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1. BASIC CONCEPTS AND REVIEW FROM MA 122

1.1. Euclidean Vector spaces. In this course, a vector space will always
consist of a set of the form:

R" = {(Xl,XQ, ... ,xn) X € R}
with component wise addition and scalar multiplication. For example, in
R3:
(1,2,3) 4+ (—5,4,16) = (—4,6,19)

V3(1,2,3) = (v/3,2V/3,3V3).

In these notes, an element (called a vector) of R” for n > 2 will be often

be denoted in bold face, (eg. x). On the blackboard, vectors are usually

denoted by X. If x = (x,x2,...,%,) € R", the numbers x; are called the

coordinates or components of x. We will often write a vector (xp,...,x;,)
X1

and

. . X2 .
in vertical format as | . |. The zero vector is the vector 0 = (0,0,...,0).

Xn
In R", the standard basis vectors (for rectangular coordinates) are

e = (1,0,0,...,0)
e; = (0,1,0,...,0)

en = (0,0,...,0,1)

That is, e; is the vector with the ith coordinate equal to 1 and all other
coordinates equal to 0. Notice that

(x1 3 X2y ,xn) = x1€1 +x2€3 + ...+ x,€n.

In R? the standard basis vectors are sometimes denoted by i and j instead of
e, and e;. In R3 the standard basis vectors are sometimes denoted i, J, and
k instead of eq, e;, and e3.

We can picture a vector x in R? or R? as an arrow with base at 0 and the tip
of the arrowhead at x.

The act of multiplying a vector x € R" by a scalar k € R, stretches the arrow
representing X if k£ > 1 and shrinks the arrow representing x if 0 < k < 1.
If k < 0O, the vector kx is represented by an arrow pointing in the direction
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FIGURE 1. The vector (.8,2.4) is in blue and the vector
(1.6,2.4) is in red.

opposite the arrow representing X. The sum of two vectors in R? or R3 can
be found using the parallelogram rule as in Figure 2.

=

08T

FIGURE 2. The sum of the red vector and the blue vector is
the purple vector.

1.1.1. Length and Distance. Given a vector X = (x1,X2,...,X,) in R”, its
length (or magnitude or norm) is denoted

x| = /X3 +x3+... +x2.
The (Euclidean) distance between two vectors x and y is defined to be

[Ix = yll.
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1.1.2. Dot product. If x = (x1,...,x,) and y = (yy,...,y,) are two vectors
in R" their dot product is defined to be:

Xy =X1y1 +x2y2 + ..o XnYn-
Notice that this means that for any vector x € R",

Hx|]2:x~x.

Theorem 1.1. Suppose that u,v,w € R" and that k,/,m € R. Then
the following are true:

(a) (Commutativity)

u-v=v-u

(b) (Vector Distributativity)

u-(v+w)=u-vtu-w

(c) (Scalar Associativity)
k(w-v) = (ku)-v=mu- (kv)

1.2. Linear functions and matrices. The importance of linear functions
arises from their ability to approximate differentiable functions.

1.2.1. Linear functions. A function f: R" — R is a linear function if for
all x,y € R" and for all £,/ € R:

flkx+1y) = kf(x)+1y.

Exercise 1.2. Prove that the linear functions f: R — R are exactly those
of the form f(x) = mx for some m € R.

A function g: R" — R is an affine function if there exists a linear function
f: R" — R™ and a vector b € R™ such that for all x € R".

g(x) = f(x)+b.

Exercise 1.3. Prove that a function g: R — R is affine if and only if it is of
the form g(x) = mx + b for some fixed m,b € R.

Exercise 1.4. Give examples of linear functions R? 5 R, R — R2, and
R2 — R2.



1.2.2. Matrices. An m x n matrix M is an array of the form

al aip ... dip

anq ayy ... Ay
M= .

aAml Am2 ... Amn

We will sometimes place the dimensions of the matrix as subscripts on the
name of the matrix. Thus we might write M,,, for the above matrix.

If we let
ry = (an,a12,...,ain)
r; = (a,a2,...,a)
I'm = (aml yAm2y - - - 7amn)

we can write the matrix M,,,, as

Iy
I
M=
I'm
Similarly, if we let ¢y, ..., ¢, be the columns of M,,, then we can write
M=(c1 ¢ ... ¢n).
Suppose that
Aq
A
Amn - .
Am
and
By, = (Bl B, ... Bp)

are both matrices where A; is the ith row of A and B; is the jth column of
B. Botice that both A; and B; are in R". Then the product AB is an m X p
matrix defined by

Ai-B; Ay-By ... A;-B,
Ay-B;y Ay-By ... A-B
AB — 2. 1 2 D2 2 Dp
Am'Bl Al'B2 e Am'Bp

That is, the entry in the ith row and jth column of AB is the dot product of
the ith row of A with the jth column of B.
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Exercise 1.5. LetA= | 4
7

(3,1,-5).

(a) Calculate AB

(b) Calculate BA

(c) Calculate Av and Bv.

(d) Let e; be the ith basis vector of R3. Calculate Ae; and Be;.
If A is a matrix and if k € R, then kA is defined to be the matrix obtained by
multiplying all the entries of A by k. If A and B are matrices with the same

dimensions, then A + B is defined to be the matrix obtained by adding the
corresponding entries of A and B.

1 23

Exercise 1.6. LetA= |4 5 6| andlet kK =2. Write down all the entries
7 8 9

of kKA.
1 23 -1 7 -1

Exercise 1.7. LetA= |4 5 6| andletB=| 0 2 —2|.Compute
7 8 9 6 -3 0

A+B.

The following theorem should come as no surprise:

Theorem 1.8. Suppose that A, B,C are matrices and that k,/ € R
such that all expressions in what follows are defined. Then

(a) A(BC) = (AB)C

(b) A(B4+C)=AB+AC
(c) (A+B)C=AC+BC.
(d) (kA)BC = k(ABC)
(e) (k+1)A=kA+IA

1 23

Exercise 1.9. Let A = ( 45 6

). Letv=(—4,8,2).

(a) Calculate Av.

(b) Define a function by f(x) = Ax. What are the domain and codomain
of f? Show that f is a linear function.
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The n x n identity matrix /,, is the matrix (el ... en) , where e; is the ith
basis vector of R”.

Exercise 1.10. (a) Suppose that A is an arbitrary n X n matrix. Explain
why IA = Al = A.

(b) If A is an m x n matrix such that m # n, is it still true that /A = Al =
A? Why or why not?

The following theorem is fundamental to linear algebra. It is typically
proved in a linear algebra course.

Theorem 1.11. A function f: R" — R is linear if and only if there
is an m x n matrix A such that f(x) = Ax for all x € R".

Exercise 1.12. Consider the grid on R? given by horizontal lines at integer
y values and vertical lines at integer x values. What happens to this grid
under the linear function f: R?> — R? given by

£(x) = <_11 i) X



2. VISUALIZING FUNCTIONS f: R" — R"

There are three basic situations to consider n < m, n = m, and n > m. Fur-
thermore, we will almost always be considering the following types of func-
tions:

: R — R (the subject of Calculus I)

: R> - Rand f: R® — R (the subject of Calculus IT)
- R — R2, and f:R— R3 (parameterized curves)

: R? — R3 (a parameterized surface)

: R? 5 R? and f: R3 — R3 (vector fields)

e 6 o o o
=

2.1. Visualizing functions f: R - Rand f: R? > R. If f: R — R then
we (in principle) can draw the graph of f in R? with the horizontal axis
representing the domain and the vertical axis representing the codomain. If
f: R? — R then we can draw the graph of f in R? with the horizontal plane
representing the domain and the vertical axis representing the codomain.

Exercise 2.1. Define f: R> — R by f(x) = ||x||. Sketch the graph of f in
R?.

Humans often have a difficult time visualizing objects in R3. One of the
most common methods of trying to gain a better understanding of an oject
in R3 is to slice it by planes parallel to one of the xy, yz, or xz planes in
R3. This corresponds to fixing f(x,y), x, or y (respectively). Here are two
examples:

Example 2.2. Draw 3 slices of the graph of f(x,y) = x> — 2y using x-slices
(that is slices parallel to the yz-plane.)

Solution: Fixing x = 0, we have the function f(0,y) = —2y*>. We draw
the graph of this on the yz plane. We also do this for x = 40.5, getting
f(£0.5,y) = .25 —2y? and x = £1, getting f(1,y) = 1 —2y?.

Here is a 3-dimensional figure illustrating the fact that our graphs in the yz
plane come from slicing the graph of f(x,y) in R3 by planes parallel to the
Yz axis.
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3. DIFFERENTIATION

3.1. Partial Derivatives. You should recall that for f: R? = R, a% fla,b)
is the slope of the line in the x = a slice tangent to the graph of z = f(x,y)
at y = b. You can compute a% f(a,b) by holding x constant, taking the

(1-variable) derivative of f with respect to y and then plugging in (x,y) =
(a,b). The gradient of f at (a,b) is defined to be:

Viab) = (5orab) 5 a)

Example 3.1. Let f: R? — R be the function f(x,y) = x*> —2y”. Then
flxy) = 2x
i Iflwy) = 4
Vf( 7y) = (2x,—4y)
At the point (x,y) = (1,.5) we have:
20(1,5) = 2
i) = 2
Vf(x y = (2,-2)

The fact that (% f(1,.5) = —2 can be seen from Figure 5.

\1;
2
.
/
3 o

o8y

s

FIGURE 5. If x = 1, the equation for f(x,y) becomes
f(x,y) = 1—2y?. The tangent line to this graph at y = .5 has
equation /(y) = —=2(y - .5) +.5. Thus, £ f(1,.5) = =2. In
the figure on the right, you can see the 3-dimensional graphs
of f(x,y) and the tangent plane (in red) to f(x,y) at (1,.5).
It is evident that the tangent plane slices through the plane
x =1 1in a line of slope -2 which is the tangent line to the

graph of f(1,y) = 1—2y%.




