
MA 274: Induction Examples

1. PLAIN OLD MATHEMATICAL INDUCTION

Theorem (Mathematical Induction). Suppose that for each n ∈ N, P(n) is
a statement. Suppose also that:

• P(1) is true.
• If P(n) is true, then P(n+1) is true.

Then P(n) is true for all n ∈ N.

Proof. Let A = {n ∈ N : P(n) is true.}. By hypothesis,

• 1 ∈ A
• If n ∈ A, then n+1 ∈ A.

Hence, by the 5th Peano Axiom for the Natural Numbers, A = N. That is,
P(n) is true, for all n ∈ N. �

Theorem 1.1. If n ∈ N, then for some k ∈ N∪{0}, n is equal to one of 3k,
3k+1, or 3k+2.

Proof. We prove this by induction.

Base Case: If n = 1, then n = 3(0)+1.

Inductive Step: Assume that there exists k ∈ N∪{0} such that n equals
one of 3k, 3k+1, or 3k+2. We will show that there exists m ∈ N∪{0} so
that n+1 equals one of 3m, 3m+1, or 3m+2.

Case a: Suppose that n = 3k.

In this case n = 3k+1, so letting m = k gives us our result.

Case b: Suppose that n = 3k+1.

In this case, n+1 = (3k+1)+1 = 3k+2. Once again, we have our result.

Case c: Suppose that n = 3k+2.

In this case, n+1=(3k+2)+1 and so n= 3k+3= 3(k+1). Let m= k+1.
Then n+1 = 3m and we have our result. �
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Theorem 1.2. Suppose that Gn is the result of removing a single square
from a 2n×2n grid of square tiles. Then Gn can be tiled by L-shapes made
up of 3 square tiles.

Proof. We induct on n.

Base Case: If n = 1, Consider a 4× 4 grid. Removing any of the four
squares results in an L-shape made up of 3 square times. So G1 can be tiled
by the L-shapes.

Inductive Step: Assume that Gn can be tiled by L-shapes made up of 3
square tiles. We will prove that Gn+1 can also be tiled in such a way.

Let Sn and Sn+1 be the 2n× 2n grid and the 2n+1× 2n+1 grid, respectively.
Since 2n+1×2n+1 = (2 ·2n)× (2 ·2n), Sn+1 can be divided into four copies
of Sn all sharing the middle vertex of Gn+1. Call these grids T1, T2, T3, and
T4. Gn+1 is made by removing a square σ from Sn+1. The square σ must
lie in exactly one of T1, . . . ,T4. Without loss of generality, we may assume
that σ ⊂ T1. Then T1−σ can be tiled by the L shapes by the induction
hypothesis. Place an L shape so that one square of the shape lies in each of
T2, T3, and T4. (The inside corner of the shape is at the center point of Sn+1.)
Removing that L-shape from T1∪T2∪T3 results in 3 copies of Gn. By the
induction hypothesis, the rest of T1, T2, and T3 can be tiled by the L-shapes.
We have, therefore, tiled all of Gn+1 by L-shapes. �

2. COMPLETE INDUCTION

Theorem (Complete Induction). Suppose that for each n ∈ N, P(n) is a
statement. Suppose also that:

• P(1) is true.
• If P(k) is true for all k ≤ n, then P(n+1) is true.

Then for all n ∈ N, P(n) is true.

Proof. Let Q(n) be the statement that P(k) is true for all k ≤ n. We will
prove that Q(n) is true for all n ∈ N by induction.

Base Case: Since Q(1) = P(1), Q(1) is true by hypothesis.

Inductive Step: We assume that Q(n) is true and we will prove that Q(n+
1) is true. Since Q(n) is true, by the definition of Q(n), P(k) is true for all
k ≤ n. By hypothesis, this implies that P(n+ 1) is true. Thus, Q(n+ 1) is
true, since Q(n+1) = Q(n)andP(n+1).
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Hence, by induction Q(n) is true for all n. Since the truth of Q(n) implies
the truth of P(n), P(n) is also true for all n ∈ N. �

3. WELL ORDERING PRINCIPLE

Theorem. Suppose that A⊂ N is non-empty. Then A has a least element.

Proof. We prove the contrapositive. Let A⊂ N be a set without a least ele-
ment. We prove that Ac =N (in other words, A=∅) by complete induction.

Base Case: Since 1 ∈ N is the smallest integer, if 1 ∈ A then A would have
a least element, contradicting our hypothesis. Hence, 1 ∈ Ac.

Inductive Step: We assume that k ∈ Ac for all k ≤ n implies that (n+1) ∈
Ac.

Suppose that k ∈ Ac for all k ≤ n. Then, if (n+1) ∈ A the number (n+1)
would be the least element in A, since every number in N smaller than (n+
1) lies in Ac. Hence, (n+1) ∈ Ac as well.

Since we have proved both the base case and the inductive step, by the
principle of complete induction n ∈ Ac for all n ∈ N. Hence, Ac = N and
A =∅. �

Here is the last piece we needed for our proof that
√

2 is irrational.

Theorem 3.1. Every positive rational number can be expressed as a
b with

a,b ∈ N and where the only common positive divisors of a and b is 1.

Proof. Let ρ be a positive rational number. Let A= {a∈N :∃b∈N with ρ =
a/b}. Since ρ is a positive rational number, A 6= ∅. By the Well Ordering
Principle, A has a least element x. Since x ∈ A, there exists y ∈ N such that
ρ = x/y. We claim that x and y have no common divisor in N except 1.

Suppose that x and y are both multiples of r ∈N. Thus, there exists x′,y′ ∈N
such that x = rx′ and y = ry′. By the basic properties of arithmetic x′ ≤ x.
Then,

r =
x
y
=

rx′

ry′
=

x′

y′
.

Thus, x′ ∈ A. Since x is the least element of A, x ≤ x′. We also have x′ ≤ x
and so x = x′. This implies r = 1, as desired. �


