MA 253 Study Guide 1

1. **DEFINITIONS**

You should know precise definitions for the following terms:

(1)	consistent linear system	(6)	subspace of \mathbb{R}^n
(2)	inconsistent linear system	(7)	linear combination
(3)	linear transformation	(8)	span
(4)	one-to-one	(9)	image
(5)	onto	(10)	kernel

2. CALCULATIONS

You should know how to accurately perform the following kinds of calculations:

- (1) Add and scale vectors
- (2) Determine if a matrix is in reduced row echelon form.
- (3) Row reduce (using Gauss-Jordan) a matrix and/or an augmented matrix
- (4) Find the inverse of a matrix using row reduction
- (5) Multiply a matrix times a vector
- (6) Write the product of a matrix and a vector as the linear combination of the columns of the matrix
- (7) Multiply a matrix times another matrix.
- (8) Write the product of a matrix and a matrix in terms of the columns of the matrix on the right
- (9) Find the matrix which represents a linear transformation.
- (10) Find vectors which span the image and kernel of a linear transformation.

3. IDEAS

You should be able to give complete and detailed explanations of the following ideas:

- (1) If $A\mathbf{x} = \mathbf{b}$ is a linear system, then either it has a unique solution, or it has no solution, or it has infinitely many solutions.
- (2) If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then there is an $m \times n$ matrix A so that $T(\mathbf{x}) = A\mathbf{x}$ for every vector $\mathbf{x} \in \mathbb{R}^n$.
- (3) If $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear, one-to-one and onto, then n = m.
- (4) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear, one-to-one, then $n \le m$
- (5) If $T: \mathbb{R}^m \to \mathbb{R}^n$ is linear, onto, then $n \ge m$.
- (6) If A is a transition matrix for a mini-web, then the ij entry of A^k is the percentage of people who start at page j and end at page i after following exactly k links.
- (7) Explain why an elementary row operation on a matrix can be accomplished by multiplying by an elementary matrix
- (8) Explain the geometric effects of linear transformations $\mathbb{R}^2 \to \mathbb{R}^2$ (explained in terms of projections, rotations, reflections, and stretching)
- (9) Explain why if A is a 2×2 matrix, then |det(A)| measures how area scales under the linear transformation $T(\mathbf{x}) = A\mathbf{x}$.
- (10) Explain why image and kernel are subspaces.