For a function f: R" — R, we keep constant all but one coordinate x; of
X = (x1,...,X;,...,%,) we have a partial function of f. If f is differentiable,
we can take the partial derivative of f with respect to x;.

Example 3.2. Let f: R* — R be defined by

2 2 5
f('x17x27x37x4) =X — X + X3 —S.X4)C3.
Then:

4
f(x1,x2,x3,X4,X5) = —25x4x3.
0xa

The gradient of f: R" — R is:

[, 9 a N\ |5/

Example 3.3. Let f: R* — R be defined by

2 2 5
F(x1,x2,x3,x4) = X7 — X5 + X3 — 5x3%3.

Then:
2X1

—2XQ

Vf(.X1,.X2,X3,X4) = 1

—25)61)63

Important Observation: If f: R" — R is differentiable, then
Vf: R" - R"

1s a vector valued function.

We will sometimes think of

Ry

<

I
QO
3
[\

Qi
&

as a function of functions. Its input is a function f: R"” — R and its output
is a function Vf: R" — R”".
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3.2. Affine Approximation. Suppose that f: R" — R is differentiable at
a. The gradient allows a nice formula for an affine approximation to f
near 0. (In previous calculus classes, you would have called this a linear
approximation.)

Let:
L(x)=Vf(a)-(x—a)+f(a)
Then L: R"” — R is a linear function which is a “good approximation” to f
near a in the sense that:
—L

LX)

xva |x —all
(You can summarize this equation by saying that the relative error between
f and L goes to 0 as x approaches 0.)

The graph of L is the “tangent space” to the graph of f at the point (a, f(a)).

Notice that, usually, L will not be linear function. It will, however, always
be an affine function. Nonetheless, L is called the “linear approximation”
to f at a. By introducing the notions of “tangent space” and “differential”
it is possible to turn L into a linear function between vector spaces. We will
not do this here, but may come back to it later.

We will want to use ideas similar to the above to construct linear approxi-
mations to differentiable functions f: R"” — R"™. For that matter, we still
need to define the notion of derivative for functions f: R" — R™. We do
this now.

Notice that the formula V f(a) - (x —a) looks like the entry in a matrix re-
sulting from a matrix multiplication. In fact, it is the result of the matrix
multiplication:

3.2.1. Derivatives. The matrix
Dfa) = (/@) Ff@) ... Ffla)
is called the derivative of f at 0. It is just the transpose of the vector V f(0).

Inspired by this, we set out to extend these notions to a function f: R" —
R™. The function f can be written in the form:

) = (fi(x), f2(%); -, fn (X))
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The function f; keeps track of the ith coordinate of the result of plugging x
into the function f. Notice that f;: R" — R, so we can talk about its partial
derivatives. Assume that all partial derivatives of all the f; exist and define:

d d J d
3—§}(a) g—f;(a) 3—2(3) g—ﬁ(a)
3—2(3) g—ﬁ(a) g‘—g(a) g'—)fj(a)
Df(a)= | $2(a) @) L@ ... @
8,,1. am am . <9m
Pr(a) F2(a) G2 ... ()

The entry in the ith row and jth column is the partial derivative at a of f;
with respect to x;. Equivalently, the ith row consists of Dfi(a).

Example 3.4. Define f: R? — R* by

Fx,y) = (xy, 2%y, x9°, x%e)

Then
y X
| 2xy x?
Df<x7y) - y3 3xy2
437 xteY
and
2 1
4 1
Df (172) = 8 12
4¢* ¢*

Here is another example, demonstrating an important point (to be made
later).

Example 3.5. Define f: R? — R? and g: R* — R? by

flxy) = (*+2xe)
g(x,y) = (sin(x),5y+x)

Notice that we can compose f and g to obtain fog: R*> — R. A formula
for fogis:

fog(x,y) = (sin®x+ 2sinx,e™ ).
Notice that g(0,0) = (0,0).

Compare Df(g(0)), Dg(0) and D(f o g)(0).



Solution:
pfo) = ()
Dg(0) = i 2
2 0
D(fog)(O) = 15

Notice that:
D(f0g)(0) =Df(g(0))Dg(0).
This is an example of the chain rule at work.

3.2.2. Differentiability. Throughout this section, let f: R" — R be a dif-
ferentiable function and let f; be the ith coordinate function. That is f(x) =

(f1(%);- -, (X))

Recall from MA 122, that the existence of Df(a) does not guarantee the
differentiability of f at a. Put another way: Even if all partial derivatives
exist, the function may not have a good affine approximation near a. In this
section we define the notion of differentiability for a function f: R" — R
and we state a theorem which gives a necessary and sufficient condition for
f to be differentiable.

Definition: Let X C R” be an open ball centered at a. and that f
is defined on X. Suppose that all partial derivatives of f at a € R”"
exist and define:

h(x) =Df(a)(x—a) + f(x).
Notice that #: R" — R is an affine function. We say that f is
differentiable at a if

fim ) =2 _

xwa|[x—all

As before, this definition can be rephrased by saying that all partial deriva-
tives of f exist and the affine function 4 is a good approximation to f near
a.

Theorem 3.6. Suppose that f: R"” — R has the property that each
component function f; is differentiable at a. Then f is differentiable
at a. Furthermore, f;: R" — R is differentiable at a, if there is an
open ball X containing a such that f; is defined on X and all partial
derivatives of f; exist and are continuous on X.

Example 3.7. Let f: R? — R? be defined by
f(x,3,2) = (In(|xyz]), x+y+2%)




Then

Df(x,y,z)z(l{x l{y 12/Zz)‘

Let A be the coordinate axes in R3. That is, A = {(x,y,z) : xyz = 0}. Each
entry in the matrix Df(x,y,z) is continuous on R3 —A. The function f

is defined on R? — A. Consequently, f is differentiable at each point a €
R3 —A.

Finally, here is the statement of the chain rule:

Theorem 3.8. Suppose that g: R* — R” and f: R™ — R? are
functions which are defined on open sets ¥ C R" and X C R such
that g(Y) C X. Assume that g is differentiable at y € Y and that f is
differentiable at g(y) € X. Then, fog: R" — R? is differentiable at

yand D(fog)(y) =Df(g(y))Dg(y).

Example 3.9. Define f(x,y) = (x>,x>+y?). Let f: R?> — R? be the func-
tion f with domain in polar coordinates. What is Df(r,6)?

Solution: Let 7: R? — R? be the change from polar coordinates to rectan-
gular coordinates. That is,

T(r,0) = (rcosO,rsin0).

Then, by definition, f = foT. Since the coordinates of f and T are poly-
nomials and trig functions, f and T are everywhere differentiable. A calcu-

lation shows that:
2x 0
Df(xvy> = (2)6 2y) .

2rcos O 0
2rcos@ 2rsinf /-’

Thus,
Dy (r ()~ (
Another calculation shows that

DT(r,0) = (COSG —rsmG) .

sin@ rcos@

Thus, by the chain rule:

Df(r,0) = 2rcos 0 0 cos@® —rsin@)  (2rcos’@ —2r’cos@sinf
5907\ 2rcos® 2rsin®) \sin@ rcos® ) 2r 0

Sketch of proof of Chain Rule. Let g: R" — R™ and f: R” — R¥ be such
that g and f are both differentiable at 0 and g(0) = 0 and f(0) = 0.



Special case: f and g are both linear.

Then there exist matrices A,,;; and B, so that

f(x) = Ax for all x € R”
g(x) = Bx for all x € R”

This implies that, for all x € R"
fog(x)=A(Bx) = (AB)x.

Notice that:
= A

>
=
=
=
SN—
|

Dg(0) = B
D(fog)(0) = AB
Thus,
D(fg)(0) =Df(g0)Dg(0)
as desired.

General Case: f and g are not necessarily linear.

Since g: R" — R™ is differentiable at 0, for x near 0,
g(x) =~ Dg(0)x.
Similarly, since f: R” — RX is differentiable at 2(0) =0, for x near 0,

f(x)~Df(g(0))x.
To prove the theorem we just need to show that

fog(x) = Df(g(0))Dg(0).
Remember that ~ in this context means that the relative error goes to 0 as

x — 0. We didn’t go over this in class, but here is a proof:

For convenience, define the following:

B = Dg(0)
A = Df(0)

We need to show that for each € > 0, there exists 6 > 0 so that if 0 < ||x|| =
[x —0|| < & then
[If 0 8(x) — ABx||
[[x—0]]

<E.

Notice that:
||fog(x) —ABx|| = ||f o g(x) — Ag(x) +Ag(x) — ABx]||.



By the triangle inequality,
[1fog(x) —ABx|| < || f o g(x) —Ag(x)|[ +[|A(gx) — Bx)||.

Now there exists a constant ¢, such that for all y € R™, ||Ay|| < aly||-
Thus,

fog(x) —ABx|| <
1/ (8(x)) —Ag(®)[| +[|A(gx) — Bx)|| <
1 (8(x)) —Ag(x)[| + exl[g(x — Bx(|

We now consider the relative errors.

Piece 1: Since g is differentiable at 0, there exists d; > 0, so that if 0 <
||x|| < &) then

|lg(x) — Bx||
[Ix]]
Piece 2: There is a theorem, which guarantees that (since g is differentiable

at 0) there exists &, > 0 so that if ||x|| < &, then there is a constant 3 such
that

<€/2a.

e[| < BlIx]|-

Piece 3: Since f is differentiable at 0 = g(0), there exists 63 > 0 so that if
0 <|ly|| < 83, then

IL£(y) — Ay
T <enb.

