MA 274: Induction Examples

1. PLAIN OLD MATHEMATICAL INDUCTION

Theorem (Mathematical Induction). Suppose that for each $n \in \mathbb{N}$, P(n) is a statement. Suppose also that:

- P(1) is true.
- If P(n) is true, then P(n+1) is true.

Then P(n) is true for all $n \in \mathbb{N}$.

Proof. Let $A = \{n \in \mathbb{N} : P(n) \text{ is true.}\}$. By hypothesis,

- $1 \in A$
- If $n \in A$, then $n + 1 \in A$.

Hence, by the 5th Peano Axiom for the Natural Numbers, $A = \mathbb{N}$. That is, P(n) is true, for all $n \in \mathbb{N}$.

Theorem 1.1. If $n \in \mathbb{N}$, then for some $k \in \mathbb{N} \cup \{0\}$, *n* is equal to one of 3k, 3k + 1, or 3k + 2.

Proof. We prove this by induction.

Base Case: If n = 1, then n = 3(0) + 1.

Inductive Step: Assume that there exists $k \in \mathbb{N} \cup \{0\}$ such that *n* equals one of 3k, 3k + 1, or 3k + 2. We will show that there exists $m \in \mathbb{N} \cup \{0\}$ so that n + 1 equals one of 3m, 3m + 1, or 3m + 2.

Case a: Suppose that n = 3k.

In this case n = 3k + 1, so letting m = k gives us our result.

Case b: Suppose that n = 3k + 1.

In this case, n + 1 = (3k + 1) + 1 = 3k + 2. Once again, we have our result.

Case c: Suppose that n = 3k + 2.

In this case, n+1 = (3k+2)+1 and so n = 3k+3 = 3(k+1). Let m = k+1. Then n+1 = 3m and we have our result. **Theorem 1.2.** Suppose that G_n is the result of removing a single square from a $2^n \times 2^n$ grid of square tiles. Then G_n can be tiled by L-shapes made up of 3 square tiles.

Proof. We induct on *n*.

Base Case: If n = 1, Consider a 4×4 grid. Removing any of the four squares results in an L-shape made up of 3 square times. So G_1 can be tiled by the L-shapes.

Inductive Step: Assume that G_n can be tiled by L-shapes made up of 3 square tiles. We will prove that G_{n+1} can also be tiled in such a way.

Let S_n and S_{n+1} be the $2^n \times 2^n$ grid and the $2^{n+1} \times 2^{n+1}$ grid, respectively. Since $2^{n+1} \times 2^{n+1} = (2 \cdot 2^n) \times (2 \cdot 2^n)$, S_{n+1} can be divided into four copies of S_n all sharing the middle vertex of G_{n+1} . Call these grids T_1 , T_2 , T_3 , and T_4 . G_{n+1} is made by removing a square σ from S_{n+1} . The square σ must lie in exactly one of T_1, \ldots, T_4 . Without loss of generality, we may assume that $\sigma \subset T_1$. Then $T_1 - \sigma$ can be tiled by the *L* shapes by the induction hypothesis. Place an *L* shape so that one square of the shape lies in each of T_2 , T_3 , and T_4 . (The inside corner of the shape is at the center point of S_{n+1} .) Removing that *L*-shape from $T_1 \cup T_2 \cup T_3$ results in 3 copies of G_n . By the induction hypothesis, the rest of T_1 , T_2 , and T_3 can be tiled by the *L*-shapes. We have, therefore, tiled all of G_{n+1} by *L*-shapes.

2. COMPLETE INDUCTION

Theorem (Complete Induction). Suppose that for each $n \in \mathbb{N}$, P(n) is a statement. Suppose also that:

- P(1) is true.
- If P(k) is true for all $k \le n$, then P(n+1) is true.

Then for all $n \in \mathbb{N}$, P(n) is true.

Proof. Let Q(n) be the statement that P(k) is true for all $k \le n$. We will prove that Q(n) is true for all $n \in \mathbb{N}$ by induction.

Base Case: Since Q(1) = P(1), Q(1) is true by hypothesis.

Inductive Step: We assume that Q(n) is true and we will prove that Q(n + 1) is true. Since Q(n) is true, by the definition of Q(n), P(k) is true for all $k \le n$. By hypothesis, this implies that P(n+1) is true. Thus, Q(n+1) is true, since Q(n+1) = Q(n)andP(n+1).

Hence, by induction Q(n) is true for all *n*. Since the truth of Q(n) implies the truth of P(n), P(n) is also true for all $n \in \mathbb{N}$.

3. Well Ordering Principle

Theorem. Suppose that $A \subset \mathbb{N}$ is non-empty. Then *A* has a least element.

Proof. We prove the contrapositive. Let $A \subset \mathbb{N}$ be a set without a least element. We prove that $A^c = \mathbb{N}$ (in other words, $A = \emptyset$) by complete induction.

Base Case: Since $1 \in \mathbb{N}$ is the smallest integer, if $1 \in A$ then *A* would have a least element, contradicting our hypothesis. Hence, $1 \in A^c$.

Inductive Step: We assume that $k \in A^c$ for all $k \le n$ implies that $(n+1) \in A^c$.

Suppose that $k \in A^c$ for all $k \le n$. Then, if $(n + 1) \in A$ the number (n + 1) would be the least element in A, since every number in \mathbb{N} smaller than (n + 1) lies in A^c . Hence, $(n + 1) \in A^c$ as well.

Since we have proved both the base case and the inductive step, by the principle of complete induction $n \in A^c$ for all $n \in \mathbb{N}$. Hence, $A^c = \mathbb{N}$ and $A = \emptyset$.

Here is the last piece we needed for our proof that $\sqrt{2}$ is irrational.

Theorem 3.1. Every positive rational number can be expressed as $\frac{a}{b}$ with $a, b \in \mathbb{N}$ and where the only common positive divisors of *a* and *b* is 1.

Proof. Let ρ be a positive rational number. Let $A = \{a \in \mathbb{N} : \exists b \in \mathbb{N} \text{ with } \rho = a/b\}$. Since ρ is a positive rational number, $A \neq \emptyset$. By the Well Ordering Principle, *A* has a least element *x*. Since $x \in A$, there exists $y \in \mathbb{N}$ such that $\rho = x/y$. We claim that *x* and *y* have no common divisor in \mathbb{N} except 1.

Suppose that *x* and *y* are both multiples of $r \in \mathbb{N}$. Thus, there exists $x', y' \in \mathbb{N}$ such that x = rx' and y = ry'. By the basic properties of arithmetic $x' \leq x$. Then,

$$r = \frac{x}{y} = \frac{rx'}{ry'} = \frac{x'}{y'}.$$

Thus, $x' \in A$. Since x is the least element of A, $x \le x'$. We also have $x' \le x$ and so x = x'. This implies r = 1, as desired.