MA 253 Exam 2 - Study Guide Solutions

1. Sample Problem Solutions

(1) Consider the network below, and let A be its transition matrix.

(a) What is the transition matrix for this system?

Solution:

$$
\left(\begin{array}{cccc}
0 & 1 / 2 & 0 & 0 \\
1 / 3 & 0 & 0 & 0 \\
1 / 3 & 0 & 1 & 1 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right)
$$

(b) What are its eigenvalues?

Solution: $0,1,-1 / \sqrt{6}, 1 / \sqrt{6}$
(c) Is there a single equilibrium vector or more than one?

Solution: Just one - since the eigenvectors form a basis, the eigenspace for the eigenvalue 1 is 1 -dimensional and there is just one transition vector in that span.
(d) Do the eigenvectors form a basis for \mathbb{R}^{4} ?

Solution: Yes, there are 4 distinct eigenvalues.
(2) Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation with the eigenvalue $\lambda=1$ having multiplicity n.
(a) Might T be invertible?

Solution: Yes, 0 is not an eigenvalue since T can have at most n eigenvalues and there already n of them (all equal to 1).
(b) Must T be diagonalizable?

Solution: No. It will be diagonalizable only if there is a basis of eigenvectors.
(3) Show that if A and B are $n \times n$ matrices, and if k is a real number, then
(a) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$

Solution: When we add two $n \times n$ matrices, the entries along the diagonal are just the sum of the entries of the originals. That is, the sum of thier traces.
(b) $\operatorname{tr}(k A)=k \operatorname{tr}(A)$.

Solution: When we multiply A by k each number on the diagonal gets multiplied by k.
(4) Show that if λ is an eigenvalue for a matrix A, then λ^{k} is an eigenvalue for A^{k}. What can you say about the associated eigenvectors?

Solution: Let λ be an eigenvalue for A and let \mathbf{v} be an associated eigenvector. Then

$$
\begin{aligned}
A \mathbf{v} & =\lambda \mathbf{v} \\
A^{2} \mathbf{v} & =\lambda A \mathbf{v} \\
& =\lambda^{2} \mathbf{v}
\end{aligned}
$$

and so forth.
(5) Explain why if n is odd, then every $n \times n$ matrix A must have at least one real eigenvalue.

Solution: Let $f(\lambda)$ be the characteristic polynomial. As $\lambda \rightarrow-\infty$, the polynomial $f(\lambda) \rightarrow-\infty$ since it is of odd degree. Similarly, as $\lambda \rightarrow \infty$, we also have $f(\lambda) \rightarrow \infty$. Thus by the intermediate value theorem, it must cross the x-axis somewhere. That number is an eigenvalue.
(6) Is it possible for an $n \times n$ matrix with entries in \mathbb{R} to have exactly one eigenvalue which has a non-zero imaginary part?
Solution: No. The determinant of a matrix is the product of its eigenvalues. Such a matrix would have a determinant with non-zero imaginary part. However, the entries of the the matrix are in \mathbb{R} and cofactor expansion (or the definition of determinant) show that the determinant of a matrix with real entries is real.
(7) Explain why a matrix whose columns are a basis for \mathbb{R}^{n} must be the matrix for a one-to-one linear transformation. Must such a matrix be invertible? What if it is square?

Solution: Yes. Yes. It must be square. To see this, let A be a matrix whose columns are a basis for \mathbb{R}^{n}. Since they form a basis, the columns are linearly independent, so when we row reduce $\operatorname{rref} A$ has a leading 1 in every column. Since the span of the columns is \mathbb{R}^{n}, the rref A has a leading 1 in every row. Thus, rref is an $n \times n$ identity matrix. So A is square and invertible.
(8) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be reflection across the subspace $x_{1}+x_{2}+\ldots+x_{n}=0$.
(a) Find all the eigenvalues of T and their algebraic multiplicities without doing any matrix computations.

Solution: Let V be the subspace we are reflecting across. It is $n-1$ dimensional, so there are $n-1$ basis vectors in it. Each of those is a basis vector for the eigenspace of the eigenvalue 1 , since they are
unchanged by the transformation. There is a unique 1 -dimensional subspace perpendicular to V (spanned by the vector $(1,1, \ldots, 1)$. So that vector is a basis for the eigenspace of the eigenvalue -1 , since it is reflected. Thus, 1 has algebraic and geometric multiplicity $n-1$ and -1 has algebraic and geometric multiplicity 1.
(b) Find a basis \mathscr{B} for \mathbb{R}^{n} in which $[T]_{\mathscr{B}}$ is diagonal.

Solution: The basis of eigenvectors makes $[T]_{\mathscr{B}}$ diagonal
(9) If A is an $n \times n$ matrix such that there is an invertible matrix S and an upper triangular matrix U such that

$$
A=S U S^{-1}
$$

what is the relationship, if any between the eigenvalues of A and those of U ? Are the eigenvalues of A easy to find? Why or why not?
Solution: The eigenvalues are the same, since eigenvalues are independent of basis. They are easy to find since they are the diagonal entries of U.
(10) Suppose that $A=X Y$ where A, X, Y are $n \times n$ matrices and X and Y are an upper triangular and lower triangular matrices. Explain why 0 is not an eigenvalue of A if and only if neither X nor Y has a 0 on the diagonal.
Solution: Recall that an $n \times n$ matrix as 0 as an eigenvalue if and only if it is not invertible.

Suppose first that neither X nor Y has a 0 on the diagonal. Since they are triangular, neither has 0 as an eigenvalue. Thus, they are both invertible. We have

$$
(X Y)\left(Y^{-1} X^{-1}\right)=I=\left(Y^{-1} X^{-1}\right)(X Y)
$$

so A is invertible with inverse $Y^{-1} X^{-1}$. This means that 0 is not an eigenvalue of A.

Now suppose that A is invertible. If Y had a 0 on the diagonal, it would have an eigenvalue of 0 . Suppose that \mathbf{v} is an associated eigenvector, then $Y \mathbf{v}=\mathbf{0}$ so

$$
A \mathbf{v}=X Y \mathbf{v}=X \mathbf{0}=\mathbf{0}
$$

so \mathbf{v} is also an eigenvector for A with eigenvalue 0 . This implies that A is not invertible, contrary to our hypothesis. Thus, Y does not have a 0 on the diagonal. Then Y is invertible,

$$
X=A Y^{-1}
$$

Since A is invertible, A inverse exists so

$$
X^{-1}=Y A^{-1}
$$

Thus, X is invertible. This means that 0 is not an eigenvalue of X. The diagonal entries of X are the eigenvalues, so X does not have a 0 on the diagonal.