This implies that

|17 (y) — Ayl < (e/2B)llyl|
Pieces 2 and 3 imply: if 0 < x < min(J;, 63), setting y = g(x) we have
1/ (g(x) —Ag(x)[| < (¢/2B)Ig(x)|| < (¢/2B)B][x]|-

Consequently, if 0 < x < min(&,, 83), we have

|1 f(g(x)) —Ag(x) <&

x|

Piece 1 implies: if 0 < x < 01, then
a||g(x) — Bx||

< g/2.
Bl



We conclude that if 0 < ||x|| < 8 = min(&y, 5,, 83) then

|fog(x) —ABx||/[[x]| <
|1 (g(x)) —Ag()|/[Ix][ + e[ (x) = Bx][ /||x[| <
e/2+¢€/2 =¢

as desired.
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4. SPACE CURVES

After reviewing, the differentiation of functions f: R" — R"” we now turn
to the situation when n = 1 and m > 2. For the sake of consistency with the
text, we consider functions

x: R—>R"

and we let r € R be the independent variable. If n = 2, we are considering
functions of the form:

x(1) = (x(1),y(1))

and if n = 3, we consider functions of the form:
x(t) = (x(2),y(t),z(t))-

We usually don’t graph the function x (even in the case when n = 2). In-
stead, we draw the image of x in R”. The function x is often called a pa-
rameterization of its image.

Example 4.1. x(7) = (cos(?),sin(¢)) and x(¢) = (cos(2t),sin(2¢)) are both
parameterizations of the unit circle in R?. In what way(s) are they different?

Example 4.2. Suppose that f: R — R is a continuous function. Then
x(t) = (t, f(¢)) is a parameterization of the graph of f in R,

Example 4.3. Suppose that v and w are distinct vectors in R”. Then x(z) =
tv+ (1 —1t)w is a parameterization of the line through v and w. Restricting
xtot € [0, 1] is a parametrization of the line segment joining v and w.

Example 4.4. Suppose that v and w are distinct vectors in R". Then x(z) =
v+tw is a parameterization of the line through v that is parallel to the vector
w.

The derivative (in rectangular coordinates) of x(¢) = (x1(¢),x2(2),...,x,(¢))
is the matrix:

Dx(t) =x(t) = (x1 (1), %3(t),...,.x, (1)) =

The vector x'(¢) has components which are the instantaneous rates of change
of the coordinates of x. The speed of x is ||x'(7)|| and, if X'(¢) is differen-
tiable, the acceleration of x(r) is x”(r). We sometimes write v(7) = x/()
and a(r) =x"(1).
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Example 4.5. Find v(¢) and a(¢) for the curve x(z) = (¢,¢sin(¢),zcos(t)).
Also find the speed of x(¢) at time ¢.

Solution:
v(r) = (1,sin(t)+tcos(r),cos(t) —tsin(z))
v(®)|]| = \/1 +sin(t) cos(t) — 2 sin(t) cos(t) — ¢ sin®(¢) + £ cos?(¢)

|
a(t) = (0,2cos(t)—tsin(t),—2sin(t) —tcos(z))

The next theorem should not be surprising.

Theorem 4.6. Suppose that x: R — R” is differentiable. Then x/(z9) is
parallel to the line tangent to the curve x(z) at 7.

Proof. We consider only n = 2; for n > 2, the proof is nearly identical. A
vector parallel to the tangent line to x(7) at t = fo can be obtained as in
1-variable calculus:

tangent vector = lima,0 (X(fo + Ar) —x(t9)) /At

= iy o ((x(to +A0),y(t0 +Ar)) — (x(t0),¥(10)) ) /¢

= limyy o 2UotA0=xlh) Yo tA) fy(m)>

. . x(to+At)—x(t9) - y(to+At)—y(to
= (Timpy_yo 0HBI=0) figy  2otA) ()

O

Example 4.7. Let x(¢) = (3cos(2t),sin(6¢)). The image of x fort € [—67,67]
is drawn in Figure 6. Find the equations of the tangent lines at the point
(—1.5,0).

ITNATRZN
AN N

FIGURE 6
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Solution: The point (—1.5,0) is crossed by x at1; = /3 and at, =27 /3.
The derivative of X is

x'(t) = (—6sin(2t),6co0s(61)).
At t;, we have:
x'(t) = (—6sin(27/3),6c0s(27)) = (—3/3,6).
Thus, one of the tangent lines has parameterization:
Li(t) =1(—3V3,6) +(—1.5,0).
At 1o, we have:
X (1) = (3V/3,6).

Thus, the other tangent line has a parameterization:

Ly(1) =1(3V/3,6) 4+ (—1.5,0).

5. DIRECTION VECTORS AND TANGENT SPACES

We saw in the last section that if x(¢) is a curve in R”, then x/(¢) is a vector
parallel to the line tangent to the image of x at the point ¢. This is the most
we can hope for since we are always basing our vectors at 0. This is often
somewhat inconvenient (although it remains convenient for other reasons)
and so we need a work-around.

Here is the idea:

Example 5.1. Let x(¢) = (cost,sint) and let ro = (/4,7 /4). Notice that
x'(to) = (1/4/2,1/4/2). If an object’s position at time ¢ seconds is given
by x(¢) and if at time 7 all forces stop acting on the object then 1 second
later, the object will be at the position given by x(79) + X'(79). That is,
x'(tp) denotes the direction the object will travel starting at x(fo). It would
be convenient to represent X(fp) by a vector with tail at x(7p) and head at

X(l‘o) —|—X/(l‘0).

To do this to each point p € R" we associate a “tangent space” Tp. This is
simply a copy of R" such that p corresponds to the origin of 7. In R?, the
standard basis vectors are denoted i and j. In R? the standard basis vectors
are denoted i, j, and k. We usually think of 7, as an alternative coordinate
system for R” which is positioned so that p € R" is at the origin.

Example 5.2. If p = (1,3) and if (2,5) € T} then (2,5) corresponds to the
point (1,3) +(2,5) = (3,8) in R?.
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FIGURE 7

We think of 7}, as the set of directions at p.

Example 5.3. Let x(z) = (cost,sint) and let fo = 7/6. Suppose that an
object is following the path x(¢) and that at time #( all forces stop acting on
the object. Then the direction in which the object will head is

X (t9) = (—sinm/6,cos /6) = (—1/2,7/3/2).
That is, the object will travel 1/2 units to the left of x(fy) and v/3/2 units

up from x(#p) in 1 second.

Put another way, the point x(79) + x/(¢) is the same as the point x'(¢y) €
Tx(u)-

5.1. Derivatives and Tangent Spaces. Suppose that f: R" — R" is dif-
ferentiable at p € R". Then L: T}, — T, defined by

L(x) =Df(p)x

is a linear map between tangent spaces.

Example 5.4. Let p = (1,2) € R? and let f(x) = (1/4)(x> +y?,x*> —y?) for
all x = (x,y). Let v=(—2,3) € Tp. Sketch the point Df (p)v € Ty(p).

Solution: Compute:

Df(xy) = (ﬁﬁ _yy//zz) :

o= (13 1).

So that
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Thus,
(12 1 =2\ _ (2
e (172 ) (5)=(5)
In R?, we plot Df(p)v by starting at f(p) = (5/4,—3/4) and then travel
over 2 and down 4. See Figure 8.

25T

25T

FIGURE 8. On the left is an arrow representing v € 7p. On
the right is an arrow representing Df (p)v in T p).

5.2. Other coordinate systems on tangent spaces. In R?, it is sometimes
useful to use polar coordinates instead of rectangular coordinates. In R3

it is sometimes useful to use either cylindrical or spherical coordinates in-
stead of rectangular coordinates. Using rectangular coordinates on tangent
spaces in R?, the vectors i, and j point in the directions in which x and y
(respectively) increase.

Now suppose that we are using polar coordinates on R? and that we want
a basis of unit vectors e, and eg of T, so that e, points in the direction of
increasing r and eg points in the direction of increasing 6. Let p = (p1, p2).
Since r increases as x is moved radially from 0, starting at p and moving p;
horizontally and p; vertically will increase r the greatest. That is, move in
the direction pji+ p>j = p. We want e, to be a unit vector, so let

er = (p1i+p2j)/IIpll = p/|Ipl|-



25

Notice that e, depends on p.

To find ey, notice that we can parameterize the circle of radius ||p|| by
o (1) = ||p||(cost,sint). As ¢ increases, the angle 6 is increasing. Suppose
that ¢ (fo) = p. Then ¢’(y) € T will be the direction of greatest increase of
0. We have

¢'(to) = |Ipl|(—sinto,costo) = (—p2, p1).
Thus, to increase 0 (and keep r the same) we should move — p, horizontally
and p; vertically. That is, move in the direction —p;i+ pj. The magnitude
of this vector is ||p|| and so we define

eg = (—p2i+pi1j)/lIpll-

5.3. Parameterizing interesting curves.

Example 5.5. Suppose that a circle of radius p cm rolls along level ground
so that the center of the circle is moving at 1 cm/sec. At time ¢ = 0, the
center of the circle is at (0,0) and the top of the circle is a point P = (0, p).
As the circle rolls, the point P traces out a curve x(z) (with P = x(0)). Find
an equation for x(z).

Solution: Let c(z) denote the center of the circle at time 7. The circumfer-
ence of the circle is 27p and so the circle makes one complete rotation in
27p sec. At time ¢, the line segment joining ¢(¢) to x(¢) makes an angle of
—1/p + 7/2 with the horizontal. That is, in T, x(¢) is represented by the
point (pcos(—t/p +xm/2),psin(—t/p +m/2)). Thus, with respect to the
standard coordinates on R?:

cos(—t/p+m/2
x(t) =c(t)+ (l:) sin(<—tt//ll))+ 7775[//2))) .

c(t)=t ((1)) ,

_ (t+peos(—1/p+/2)
0= (i)

Since

we have

Question: Is the cycloid a differentiable curve?

Example 5.6. Suppose that a circle C of radius r is moving so that the
center of C, ¢ traces out the path (Rcos(z),Rsin(t)). As C moves, it rotates
counterclockwise so that it completes k revolutions per second. Suppose
that E is the East pole of C at time 0. What path does P trace out?
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FIGURE 9. The point P traces out a cycloid as the circle
rolls down the x axis.

Solution: In T, E has coordinates (rcos27mkt,rsin2zmkt). Thus in R?
coordinates, E has position

x(t) =c¢(t) + (rcost,rsint) = (Rcost + rcos 2wkt , Rsint + rsin 27wkt ).

/7 \
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U
N\
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6. ARC LENGTH

Suppose that x: [a,b] — R is a C! curve. We wish to find the length of x.
The formula is

Theorem 6.1. The arc length of x is

b /
[ IK @
a
Arc length is often denote by
/ ds
X
where
ds = ||x'||dt

Example 6.2. Let x(¢) = (¢2,2¢?) for ¢ € [0,1]. Then

X' (0)]| = |[(21,40)|] = /482 + 1612 = 21V/5.

The arclength of x is

1
/ds:/ 20\/5 dt :tzﬁ\é —
X 0
Example 6.3. Let x(¢) = (,2) fort € [0, 1]. Then

1
/ds:/ V14424t ~ 1.47894
X 0

Here is why the formula for arclength is what it is. For convenience, we
assume that n = 2.

Partition [a,b] into n subintervals [t;_,] for 1 <i <n, each of length At =
(b —a)/n. Joining the points x(#;_) and x(#;) by straight lines creates a
polygonal approximation P, to the image of x. The length of the polygonal
path is:

length(P, Z ||1x(t;) —x(t;—1)]||-

We define the arc length of x to be

n
L= [[ds= Jim Y 1x@) ~x(s-0) |

Now suppose that x() = (x(t),y(t)). Both x and y are C! functions. Notice
that if we replace our current polygonal approximation with a polygonal
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approximation have vertices (x(¢),y(#/*)), with t/,#/* € [t,_1,t;], we will

l
still have:

L= [ ds = Jim 3107, 067)) = (625G )

Here’s how to choose the values ¢ and ¢/*. By the mean value theorem
(remember that?) There exists z* t** € [ti—1,1] so that

0%

I
<~
N

t ¥

= l)( _tifl) = X i
= y(fl**)(tz fi-1)

Il

K<\
N TN
%
N—

>

~

Thus,
L:limz\/ )24y ()2 Ar = /\/ 2+y/(¢ 2a’t—/ ||x'(2)]] dt.
n—oo

We can also compute the arc length of paths which are piecewise C!. These
paths must be composed of a finite number of pieces.

Example 6.4. Compute the length of the curve x: [0,2] — R defined by:

_ (t,1%) ifo<r<l1
XO)‘{ (1,(2—1)%) if1§t§2}

Solution: Let xq(z) = x(¢) for 0 <7 <1 and let x,(¢) = x(z) for 1 <t <?2.
Then

feds = fxlds-i—f ds

N v R B g s
~ 2.95789

The following example shows that it is possible for a “finite” curve to have
infinite length.

Example 6.5. We will specify the graph of the curve f(x). On the interval
[niz, }1] erect a tent consisting of two straight lines with the bottoms of the
lines on the x axis and the top of the tent at the point (

below:

s 1y See the figure
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|
1/(n+2) 1/(n+1) 1/n

Do this for each odd value of n, achieving the following graph:

10¢
08
06
04

02]

T 02 04 0.6 0.8 1.0

If you want an equation for f(x) do the following:

Begin by defining

( . 1 3

1 1 lfxl< nt2 1
(L) if i <x <y
gn(x) B 1 1 1 1
) T sasy

\ 0 if x> 1 )

Then define

Notice that gp,+1(x) # 0 only if x € [ﬁ, ﬁ] Thus, the sum defining

f(x) has only one term which is not zero.
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Let’s show that the length of the graph of f is infinite. To do this, consider
the line segment in the interval [nq+1’ %] for an odd value of n. This line
segment has length

1 1 1 2 1 2
L=1/(=)2+(-— 2=,/ — .
\/(n) +(n n—i—l) \/n2+(n+1)2 n(n+1)
Some algebra shows that L > % Similarly, the line segment in the interval
[-15, L] has length at least 1/(n+ 1). Consequently, the length of the

n+2> n+1l 7
graph of f is at least

i 1
n=1 n

It is well known that this is the harmonic series which diverges to infinity.

The text gives an example of a function f: [0,1] — [—1,1] which is dif-
ferentiable on (0, 1] but whose graph has infinite arclength. An example
similar to that one could be constructed from our example by rounding the
points of the graph above.
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7. REPARAMETERIZING FUNCTIONS f: R — R”

What is the length of a quarter circle of radius 2?

05T

Previously we defined the length of a parameterized curve. Here we are
given a curve that is not parameterized. To find its length in a way consistent
with the previous section, we must first choose a parameterization. But this
raises the question: To what extent does the parameterization affect the
calculation of arc-length? This section addresses these issues. We state
the concepts rather formally since we will generalize all of these ideas to
surfaces later in the course.

Definition 7.1. Suppose that L C R". We say that x: [a,b] — R" is a pa-
rameterization of L if x is one-to-one on (a,b) and onto L. We also usually
require X to be C!.

The curves x(#) = (2cost,2sint) fort € [0, /2] and y(7) = (2cos2t,2sin2t)
for t € [0, /4] are both parameterizations of the quarter circle pictured
above.

The next two definitions allow us to explore the consequences of choosing
different parameterizations for L.
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Definition 7.2. Suppose that [a,b] and [c¢,d] are intervals in R. A change-
of-coordinates function is a function /: [c,d] — [a,b] that is a C! bijec-
tion. (That is, & has continuous derivative, is one-to-one, and is onto.)

Since a change of coordinates function 4 is strictly increasing or strictly
decreasing (being one-to-one), either #'(z) > 0 or #'(r) < 0 for all 7. If
I (t) > 0, we say that A is orientation-preserving and if //'(r) < 0, we say
that 4 is orientation-reversing.

Definition 7.3. If x: [a,b] - R" andy: [c,d] — R" are curves, we say that
y is a reparameterization of x if there exists a change of coordinates func-
tion h: [c,d] — [a,D] so that y = xoh. If h is orientation-preserving, we
say that y is an orientation-preserving reparameterization of x, and if 4 is
orientation-reversing we say that y is an orientation-reversing reparameter-
ization of x.

Intuitively, the change-of-coordinates function 4 tells us how to speed up or
slow down as we traverse that path laid down by x. If y is an orientation-
preserving reparameterization of x, it traces out the path in the same direc-
tion that x did, otherwise it traces the path out in the opposite direction.
t? 9r?

Example 7.4. Let x(1) = (2t> for r € [0,5] and let y(¢) = (6t) fort €
[0,5/3]. Then y is an orientation-preserving reparameterization of x. (What
is the change-of-coordinates function h?)

Example 7.5. Let x(¢) = (cost,sint) for ¢ € [0,27] and let y(¢) = (cos 3¢, sin3¢)
for t € [0,27]. Theny is not a reparameterization of X since X traverses the
unit circle once, but y traverses it three times.

Example 7.6. Suppose that L is the graph of the function y = f(x) for a <
x < b. Find two parameterizations of L that have opposite orientations.

Answer: There are many possibilities. One is x(¢) = (¢, f(¢)) for t € [a, D]
and y(t) = (—t, f(—t)) fort € [-b,—a].

We can now state and prove a theorem that says that arc-length is indepen-
dent of parameterization. That is, arc length is intrinsic to curves.

Theorem 7.7. Suppose thatx: [a,b] — R"andy: [c,d] — R"are C' curves
and that y is a reparameterization of x. Then the length of y is equal to the
length of x.

Proof. Sincey is a reparameterization of X, there exists a change-of-coordinates
function &i: [c,d]| — [a,b] such that y = x o h. By the chain rule we have:

Y (1) =X (h(t)H(2).
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Taking magnitudes gives:

1Y @11 = 1% (RO [R()].

Case 1: h is orientation-preserving. In this case, |i/(¢)| = i/ (¢). Then, by
definition, the length of y is:

Lly) = [I|V(0)lldt
=[x ()| |0 (e)dt

Let u = h(t). Then du = h'(¢t)dr and u(c) = a and u(d) = b since h is
orientation preserving. Thus, substitution shows that:

d b
[ K@ @ d = [ x| du
c a
This latter integral is exactly the length of x.

Case 2: h is orientation-reversing.

This case is left to the reader. It follows from the observations that |/ (r)| =
—h'(¢t) and h(c) = b and h(d) = a. O

7.1. Parameterizing by arc length. Consequently, when calculating arc
length, we are free to choose any parameterization we want. We will fre-
quently choose to “parameterize by arc length”. Suppose thatx: [a,b] — R
is C! and that ||x'(¢)|| > 0 for all € [a,b]. Define s: [a,b] — [0,L] by

50 = [ 1K)z

Notice that s is a strictly increasing C' function and so is an orientation pre-
serving bijection [a,b] — [0, L]. Furthermore, it’s inverse function s~' : [a,b] —
[a, L] is also strictly increasing bijection. Define y(¢) = xos~!.

The function s measures the distance travelled from time a to time ¢ using
the path x. Composing x with s~! makes it so that x travels at one unit of
distance per unit of time. (Like how driving at 60 mph means that you travel
at 1 mile per minute.)

Lemma 7.8. Assume that x is a C! curve defined on [a,b] such that for all
t, ||X'(¢)|| # 0. Let y be the reparameterization of x by arc length. Then for
all 7, ||y’ (¢)|| = 1 and the length of y on the interval [0,7] is ¢.

Proof. Notice that:

s'(1) =[IX'@)l]
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-1

by the fundamental theorem of Calculus. Also, y =xos™ ' means that x =

y os. Consequently, by the chain rule,

X' @O = 1y (s@)Ils" ()]

Letting 0 = s(¢) and recalling that s"(¢) = ||x/(¢)|| we get:

X' (@) = [ly' (o) [ 1x'(1)]]-
Thus, since ||x/(¢)|| # 0,

ly' (o)l =1.

The length of y on the interval [0,7] is, by definition,

[y (@ldc.

We see immediately that this equals 7. U

Example 7.9. Let x(¢) = (¢2,3t?) for ¢ € [1,2]. Reparameterize x by arc
length.

Answer: By definition,

s(t) = [{V412+3612dT

= [{V/40tdz
— VA1)

We need, s~!. Solving the previous equation for ¢ we find:

—=\/145//40
sTH (1) =1/1+1//40

To get y(¢) which is the reparameterization of x by arclength, we plug this
in for ¢ in the equation for x, getting:

y(t) = xos7!

(7)
= ((reva) s(reova))

= (141/v40,3(1+1/+/40))

Thus,

To avoid much of this algebra, we will often simply write x(s) instead of
xos~!. This notation has the potential to be confusing. Thus, in the previous
example, the reparameterization of x(¢) = (¢2,3¢?) by arc length is

x(s) = (145/v40,3(1 +5/v40)).
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Example 7.10. Let x(¢) = (cos?,sint, (2/3)¢3/?) for r > 3. Find x(s).
Answer: Compute:
IIX'(£)|| = ||(=sint,cost,t'/?)|| = V1+1.

Thus,
s:/3’ Mt zde=(2/3)(14+0)3% = (2/3)(1+3)32 = (2/3)(1+1)3% —16/3.

Consequently,

- (3<s+216/3>>2/3

:?‘;S <cos (—3<S +16/ 3))2/3,5111 (—3<S +16/ 3))2/3 2/3) (—3“ Il 3))4/3)

Theorem 7.11. A straight line in R” is the unique shortest distance between
two points.

Proof. The following proof contains the important ideas. We will show that
in R?, the straight line segment joining (0,0) to (1,0) is the unique shortest
path between those two points. Obviously, the distance between those two
points is 1. That is also the length of the straight line segment.

Suppose that x = (x,y) is a differentiable plane curve joining (0,0) to (1,0).
Assume that x'(r) > 0 for all 7. We will show that the length of x is strictly
greater than 1.

We may assume that x is parameterized by arclength. The length of x is

1
| I @ar
0

Suppose that x does not lie completely on the x axis (If it does, we are done.)
Then y'(¢)? is positive on some interval (a,b) C [0, 1]. Consequently,

Jo X @)t = fo /X2 4+ (0)2dt
> [y /X(0)2dr

X (1) dr

x(1) —x(0)

1-0

1.

Thus, the length of x is greater than 1 and so x is not length-minimizing. []
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8. KEPLER’S LAWS OF MOTION

Lemma 8.1 (Warm-up Problem). Suppose that x(¢) is differentiable tnd that
||x(¢)]|| is constant. Then x is perpendicular to x’.

Proof. Since ||x|| is constant, x is a differentiable curve lying on a sphere.
For each ¢, X'(¢) lies in the plane tangent to the sphere at x(7). The tangent
plane is perpendicular to the radius x(¢) of the sphere.

Alternatively,

0= %||x||2: %(X-x) :2(%3() x=2x-X.
0

In this section we will use Newton’s law of universal gravitation and New-
ton’s second law to prove Kepler’s first law of planetary motion. Suppose
that the sun is at the origin 0 € R? and that a planet is at vector x. The force

of gravitation is
k k

F:— X = — u.
|Ix]|? |Ix][?

Here k > 0 is a constant of proportionality which is the product of the mass
of the sun, the mass of the planet, and the gravitational constant. The vector
u = x/||x|| is the unit vector in the direction of x.

We begin with two lemmas:

Lemma 8.2. We have
n_ k k

= — XX = ——U
ml[x||? m|[x||?
where m is the mass of the planet.

Proof. Recall from Newton’s second law of motion that F = ma. We know
that a = x". The equations follow from the law of universal gravitation. [J

Lemma 8.3. The motion of the planet lies in a plane containing the sun.
Proof. We will show that there is a constant vector ¢, such that x(¢) is per-

pendicular to ¢ (for all time 7). Let ¢ = x x X'. We will show that c¢ is
constant by showing that %c(t) =0.

Well,

ic:i(xx,{: ix x %'+ x+ix’ =x xx +xxx".
dt dt dt dt



Recall that any vector crossed with itself is the zero vector, so

"
—C=XXX.
dt

By the previous lemma:

k
xxx' =xx (——3x) =0,
m|[x||

as desired.
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n

Theorem 8.4 (Kepler’s First Law (simplified)). The orbit of the planet

around the sun is either an ellipse, a parabola, or a hyperbola.

The challenge to proving this is to pick a useful coordinate system. In
particular, we want a coordinate system that doesn’t change with time. One
direction that doesn’t change with time is ¢ = x x x’. We will consider that

to be the k direction, so that the planet is contained in the xy plane.

Proof. Without loss of generality, we may assume that the plane containing

the orbit of the planet is the xy plane, so that

c=xxXx = aes.

Step 1: Find c in terms of u, rather than in terms of x.

By the product rule:
X = 2 ((1x]Ju) = [}x//'u+ [ix]lu’
dt
Hence,
¢ = [[x|[ux ([[x]["u+ x|’
¢ = [IxI[ [l (wxw) +[|x]|* (wxu’).

Since,uxu =0,
¢ =|[x[|*(uxu).

Step 2: x’ x ¢ = Bu+d for some constants 8 € R and d € R.

Notice that:

" _ k 2 /
X'xe = (—Wu)xHxH (uxu')

—B(ux (uxu))

B((uxu')xu)

B((u-u)u’—(u-u')u)

~ Bu
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Also notice that:

L(x'xc) = x'xe+x x¢
= x"xe¢
Consequently,
4(x'xc) = pu

X x¢c = fPu+d.
LI(Step 2)

Notice that X" x ¢ lies in the xy plane as does u. Thus, d lies in the xy plane.

Rotate the entire coordinate system, so that d = de;. Then the angle be-
tween x (or u) and d is the polar angle 6(z) of x.

We have
le|> = (xxx)-e=x-(xx¢).
Thus,
[lell* = [Ix[[u- (Bu+d) = B[x]|+||x][||d]|cos 6.
Solving for ||x|| we obtain:

r=|[xIl=lell*/(B +/ld]|cos 6).

This is the polar equation for the planet’s orbit. It remains to check that this
is the polar form of a non-circular conic section. Some algebra shows that
the equation

C2

(B+dcosB)
is equivalent in rectangular coordinates to

(1—e)x®+2pex+y* = p?

where p > 0 and e > 0 are constants. If 0 < |e| < 1, the path is elliptical; if
le] = 1, it is parabolic; and if |e| > 1 it is hyperbolic. O

r =
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8.1. The geometry of space curves. In this section we will explore two
concepts: The curvature of space curves and a moving coordinate sys-
tem along a curve. Throughout, let x: [a,b] — R? be a C? path such that
|[x/(#)|| > O for all 7.

The unit tangent vector T = T(7) to x at time 7 is defined as

_ X0
LGl

Notice that if y = X o ¢ is an orientation reparameterization of x then:

Y () =x(¢(1))¢'(1)

SO

y'(t) X'(¢(1))9' (1) X' (¢(1))

Iy @I (X (0@)lle' () X' (o)l
Thus, T depends only on the orientation and position of the curve x and not
on a particular (orientation-preserving) parameterization. Consequently, if
we parameterize X by arclength, then we can think of T as the rate of change
of x with respect to distance travelled. Also, recall that since T is always a
unit vector, it is perpendicular to T’.

Theorem 8.5. ||%\ =1, T(#)]| is the angular rate of change of the direction
of T as ¢ increases.

Proof. On the interval [fy,f) + At] the average angular rate of of change of
T is AB/At. The limit

lim A®/At

At—0t

is the angular rate of change of T. It follows from some trigonometry that

lim A8/||AT|| = 1
Ar—0t

where AT = T(to + At) — T(to).
Then,

lim A6/Ar = lim A¢ [ATI
A0+ Ao+ [1ATI[ - Ar

= lim ||AT||/At
Ar—0t

= |15 =0l
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Based on this idea, we define the curvature k of x in R to be the angular
rate of change of the direction of T as a function of distance. That is
dT/dt dT/dt
oy T/l _ Ja/ar|
ds/dt [Ix'(2)]]

If x is parameterized by arc length, then k(¢) = ||dT/dt||.

Example 8.6. Find the curvature of a line x(¢) =tv+Db.
Answer: We have

T =x'/[x][ = v/[|v]].
Thus, dT/dt = 0 and so x(¢) = 0.

Example 8.7. The curvature of a circle of radius r > 0 is 1 /r at each point
on the circle.

Example 8.8. Let ¢(¢) = (,at?) be a parameterized curve. Find the curva-
ture of ¢ att =0.

Answer: We have: ¢'(r) = (1,2at) and T = (1,2at) /1 +4a?t2. Thus,

d
2T =(0.2a)/V/1+4a%2 + (1,2a1)(~1/2)(1 +4a’*) 3% (8a%1).
Thus,
o' (0)[| =1
and
121(0)]] = 1/(0,24) | = 24
dt B -
Consequently,

k(1) =2a/1 =2a

A C3 curve x can allow us to create a certain coordinate system (called the
moving frame) for the tangent spaces to R" at the points of the curve.

One basis vector is T. (This requires that ||x'(¢)|| > 0.

Since T(¢) is a unit vector for all time, it is always perpendicular to T’. We
take our second basis vector to be N = T'/||T’||. This requires that ||T’|| >
0. N is called the principal normal vector to x. It follows from the chain
rule that N is an intrinsic quantity (it remains the same after an orientation
preserving parameterization change). To get a vector perpendicular to both
T and N we use the binormal vector

B=TxN.
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Example 8.9. Compute the moving frame and curvature for the path x(7) =
(sint —tcost,cost +tsint,2) withz > 0.

Answer: We compute:

x'(t) = (cost—cost—+tsint,—sint+sinf+zcost,0) = (¢sint,zcost,0)
X' (1) = V/12sin®t+12cos?t =t
T = X)/||X(2)]] = (sintz,cost,0)
T' = (—cost,sint,0)
T =1
N = T/||T| = (—cost,sint,0)
ko= [IT/[IX]| = 1/t

Finally, to compute B we need the cross product:

B = (sint,cos?,0) x (—cost,sinz,0) = (0,0, 1).

It turns out that
B'(t) _
X'
for some scalar function 7, called the torsion. The torsion measures how

much the curve twists out of a plane. If 7(¢) = 0 for all 7, then the curve lies
in a plane.

—1N

sint —tcost

Example 8.10. Let x(¢) = | cost +¢sint | forz > 0. Calculate T, N, B, «,
2
t

and 7 for x.
Easy computations show that:
tsint

x'(t) = |tcost
2t



More computations show:

sint
1
— | cost
vs 2
cost
1 .
— | —sint
v 0
cost
—sint
0
1
5t
2sint
L 12
— cost
Vs —1
2cost
1 24i
— | —2Zsint
vs 0
2
=N(1)

4
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9. INTEGRATING OVER FUNCTIONS f: R — R”

In the last section we focused on differentiating functions ¢ : R — R". In
MA 122, we studied how to integrate functions f: R — R. In this section,
we will discuss how to integrate a function f: R" — R over a curve ¢.
Certainly one way to do this is to use 1-variable calculus to integrate:

/abfoq)(t)dt

where [a,b] is in the domain of ¢. This is a fine thing to do in many situa-
tions, however, consider the following example:

Example 9.1. Let ¢ : [0,1] — R? be given by ¢(z) = (t,2¢) and let y: R —
RR? be defined by w/(t) = (¢2,2¢). Notice that ¢ and y have the same image.
Let f: R> — R be defined by f(x,y) = x> +y. Then

1 1
/fo¢(t)dt:/ 2+ 2tdt = 4/3.
0 0
Howeyver,
1 1
/fol//(t)dt:/ 4* 4217 dr =4/54+1/3
0 0

Example 9.2. Show that ¢ and v in the previous example are reparameter-
izations of each other.

Solution: Define p(t) = t? and ¢(t) = v/t. Both p and q are bijective func-
tions [0, 1] — [0, 1]. Clearly, ¢ = yogand y = ¢ o p.

Thus, the integral | Cf’ fo@dt depends on the parameterization of the curve
@, not just on its image. In many cases, we will want to have an integral
which depends only on the image of the curve, not on its parameterization.
That way, in applications, we will be free to pick a parameterization which
suits us and we won’t have to worry about what would happen if we picked
a different parameterization.

The following example demonstrates the important points.

Example 9.3. Let L be a straight piece of wire in R? with endpoints at
(0,0) and at (1,2). Suppose that the temperature of the wire at point (x,y)
is f(x,y) = x? +y. Find the average temperature of the wire.

Solution: Break the wire L into little tiny segments, Li,...,L, each of
length As. Since L has a length of V5, As = \/g/n
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Then the average temperature of L is approximately

1 & .

I, = - Z f (Xi )

iz

In fact, the average temperature of L is exactly
1 n
7= fim ) £

Recall that 1/n = (As)/+/5. Thus,

1 n
T =1lim — X;)As
fim =Y )
This looks a lot like a limit of Riemann sums, so perhaps we can convert
this to a definite integral and use the Fundamental Theorem of Calculus.
Before we do that, however, notice that (up to proving that the limit exists)
we have a perfectly fine definition of the quantity

1
Ave. value Off onlL = m /Lfds

We were able to define this integral without relying on a parameterization
of L!

To calculate this, however, we need a parameterization. Suppose that there
exists a parameterization ¢ : [0,v/5] — R? of L such that at time ¢, the dis-
tance from (0,0) to ¢(z) along L is exactly ¢. That is, “L is parameterized
by arc length”. Then, As = At = v/5/n so

1 . & . 1 Vs
T lim Y o6 A= | rew)an.

Exercise: Find a parameterization of L by arclength.

Solution: Define ¢ (1) = (r,2¢) and define ¢ () = ¢ (1 /\/5).

This example has all the important points except that at the very end we
had to pick a particular parameterization. You can imagine that in many
situations, finding a suitable parameterization might be challenging!. The
next sections will address that issue. In general, the nicest parameterizations
are those which are parameterizations “by arc length”.

Consequently, we make the following definition:
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Suppose that f: R" — R is continuous and that x: [a,b] — R" is a (piece-
wise) C! path. Define

[ras= [ sspx

Example 9.4. Let f(x,y) =x*+yand x(t) = ¢ (;) for 0 < < 1. Then,

Sefds = Jo Fx@)[ 11X (@0)]]dr
Jo (2 420)\/5dr.
sint
Example 9.5. Let f(x,y,z) = 1/(xyz) and x(¢) = | tcost | for m/4 <t <
t
27.
Then ||x'(¢)|| = \/cos?t + (cost —tsint)2 + 1.

Thus,

/fds—/zn \/cos2t + (cost —tsint)2 +1

t2sint cost
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10. SCALAR FIELDS AND VECTOR FIELDS

A scalar field on R” is simply a function f: R" — R. We think of f as
assigning a number f(x) to each point x in R”. Below is a depiction of the
scalar field f(x,y) = x*>+y? on R%. To a point (x,y) € R?, we assign the
number x? 4 y2. Points which are assigned small numbers are colored blue
and points which are assigned large numbers are colored red.

A vector field on R” is a function F' such that for every x € R", F(x) is a
vector in Tx. Since Tx is simply a copy of R” with origin at x, we can think
of F as the assignment of a vector F(x) in R” to each point in R”". Since we
think of this vector as living in Ty, we draw it as a vector in R" with tail at
X.

Example 10.1. Here is a picture of the vector field F(x,y) = (—y,x). The
arrows are not drawn with the correct lengths.
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A good way of thinking about a vector field is that it tells you the direction
and speed of flow of water in a huge water system. To see this, suppose that
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we have an object in the stream at point (1,0) at time 0. Its position at time ¢
is given by @ (1) = (x(¢),y(¢)). If the vector field F (x,y) = (F1(x,y), F2(x,y))
describes the direction and speed of the object, then

X(t) = F(o())
Y(t) = F(¢())

This a system of differential equations which we may or may not be able to
solve. If ¢ exists, it is called a flow line for F.

Example 10.3. Find a flow line ¢(¢) for F(x,y) = (—y,x) passing through
the point (2,0).

Solution: Suppose that ¢ (¢) = (x(t)) . Then the equation ¢’(r) = F(¢(z))

becomes:
() = Gy ):

Thus we are looking for function x and y so that

X(t) = —y()
Y() = x()
x(0) = 2
y(©0) = 0

The differential equations make us remember that sin and cos have deriva-
tives related to each other in the way that we need.

Thus,
2cost
o) = <25int>
is the flow line we are looking for.
Example 10.4. Let F(x,y) = (y,x). Find flow lines through (1,1) and
through (1,0).

Answer: Let ¢(¢) = GE;D be a flow line. Then,

X() = y({)
Y() = x()
t
As a first guess, we try x(¢) = ¢’ and y(t) = ¢'. Sure enough, ¢(¢) = <Z’)
is a flow line for F passing through (1,1).
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To find a flow line passing through (1,0) more ingenuity is required. Even-
tually, we might come up with:

o) = (o) = (6T 7)

The image of this second flow line in the vector field F is pictured below.
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10.1. Gradient. Define the gradient by V: C!(R") — R" by

d 9 d
gradfzvf:(a_xl7a_x27“'78x )

If we think of f € C!(R") as a scalar field, then V (the gradient) converts the
scalar field into a vector field. The vectors point in the direction of greatest

increase of f.

Example 10.5. Consider f: R?> — R defined by f(x,y) = sinxcosy. Then
Vf = (cosxcosy,—sinxsiny). Below is the vector field V£ on top of the
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scalar field f. Contour lines have been drawn on the scalar field so that you
can see how the vectors V f are perpendicular to the contour lines.

If f: R" — R is a scalar field and if F = Vf, we say that f is a potential
function for F and that F is a gradient field or a conservative vector field.

For a fixed constant ¢, the set of points {x : f(x) = c} is called an equipo-
tential set for f or F.

Example 10.6. Find a potential function for F(x,y) = <—yx> .

Answer: The function f(x,y) = —%xz + %yz is a potential function for F
since Vf =F. The hyperbolae

1 1
—§X2+ 5}72 =C

are the equipotential lines for f. Notice in the figure below, that the equipo-
tential line is perpendicular to a flow line. The flow line is black and the
equipotential line is red.
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Theorem 10.7. Suppose that F is a conservative vector field with potential
function f. Suppose that L is a smooth equipotential line for f and that ¢ is
a flow line for F intersecting L. Then L and ¢ are perpendicular.

Proof. Suppose that ¢ and L intersect at a point X¢ and that L has a unit
tangent vector v at Xo. Since f is constant along L, the directional derivative
% f(xp) is equal to zero. By a standard result from Calculus II, % f(xg) =
Vf(xg)-v. Since this is zero, Vf(xg) = F(Xg) is perpendicular to L at
Xg. 0

Another very useful fact is:

Theorem 10.8. Suppose that F is a gradient field and that ¢ is a flow line
with ||@’(¢)|| > 0 for all z. Then ¢ does not close up on itself; in fact, for all

t1 and 1, witht] # 1, @ (1) # ¢ (t2).

Proof. Since F is a gradient field, there exists a potential function f for F.
Consider g(z) = f(¢(¢)). Then

g(t) =Df($(t)¢'(t) =V f(9(1))-¢'(t)
Since F = Vf and since ¢’ () = F(¢(z)), we have
g (1) =F(9(1))-F(9(1)) = [[F(¢(1))II> = [|¢'(1)||* > 0.
Thus, g'(¢) > O for all ¢. In particular, g(r) = f(¢(¢)) is a strictly increasing
function.

