
MA 253 Exam 2 - Study Guide

Included in this study guide are the “Basic Facts about Bases” study guide and the
“Basic Facts about Eigenstuff” study guide. We begin, however, with some sample
problems. These are not intended to be all-inclusive of what you should study, just
to give you some additional problems to think about.

1. SAMPLE PROBLEMS

(1) Consider the network below and let A be its transition matrix.
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(a) What is the transition matrix for this system?
(b) What are its eigenvalues?
(c) Is there a single equilibrium vector or more than one?
(d) Do the eigenvectors form a basis for R4?

(2) Suppose that T : Rn → Rn is a linear transformation with the eigenvalue
λ = 1 having multiplicity n.

(a) Might T be invertible?
(b) Must T be diagonalizable?

(3) Show that if A and B are n×n matrices, and if k is a real number, then

(a) tr(A+B) = tr(A)+ tr(B)
(b) tr(kA) = k tr(A).

(4) Show that if λ is an eigenvalue for a matrix A, then λ k is an eigenvalue for
Ak. What can you say about the associated eigenvectors?

(5) Explain why if n is odd, then every n× n matrix A must have at least one
real eigenvalue.

(6) Is it possible for an n× n matrix with entries in R to have exactly one
eigenvalue which has a non-zero imaginary part?

(7) Explain why a matrix whose columns are a basis for Rn must be the matrix
for a one-to-one linear transformation. Must such a matrix be invertible?
What if it is square?

(8) Let T : Rn→ Rn be reflection across the subspace x1 + x2 + . . .+ xn = 0.
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(a) Find all the eigenvalues of T and their algebraic multiplicities without
doing any matrix computations.

(b) Find a basis B for Rn in which [T ]B is diagonal.

(9) If A is an n×n matrix such that there is an invertible matrix S and an upper
triangular matrix U such that

A = SUS−1

what is the relationship, if any between the eigenvalues of A and those of
U? Are the eigenvalues of A easy to find? Why or why not?

(10) Suppose that A = XY where A,X ,Y are n× n matrices and X and Y are
an upper triangular and lower triangular matrices. Explain why 0 is not an
eigenvalue of A if and only if neither X nor Y has a 0 on the diagonal.
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2. BASES

Here are some basic facts

(1) If V ⊂ Rn is a subspace, then a basis for Rn is a list of vectors b1, . . . ,bk
which are linearly independent and which span V .

(2) If b1, . . . ,bk is a basis for a subspace V then each vector x ∈ Rn can be
uniquely written as a linear combination of b1, . . . ,bk.

(3) All bases for a subspace V have the same number of elements.

(4) Every subspace other than 0 has a basis.

3. LINEAR TRANSFORMATIONS T : Rn→ Rm

Here are some important facts:

(1) If v,w ∈ Rn and if k, ` ∈ R, then

T (kv+ `w) = kT (v)+ `T (w)

(2) There is an m×n matrix A such that T (x) = Ax for every x ∈ R. Further-
more, the columns of this matrix are

T (e1) T (e2) . . . T (en)

where e1, . . . ,en are the standard basis vectors of Rn. We often denote this
matrix by the symbol [T ].

(3) If B = {b1, . . . ,bn} is any basis for Rn and if C = {c1, . . . ,cm} is any basis
for Rm, then there is a matrix [T ]BC such that for every x ∈ Rn we have

T (x)C = [T ]BC xB

where the subscripts mean that we write the vectors in coordinates from B
or C . The matrix [T ]BC has columns:

T ((b1)B)C T ((b2)B)C . . . T ((bn)B)C
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(4) The following are equivalent for T :

• The transformation T is one-to-one

• The columns of the matrix [T ] are linearly independent

• ker(T ) = {0}

• The reduced row echelon form of [T ] has a leading one in every col-
umn

(5) The following are equivalent for T :

• The transformation T is onto
• The rows of T are linearly independent
• im(T ) = Rm

• The reduced row echelon form of [T ] has a leading one in every row
(i.e. no row of all zeros).

(6) If n 6= m, then T is not invertible.

4. LINEAR TRANSFORMATIONS T : Rn→ Rn

In the case when n = m, all of the previous facts remain true, but we can say even
more:

(1) The following are equivalent:

• T is invertible
• T is one-to-one
• T is onto
• det[T ] 6= 0
• 0 is not an eigenvalue for T

(2) If the eigenvalues of T form a basis B for Rn, then [T ]B is diagonal.

(3) If T has n distinct eigenvalues, then the eigenvalues for T form a basis for
Rn.
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MA 253 Notes on Eigenvalues and Eigenvectors

Throughout these notes, let A be an n×n matrix and let T : Rn→ Rn be the linear
transformation T (x) = Ax.

A number λ and a non-zero vector v ∈ Rn are an eigenvalue, eigenvector pair if

Av = λv.

In otherwords, an eigenvector is a vector which is stretched by the transformation
and λ is the amount it is stretched by.

Here are some useful facts about eigenvalues and eigenvectors. Some of these were
explained in class and some were not.

• If A has eigenvectors v1, . . . ,vn which form a basis B for Rn then the ma-
trix [T ]B for T in that basis is diagonal. Put another way, there is an in-
vertible matrix B and a diagonal matrix D so that

A = BDB−1

Remark: The columns of B are the eigenvectors (in any order you choose)
and the diagonal entries of D are the eigenvalues with the kth entry on the
diagonal the eigenvalue corresponding to the kth column of B. Different
choices of eigenvectors or a different choice of eigenvalue will make B and
D different matrices.

• The eigenvalues of A can be found by solving the equation

det(A−λ I) = 0

for λ .

The polynomial det(A−λ I) is a polynomial of degree n. It is called the
characteristic polynomial of A.

• If λ0 is an eigenvalue for A, the eigenspace for λ0 is the set of eigenvectors
for A corresponding to λ0 together with the vector 0 (which never counts as
an eigenvector). A basis for the eigenspace for λ0 can be found by finding
a basis for

ker(A−λ0I).

• If A has n distinct eigenvalues then the eigenvectors for A form a basis for
Rn and so A can be diagonalized, as above.

• You should be able to instantly (i.e. no computations) find eigenvectors
for projections, reflections, rotations (if they exist), and certain transition
matrices.
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• The characteristic polynomial f (λ ) for A has constant term equal to the
determinant of A and the coefficient of the (n− 1)st term is equal to ±
the trace of A. These facts follow from the more interesting fact that the
determinant of A is the product of the eigenvalues and the trace of A is the
sum of the eigenvalues.

• The matrix A is invertible if and only if 0 is not an eigenvalue of A.

• The Perron-Frobenius Theorem (see below)

• If z is a complex number which is a root of the characteristic polynomial
f (λ ) of A then its complex conjugate z is also a root of f (t). There is a
certain sense in which these complex eigenvalues, if they have non-zero
imaginary part, correspond to a certain kind of rotating action of A on Rn.

• If A is upper or lower triangular, the eigenvalues for A appear as the diag-
onal entries of A (with their correct multiplicities)

• The eigenvalues of A and of the transpose AT of A are the same, although
the eigenvalues may be different.

• If A and X are similar matrices (that is, there is a change of basis which
takes one to the other) then they have the same eigenvalues. The coordi-
nates of their eigenvectors may differ.

5. A PARTIAL PROOF OF THE PERRON-FROBENIUS THEOREM

An n× n matrix A is a transition matrix if the entries of A are non-negative real
numbers and if each column of A sums to 1. A distribution vector x ∈ Rn is
a vector with non-negative entries summing to 1. Notice that if A is a transition
matrix and if x is a distribution vector then Ax is also a distribution vector. (You
should verify this!)

A distribution vector w is an equilibrium for a transition matrix A if Aw = w.
Observe that this is equivalent to saying that 1 is an eigenvalue for A with associated
eigenvector w which is also a distribution vector.

Theorem (Perron-Frobenius). Suppose that A is a transition matrix. Then the fol-
lowing hold:

(1) there is an equilibrium vector w for A
(2) If λ is an eigenvalue for A then |λ | ≤ 1
(3) If the eigenvectors of A form a basis, then for any initial distribution vector

x0, there is an equilibrium vector w for A such that

limAmx0 = w.

Proof. It is easier to work with the transpose AT of A rather than A itself, so recall
that AT and A have the same eigenvalues. Suppose, first that λ is an eigenvalue of
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AT (and hence of A) let v be an associated eigenvector. Since v 6= 0, we may scale
v so that one of the entries v j = 1 and all other entries are at most 1 in absolute
value. Let

r j =
(
r j1 r j2 . . . r jn

)
be the jth row of AT . By the definition of matrix multiplication, the jth entry of
the vector Av is equal to

(
r j1 r j2 . . . r jn

)


v1
v2
...

vn

= r j1v1 + r j2v2 + . . .+ r j jv j + . . .+ r jnvn.

But since Av = λv, the jth entry of Av is just λv j = λ . Thus,

λ = r j1v1 + r j2v2 + . . .+ r j jv j + . . .+ r jnvn.

Taking absolute values and using the triangle inequality, we get:

|λ | = |r j1v1 + r j2v2 + . . .+ r j jv j + . . .+ r jnvn|
≤ |r j1v1|+ |r j2v2|+ . . .+ |r j jv j|+ . . .+ |r jnvn|

Each r ji is non-negative, so

|λ | ≤ r j1|v1|+ r j2|v2|+ . . .+ r j j|v j|+ . . .+ r jn|vn|

Each |vi| ≤ 1, so
|λ | ≤ r j1 + r j2 + . . .+ r j j + . . .+ r jn

Since AT is the transpose of a transition matrix, each of its rows sums to 1. Hence,
λ ≤ 1 as desired. Notice also in the previous work each inequality ≤ is actually

an = exactly when all the entries of v are equal to 1. Thus, the vector


1
1
...
1

 is an

eigenvector for λ = 1. Thus, λ = 1 is an eigenvalue for both AT and A.

Suppose now that the eigenvectors for A form a basis b1, . . . ,bn of Rn. Let λ1, . . . ,λn
be the associated eigenvalues. We may choose the ordering so that λ1, . . . ,λk are
exactly the eigenvalues equal to 1. Let x0 be an initial distribution vector. We can
write x0 uniquely in terms of the basis as

x0 = α1b1 +α2b2 + . . .+αnbn.

Applying Am to both sides, we get

Amx0 = α1Amb1 +α2Amb2 + . . .+αnAmbn.

Using the fact that the basis vectors are all eigenvectors we get:

Amx0 = α1λ
m
1 b1 +α2λ

m
α2 + . . .+αkλ

mbk +αk+1λ
mbk+1 + . . .+αnλnbn.
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Recall that λ1 = λ2 = . . . = λk = 1 and that for each i ≥ k+ 1, we have |λi| ≤ 1.
Thus, taking a limit as m→ ∞ we get

limAmx0 = α1b1 +α2b2 + . . .+αkbk.

Each vector Amx0 is a vector with non-negative entries summing to 1, so the limit
of Amx0 is also such a vector. Thus,

w = α1b1 +α2b2 + . . .+αkbk

is an equilibrium vector (since it is a distribution vector in the eigenspace of the
eigenvalue 1) and any initial distribution vector will limit to it.
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