$, we have

$$
f(m) \leq f(x) \leq f(M)
$$

Proof. Let $V_{t}=(-\infty, t) \subset \mathbb{R}$ and let $U_{t}=f^{-1}\left(V_{t}\right)$. Since V_{t} is an open interval and since f is continuous, each U_{t} is open. Let $K_{t}=U_{t}^{C}$. Suppose, first, that for all $t \in \mathbb{R}, K_{t} \neq \varnothing$. Then by Lemma 2, there is an $x \in \bigcap_{n \in \mathbb{N}} K_{n}$. However that means that for all $n \in \mathbb{N}$, the value $f(x) \notin(-\infty, n)$. This contradicts the fact that $\mathbb{R}=\bigcup_{n \in \mathbb{N}}(-\infty, n)$. Thus, there is a t such that $K_{t}=\varnothing$. Let

$$
t_{0}=\inf \left\{t: K_{t}=\varnothing\right\}
$$

Since $K \neq \varnothing, t_{0} \neq-\infty$, that is $t_{0} \in \mathbb{R}$.
We claim that there exists $M \in K$ such that $f(M)=t_{0}$. Suppose, to the contrary, that there is no such M. Then $t_{0} \notin f(K) \subset \mathbb{R}$. Since K is compact, $f(K)$ is compact. Since \mathbb{R} is Hausdorff, $f(K)$ is closed (Lemma 1). By the definition of closed, there exists $\varepsilon>0$ such that the interval $\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right) \not \subset f(K)$. In particular, the set $K_{t_{0}-\varepsilon / 2}=\varnothing$. This contradicts the choice of t_{0} and so there must be such an $M \in K$.
Notice that if $s>t_{0}$, then $K_{s}=\varnothing$.
We now show that M is a global maximum for f. Let $x \in K$. If $f(x)>t_{0}=f(M)$ then $x \in K_{t_{0}}$. Letting $\varepsilon=\left(f(x)-t_{0}\right) / 2$, we see that also $x \in K_{t_{0}+\varepsilon}$. This contradicts the fact of the previous paragraph. Thus, $f(x) \leq t_{0}=f(M)$ as desired.

Finally we prove the existence of a global minimum. Let $g: K \rightarrow \mathbb{R}$ be the function where, for all $x \in K, g(x)=-f(x)$. It is easily seen that g is continuous. By our work above, g has a global maximum M_{g} such that for all $x \in K$, we have $g(x) \leq M_{g}$. Letting $m=-M_{g}$, we see that for all $x \in K, f(x) \geq m$, as desired.

Here is a somewhat shorter proof:
Proof. Let $f: X \rightarrow \mathbb{R}$ with X compact. Then $f(X) \subset \mathbb{R}$ is compact. Since \mathbb{R} is Hausdorff, $f(X)$ is closed. Thus, $a=\inf f(X) \in f(X)$ and $b=\sum f(X) \in f(X)$.

Consequently, there is $m \in X$ with $f(m)=a$ and $M \in X$ with $f(M)=b$ and $f(m) \leq f(x) \leq f(M)$
for all $x \in X$.

