
MA 331 Extreme Value Theorem

Lemma 1. If X is a Hausdorff space and if P⊂ X is compact, then P is closed.

Lemma 2. Suppose that X is compact and that for each n ∈ N, Kn ⊂ X is closed
and non-empty. Furthermore, assume that for all n, Kn+1 ⊂ Kn. Then⋂

n∈N
Kn 6=∅.

Theorem 3 (Extreme Value Theorem). Let K be a non-empty compact topological
space and let f : K→R be continuous. Then there exist m,M ∈ K such that for all
x ∈ K, we have

f (m)≤ f (x)≤ f (M)

Proof. Let Vt = (−∞, t) ⊂ R and let Ut = f−1(Vt). Since Vt is an open interval
and since f is continuous, each Ut is open. Let Kt = UC

t . Suppose, first, that for
all t ∈ R, Kt 6= ∅. Then by Lemma 2, there is an x ∈

⋂
n∈N Kn. However that

means that for all n ∈ N, the value f (x) 6∈ (−∞,n). This contradicts the fact that
R=

⋃
n∈N(−∞,n). Thus, there is a t such that Kt =∅. Let

t0 = inf{t : Kt =∅}.

Since K 6=∅, t0 6=−∞, that is t0 ∈ R.

We claim that there exists M ∈ K such that f (M) = t0. Suppose, to the contrary,
that there is no such M. Then t0 6∈ f (K)⊂R. Since K is compact, f (K) is compact.
Since R is Hausdorff, f (K) is closed (Lemma 1). By the definition of closed, there
exists ε > 0 such that the interval (t0− ε, t0 + ε) 6⊂ f (K). In particular, the set
Kt0−ε/2 =∅. This contradicts the choice of t0 and so there must be such an M ∈ K.

Notice that if s > t0, then Ks =∅.

We now show that M is a global maximum for f . Let x ∈ K. If f (x) > t0 = f (M)
then x ∈ Kt0 . Letting ε = ( f (x)− t0)/2, we see that also x ∈ Kt0+ε . This contradicts
the fact of the previous paragraph. Thus, f (x)≤ t0 = f (M) as desired.

Finally we prove the existence of a global minimum. Let g : K→R be the function
where, for all x ∈ K, g(x) = − f (x). It is easily seen that g is continuous. By our
work above, g has a global maximum Mg such that for all x∈K, we have g(x)≤Mg.
Letting m =−Mg, we see that for all x ∈ K, f (x)≥ m, as desired. �

Here is a somewhat shorter proof:

Proof. Let f : X → R with X compact. Then f (X) ⊂ R is compact. Since R is
Hausdorff, f (X) is closed. Thus, a = inf f (X) ∈ f (X) and b = ∑ f (X) ∈ f (X).
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Consequently, there is m ∈ X with f (m) = a and M ∈ X with f (M) = b and

f (m)≤ f (x)≤ f (M)

for all x ∈ X . �


