MA 274: Induction Examples

1. Plain Old Mathematical Induction

Theorem (Mathematical Induction). Suppose that for each $n \in \mathbb{N}, P(n)$ is a statement. Suppose also that:

- $P(1)$ is true.
- If $P(n)$ is true, then $P(n+1)$ is true.

Then $P(n)$ is true for all $n \in \mathbb{N}$.

Proof. Let $A=\{n \in \mathbb{N}: P(n)$ is true. $\}$. By hypothesis,

- $1 \in A$
- If $n \in A$, then $n+1 \in A$.

Hence, by the 5th Peano Axiom for the Natural Numbers, $A=\mathbb{N}$. That is, $P(n)$ is true, for all $n \in \mathbb{N}$.

Theorem 1.1. If $n \in \mathbb{N}$, then for some $k \in \mathbb{N} \cup\{0\}, n$ is equal to one of $3 k$, $3 k+1$, or $3 k+2$.

Proof. We prove this by induction.
Base Case: If $n=1$, then $n=3(0)+1$.
Inductive Step: Assume that there exists $k \in \mathbb{N} \cup\{0\}$ such that n equals one of $3 k, 3 k+1$, or $3 k+2$. We will show that there exists $m \in \mathbb{N} \cup\{0\}$ so that $n+1$ equals one of $3 m, 3 m+1$, or $3 m+2$.

Case a: Suppose that $n=3 k$.
In this case $n=3 k+1$, so letting $m=k$ gives us our result.
Case b: Suppose that $n=3 k+1$.
In this case, $n+1=(3 k+1)+1=3 k+2$. Once again, we have our result.
Case c: Suppose that $n=3 k+2$.
In this case, $n+1=(3 k+2)+1$ and so $n=3 k+3=3(k+1)$. Let $m=k+1$. Then $n+1=3 m$ and we have our result.

Theorem 1.2. Suppose that G_{n} is the result of removing a single square from a $2^{n} \times 2^{n}$ grid of square tiles. Then G_{n} can be tiled by L-shapes made up of 3 square tiles.

Proof. We induct on n.
Base Case: If $n=1$, Consider a 4×4 grid. Removing any of the four squares results in an L-shape made up of 3 square times. So G_{1} can be tiled by the L-shapes.

Inductive Step: Assume that G_{n} can be tiled by L-shapes made up of 3 square tiles. We will prove that G_{n+1} can also be tiled in such a way.
Let S_{n} and S_{n+1} be the $2^{n} \times 2^{n}$ grid and the $2^{n+1} \times 2^{n+1}$ grid, respectively. Since $2^{n+1} \times 2^{n+1}=\left(2 \cdot 2^{n}\right) \times\left(2 \cdot 2^{n}\right), S_{n+1}$ can be divided into four copies of S_{n} all sharing the middle vertex of G_{n+1}. Call these grids T_{1}, T_{2}, T_{3}, and $T_{4} . G_{n+1}$ is made by removing a square σ from S_{n+1}. The square σ must lie in exactly one of T_{1}, \ldots, T_{4}. Without loss of generality, we may assume that $\sigma \subset T_{1}$. Then $T_{1}-\sigma$ can be tiled by the L shapes by the induction hypothesis. Place an L shape so that one square of the shape lies in each of T_{2}, T_{3}, and T_{4}. (The inside corner of the shape is at the center point of S_{n+1}.) Removing that L-shape from $T_{1} \cup T_{2} \cup T_{3}$ results in 3 copies of G_{n}. By the induction hypothesis, the rest of T_{1}, T_{2}, and T_{3} can be tiled by the L-shapes. We have, therefore, tiled all of G_{n+1} by L-shapes.

2. Complete Induction

Theorem (Complete Induction). Suppose that for each $n \in \mathbb{N}, P(n)$ is a statement. Suppose also that:

- $P(1)$ is true.
- If $P(k)$ is true for all $k \leq n$, then $P(n+1)$ is true.

Then for all $n \in \mathbb{N}, P(n)$ is true.

Proof. Let $Q(n)$ be the statement that $P(k)$ is true for all $k \leq n$. We will prove that $Q(n)$ is true for all $n \in \mathbb{N}$ by induction.
Base Case: Since $Q(1)=P(1), Q(1)$ is true by hypothesis.
Inductive Step: We assume that $Q(n)$ is true and we will prove that $Q(n+$ $1)$ is true. Since $Q(n)$ is true, by the definition of $Q(n), P(k)$ is true for all $k \leq n$. By hypothesis, this implies that $P(n+1)$ is true. Thus, $Q(n+1)$ is true, since $Q(n+1)=Q(n)$ and $P(n+1)$.

Hence, by induction $Q(n)$ is true for all n. Since the truth of $Q(n)$ implies the truth of $P(n), P(n)$ is also true for all $n \in \mathbb{N}$.

3. Well Ordering Principle

Theorem. Suppose that $A \subset \mathbb{N}$ is non-empty. Then A has a least element.
Proof. We prove the contrapositive. Let $A \subset \mathbb{N}$ be a set without a least element. We prove that $A^{c}=\mathbb{N}$ (in other words, $A=\varnothing$) by complete induction.
Base Case: Since $1 \in \mathbb{N}$ is the smallest integer, if $1 \in A$ then A would have a least element, contradicting our hypothesis. Hence, $1 \in A^{c}$.

Inductive Step: We assume that $k \in A^{c}$ for all $k \leq n$ implies that $(n+1) \in$ A^{c}.
Suppose that $k \in A^{c}$ for all $k \leq n$. Then, if $(n+1) \in A$ the number $(n+1)$ would be the least element in A, since every number in \mathbb{N} smaller than $(n+$ $1)$ lies in A^{c}. Hence, $(n+1) \in A^{c}$ as well.
Since we have proved both the base case and the inductive step, by the principle of complete induction $n \in A^{c}$ for all $n \in \mathbb{N}$. Hence, $A^{c}=\mathbb{N}$ and $A=\varnothing$.

Here is the last piece we needed for our proof that $\sqrt{2}$ is irrational.
Theorem 3.1. Every positive rational number can be expressed as $\frac{a}{b}$ with $a, b \in \mathbb{N}$ and where the only common positive divisors of a and b is 1 .

Proof. Let ρ be a positive rational number. Let $A=\{a \in \mathbb{N}: \exists b \in \mathbb{N}$ with $\rho=$ $a / b\}$. Since ρ is a positive rational number, $A \neq \varnothing$. By the Well Ordering Principle, A has a least element x. Since $x \in A$, there exists $y \in \mathbb{N}$ such that $\rho=x / y$. We claim that x and y have no common divisor in \mathbb{N} except 1 .

Suppose that x and y are both multiples of $r \in \mathbb{N}$. Thus, there exists $x^{\prime}, y^{\prime} \in \mathbb{N}$ such that $x=r x^{\prime}$ and $y=r y^{\prime}$. By the basic properties of arithmetic $x^{\prime} \leq x$. Then,

$$
r=\frac{x}{y}=\frac{r x^{\prime}}{r y^{\prime}}=\frac{x^{\prime}}{y^{\prime}} .
$$

Thus, $x^{\prime} \in A$. Since x is the least element of $A, x \leq x^{\prime}$. We also have $x^{\prime} \leq x$ and so $x=x^{\prime}$. This implies $r=1$, as desired.