Suppose that there exist #; # 1, such that ¢(¢;) = ¢(2). Then g(t1) = g(t2),
but this contradicts the fact that g is strictly increasing. Hence, ¢ (11) # ¢ ()
for all t; # 5. O

Example 10.9. The vector field F(x,y) = (—y,x) has ¢(¢) = (cost,sint) as
a flow line. Since ¢(0) = ¢(27), the vector field F is not a gradient field.
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10.2. Divergence. Let F: R” — R” be a differentiable vector field. Then
the divergence of F is
d d

divF=V.-F=—F +...+=—F,
v 0x1 1t +8xn "

The divergence converts a vector field into a scalar field.

Example 10.10. Let F(x,y) = (xy,cosxcosy). Then divF(x,y) =y—cosxsiny.
Below is plotted the vector field F and the scalar field divF. The arrows of
vector field are not drawn with the correct length (so that we can see all the
arrows). The red areas of the vector field have positive divergence and the
blue areas have negative divergence. The green area has zero divergence.
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10.3. Curl. Let F: R3 — R3 be a differentiable vector field. Define the
curl of F to be
0 J
§F3 — a—ze
curlF=VxF=|2F—2F
J J
wh—5h

Example 10.11. Let F(x,y,z) = (—yx,x,0). Then F(x,y,z) = (0,0,1+x).
Notice that the vector field F lies in the xy plane and that curl F is always a
vector perpendicular to the xy plane. Below is drawn the vector field F and
the scalar field || curl F||. You can see that the farther from the origin a point
is, the greater the magnitude of the curl.
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Where does this rather strange formula for curl come from and how could
we come up with it? After discussing integration we’ll be able to see the
real answer, however here’s a very handwavy way of thinking about it.

Suppose that F = (Fj, F», F3) is a vector field. Let’s find a way to create a
vector field curlF = (G, G,,G3) that measures how much F is (instanta-

neously) curling around the coordinate axes of the tangent space at a point
3
xp € R°.

We know that H;(x,y,z) = (0,—z,y) is a vector field “rotating” around the
x axis. and that H,(x,y,z) = (z,0,—x) is a vector field rotating around the
y-axis and that Hz(x,y,z) = (—y,x,0) is a vector field rotating around the z-
axis. The dot product measures how much one vector ’looks like” another
vector so we might guess that

G](X,y,Z) ~ F'H](X,y,Z) = _ZFZ(x7y7Z)+yF3(xvy,Z)
GZ(x7y7Z) ~ F'HZ(X,y,Z) = ZFl(X,y,Z)—XF3(X,y,Z)
G3(x,y,z) ~ F-Hg(x,y,z) = —yFl(x,y,z)—i—sz(x,y,z)

However, we want exact values not approximations, so in place of the x, y,
and z coming from Hy, Hp, and H3, we use %, (%, and a%' This gives us
the formula: 5 5
—Efj+aﬂ
curlF = ‘%aFl — %Fé
_EFF%%EZ
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10.4. The relationship of Grad, Curl, Div. In summary:

grad scalar field — vector field
div vector field — scalar field
curl : 3D vector field — 3D vector field

The following theorem is straightforward, but tedious to prove.

Theorem 10.12. (1) Suppose that f: R3 — R is a C? scalar field. Then
curl(grad f) = 0.
(2) Suppose that F: R? — R is a C? vector field. Then div(curl F) = 0.

The importance of this theorem is that it shows that the following:

(s £ 18 e vt Y (e v Y R e st )

is a co-chain complex. See the section on cohomology for more on this.
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11. INTERLUDE: SOME TOPOLOGICAL NOTIONS

When we try to develop higher dimensional analogues of what we have
done for space curves, we will have trouble precisely stating our mathemat-
ics unless we introduce a few terms from topology. The following defini-
tions are given assuming the context of this course. None of the definitions
are incorrect in this context, but in other contexts they may not be the correct
definition.

e Open ball: Given a € R” and r > 0, the open ball of radius r
centered at a is the set

B.(a)={xeR":d(x,a) <r
where d is the usual distance function on R”.

e Open set: A subset U of R" is open if every a € U, there exists
r > 0 so that B.(a) C U. That is, each point in an open set has an
open ball containing it that is, in turn, contained in the open set.

e Homeomorphism: A function f: U — W such that f is continu-
ous, one-to-one (injective), onto (surjective), and with the inverse
function f~! continuous.

e Diffeomorphism: A function f: U — W such that f is a homeo-
morphism and both f and f~! are differentiable. (Usually, we will
require f and f~! to be either C! or C*.

e Closed set: A subset V of R" is closed if the set R" —V is open.
Equivalently: If a sequence (x,) of points in V converges to a point
xin R? thenx e V.

e Bounded set: A subset X of R” is bounded if there exists an r > 0
so that X C B,(0).

e Compact set: A subset X of R” is compact if it is closed and
bounded. Equivalently, every sequence of points in X has a sub-
sequence converging to a point in X.

e Closed curve: A continuous function f: [a,b] — R" such that
f(b) = f(a) or the image of such a function.

e Simple closed curve: A closed curve f: [a,b] — R” such that
f: (a,b) — R" is one-to-one (injective) or the image of such a func-
tion.

e k-dimensional manifold: A subset F of R” such thatif a € F', there
exists an open ball B.(a) C R", such that B,(a) N F is homeomorphic
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to either R¥ or Rﬁ = {(x1,X2,...,X%) : xx > 0}. The manifold F
is smooth if “homeomorphic” can be replaced by “diffeomorphic”.
The set of homeomorphisms (or diffeomorphisms) is called an atlas
for F. The set of functions that are inverses to the functions in the
atlas are called a parameterization of F. If F is compact, it turns
out that we may assume that the atlas or parameterization has only
finitely many functions in it.

e Surface: A 2-dimensional manifold.

e Boundary of a k-dimensional manifold: If F is a k-dimensional
manifold, the boundary of F, denoted dF, is the set of points a € F
such that there exists 7 > 0 with B,(a) N F homeomorphic to R .

e Closed k-dimensional manifold: A compact manifold F' with dF =
J.
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12. INTEGRATION OF SCALAR FIELDS AND VECTOR FIELDS ON R”
OVER CURVES

Suppose that x: [a,b] — R" is a C! curve. If f: R” — R is continuous,
then define

[ras= [ sspx

Lemma 12.1. Suppose thaty: ¢(¢) is a reparameterization of x. Then

/yfa’s:/xfa’s.

Proof. Assumethat ¢ : [a,b] — [c,d]. Recall from the chain rule that ||y’ (¢)|| =
|1x(¢(2))|||@’(¢)]. Thus, if ¢ is orientation preserving:

d
/ fds= / FOa(o(0)IX (0(1))]]0 (1) dr.
y c

Perform the last integral by letting u(¢) = ¢(¢) so that du = ¢’dt. That last
integral is then equal to

/abf(x(u))HX’(u)Hdu = /des.

If ¢ is orientation reversing, then |¢’(¢)| = —¢'(¢) and so the work above
is largely the same except that in the substitution u(c) = b and u(d) =
a. Reversing the limits of integration kills the negative sign coming from

—'(t). O
IfF: R" — R” is a continuous vector field, then define

LF~ds:LbF(x(t))~x’(t)dt.

The proof of the next lemma should be easy.

Lemma 12.2. If y = xo0 ¢ then if ¢ is orientation preserving,

/F~a’s:/F-ds.
y X

If ¢ is orientation reversing, then

/F-ds:—/F-ds.
y X
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12.0.1. Alternative Notation 1: Let T = x'/||x'||. This is the unit tangent
vector. Then,

RGO
/XFd / e @)l /X(F T)d

Thus the integral of a vector field F over a path x, “adds” up the tangential
component of F along the image of x.

12.0.2. Alternative Notation 2: Suppose that F = (M,N,P) and that x =
(x,y,z). Using the notation of differentials we can write

dx = X(t)dt
dy = y(t)dt
dz = Z(t)dt

F-x'(t) = Mdx+Ndy+Pdz.

Consequently, we can write

/F-ds:/de-l-Ndy-l-sz.
X X

The object M dx+ Ndy+ Pdz is an example of something called a “differ-
ential form”.

Be careful to evaluate an integral like [ M dx+ N dy+ Pdz correctly. If you
never use a parameterization for x, you’ve done something incorrectly.

Example 12.3. Let f(x,y) = 1/(x>+y?). LetF(x,y) = Vf(x,y) = —2(x,y) /(x> +
y?)2. Let x(t) = (cost,sint) for 0 <t < 2.

Notice that ||x/(¢)|| = 1.
Then,

2 21
/fds:/ 1/(cos2t+sin2t)dt=/ ldt =2x.
X 0 0

27 P
/F~ds:/ s (cgst) _ ( smt> —0
X 0 sint cost

And,
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12.1. Conservative Vector Fields have Path Independent Line Integrals.

Lemma 12.4. Suppose that F = Vf. Assume that f is C> on an open set
D CR". If A,B € D and if x is any path joining A to B, then

[ F-ds=(B)-sa).

Proof. Recall that Vf-x' = (Df)x'. Thus, F(x())-x'(t) = £ f(x(t)) by the
chain rule. Consequently, by the Fundamental Theorem of Calculus:
KF-ds = [F(x(r))-X(r)di

= o (ff(x(0)) dr
= J(x(b)) — f(x(a))
= f(B)~f(A).

Here is an application:

Suppose that P is a charged particle at x and that Q is a charged particle at
a with charges gp and g respectively. The force exerted by P on Q is

_ grqo(x—a)
Elxa) =T alp

If we fix x and let a vary, E(a) is a gradient field with potential function

qrqQ
T =l
By the previous lemma, the work required to move Q from a to b is
1 1
[x—bl[ [[x—b]]

In particular, it does not depend on the path taken by the particle.

If we have stationary particles Py, ..., P, atXy,...,X, respectively, each with
charge +1 and if Q is a charged particle at a, the force exerted by the sta-
tionary particles on Q is

1
B =a L —alp

Since the gradient is additive, this electric field is also a gradient field with
potential function

fla)=q),

1
X;—a
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Given this set-up, if D is a collection of particles (possibly infinite) each
with charge +1 we define the potential function of the electric field gener-

ated by D to be
1
o= [t
p |[x—all

where the integration is performed with respect to x.

Here is a specific example. Suppose that D is the line segment [—r, 7] on
the y—axis in R?. How much work is required to move a charged particle
Q from a point a = (a,0) on the positive x axis to a point b = (b,0) on the
positive x axis, by a path with positive x—coordinates.

The work is the line integral of the electric field along the path taken by Q.
By the lemma above, we need only use the potential function to find that

the work is: : |
[ a [
D |[x—b]| D |[x—al|

To solve this, let x(r) = (0,7) for —r <t < r be a parameterization of D.
Then the expression above equals

r 1 1 It
—rVI2+b2 V2 +a?
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13. THE FUNDAMENTAL THEOREM OF CALCULUS REVISITED

13.0.1. Another view of the FTC. Let I = [a,b] be an interval (oriented
from a to b) If F: I — R is a differentiable function, then you learn in one
variable calculus that

/I%F(r)dr:F(b)—F(a).

To generalize this theorem to higher dimensions we introduce some new
terminology.

Terminology 1: If p € R is a point, then say that p has “positive orien-
tation” if we place an arrow on it pointing to the right. The point p has
“negative orientation” if we put an arrow on it pointing to the left. If we
have chosen an orientation for p, we say that p is oriented. If A is a fi-
nite subset of R and if each point in A has been given an orientation (not
necessarily the same), we say that A is oriented.

Terminology 2: Suppose that p € R is an oriented point and that f: R — R
is a function. If p has positive orientation, define fp f=f(p). If p has
negative orientation, define fpf =—f(p). fA={p1,...,pn} is a finite set
of oriented points in R, define [, =Y, [, f.

Terminology 3: Suppose that a < b are real numbers. The interval [a, D]
is positively oriented and the interval [ba| is negatively oriented. (Think
of an arrow running from the small number a to the big number b. If the
arrow points right, the interval is positively oriented; if it points left it is
negatively oriented.) If / is an interval in R with endpoints a < b, then the
“boundary” of I, denoted d1I, is the set {a,b}. If I has positive orientation,
we assign the points of dI the orientation with arrows pointing out of 1. If
I has negative orientation, we assign the points of dI, the orientations with
arrows pointing into /. We say that dI has the orientation “induced” by the
orientation from /.

Suppose that I = [a,b] has positive orientation (i.e. a < b). Let J = [b,d|
be the same interval but with the opposite orientation. If f: R — R is
integrable, then by definition

/If:/abf(x)dx and /Jf:/baf(x)dx:—/lf.

The fundamental theorem of calculus can then be stated as



62

Theorem 13.1 (Fundamental Theorem of Calculus). Suppose that
F: R — RisaC! function. Let DF: R — R be its derivative. Let
I C R be an oriented interval and give dI the induced orientation.

Then
/DF:/ F.
I oI

13.0.2. Returning to main lecture. We will construct a version of the fun-
damental theorem of Calculus in 2-dimensions. It will have the form:

Theorem (Vaguely Stated Version of Green’s Theorem). Let D be a region
in R?. Let F: D — R? be a C! vector field on D. Then:

/ / “aderivative” of FdA = | F-ds
D
D

For the left side of the equation to make sense, it turns out that we need a
derivative of F which is a scalar function. Perhaps the idea of using divF
appeals to you? Well, there is a version of the theorem which will use
divF, but for this version we’ll use an adaptation of the curl. (Recall that
curl F =V x F.

Theorem (Less Vaguely Stated Version of Green’s Theorem). Let D be a
region in R, Let F: D — R? be a C! vector field on D Then:

//(curlF) ‘KdA = F.ds.

aD
D

To get the precise version of Green’s theorem we need to discuss what sort
of regions D are allowed and what dD means. We also need to review
double integration.
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14. DOUBLE INTEGRATION AND ITERATED INTEGRALS

14.1. Integrals over Rectangles. Suppose that R = [a,b] X [c,d] is a rec-
tangle in R%. Let f: R — R be a function.

Partition R into n subrectangles each of area less than AA and in each sub-
rectangle choose a sample point. Call the ith rectangle R; and the sample
point in it ¢;. Let AA; be the area of the ith subrectangle.

d +
ole o| ©| o®
o | ®|® o| ©
c L ® o0 Ci °
a b

The integral of f over R is defined as

/ fdA= lim Y f(c;) AA;

AA—0
R

if the limit exists.

Informally, the double integral is approximated by the sum of sample values
of f on the rectangle taken from the partition of R into small rectangles.
Naturally, we want to know if the double integral exists.
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Theorem 14.1. Suppose that R C R? is a rectangle and that f: R — R?is a
bounded function. If the set of discontinuities of f has 0 area, then [[ fdA
R

exists.

Of course, this raises the question, “What is area?”, but we won’t answer
that here.

Often we calculate [ fdA using the following theorem.
R

Theorem 14.2 (Fubini’s Theorem). Suppose that R C R? is a rectangle and
that f: R? — R is a bounded function. Suppose that the following are true:

o [[ fdA exists
R

e For all x € [a,b], the integral |, Cd f(x,y)dy exists.
e For all y € [c,d] the integral fff(x,y) dx exists.

ﬂﬁmzflﬁmw@w=[4?www@

R

Then

Example 14.3. Let R = [0,1] x [0,2]. Let f(x,y) = x*> +y*. Then by Fu-
bini’s theorem

[[fdA = [§ Jox*+y*dxdy

R

= [y 1+y*dy
= 14/3.

14.2. Integrals over other regions. We can also define integrals over re-
gions other than rectangles.

Let D C R? be a compact 2—dimensional region such that the area of 9D
is zero. Let f: D — R be a continuous function. We define [/, fdA as
follows.

Let f: R2 — R be defined by f(x) = f(x) if x € D and f(x) =0 if x ¢
D. Notice that the set of discontinuities of f is a subset of dD and so the

discontinuities of fAhave 0 area. Thus, if R is any rectangle containing D
in its interior, [ fdA exists. (Such a rectangle R does exists, since D is
R

bounded.) We define [[ fdA = [[ fdA.
D R
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If D C R? is an open region, we can define an improper integral [[ fdA.
D

For each n, let C, C D be a compact subset such that dC, has zero area.
Choose the sets C, so that for all n, C, C C,4+1 and D = J,,C,,. (That is, the
sets are nested and every point of D is contained in some C,,. Then define

l/fdA:limn%w!n/fdA

If D is a compact, 2—dimensional region the set D — dD is open. We can ask
if the integral [[ fdA is equal to the improper integral [[ fdA. It turns
D D—9D
out that if both integrals exist, then they are equal. It is possible for the

improper integral to exist when the proper integral does not.

if the limit exists.

14.3. Elementary Regions. Before returning to Green’s theorem, we in-
troduce the concept of “elementary region” and discuss iterated integrals
over elementary region.

We say that a set D C R? is a Type I region (or “vertically convex”) if there
are continuous functions ¥ and d so that

D= {(x,y) ra<x<band y(x) <y<d(x)}

Here is an example:

We say that a set D C R? is a Type II region (or “horizontally convex”) if
there are continuous functions & and 3 so that

D= {(x,y);cgygdand ay) <x<By)}
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Here is an example:

Finally, a Type III region is a region that is of both Type I and Type II. Here
is an example:

A region that is of Type L, I, or III is called an elementary region.
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If D is an elementary region and if f: D — R is a continuous function, by
Fubini’s theorem we can write:

[[faA = [ fdydx if Dis of Type .
D
[[fda = [¢ ff((yy)) fdydx if Dis of Type IL.
D

Example 14.4. Consider the region D between the graphs of y = (x — 1)?
and y = —(x— 1)2+2. (See below.) Let f(x,y) = xy. Compute [[,, f dA.

/

1.8 0 08 16 2
X

Answer: By Fubini’s theorem, we have

2 px—1)?
//fdA:/ / xydydx.
5 0 J—(x—1)242

This iterated integral can be easily solved by a computer.
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15. GREEN’S THEOREM

For this section, let D C R2 be a closed bounded region with dD a collection
of piecewise smooth simple closed curves.

Theorem 15.1 (Green’s Theorem). Let D be as above. Orient dD so that
D is on the left as dD is traversed. (Equivalently, N points into D.) Let
F: D — R? be a C! vector field on D. Then,

0
F-ds://(curlF)- 0| dA.
oD 1
D

If we write F(x,y) = M(x,y)i+ N(x,y)j, then the conclusion of Green’s
theorem can be written as:

/de+Ndy //(&Z aM)dA

Before proving (part of) Green’s theorem, we’ll look at some examples.

15.1. Examples relevant to Green’s Theorem.

Example 15.2. For this example, let D C R?be the solid square with corners
(1,—1), (1,1), (—1,1), and (—1,—1). We will need a parameterization of
dD. Since dD is made up of 4 line segments, we can parameterize them as
follows. For each of them 0 < <1.

Ll(t) = (1,2l—1)
LZ(I) - (1_2t71)
Ls(t) (—1,1-21)
L4(t) = (2t 17_1)
We will also need the derivatives:
L) = (0.2)
L) = (-2,0)
Ly(t1) = (0,-2)
Lyt) = (2,0)

Example 1a: Let F(x,y) = (—x,y).
Example 1a.i: Compute [, F-ds.
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Answer: We have:

JopF-ds = [y F(Ly (t); L

JR(La(0)- ~
)+ Bz)*(l—lzz)'(—oz)+(1?5t>'(3) “
( (I

2t)+2(1—2t)dt

Example 1a.ii: Compute [[(curlF)-KkdA.
D

Answer: We have

(y) 9(—=x)
Ox dy

Thus, [[curlF-kdA = [[0dA = 0. Notice that this matches the answer
D

curlF -k = —~ =0.

D
from Example 1a.1, as predicted by Green’s theorem.
Example 1b: Let F(x,y) = (—y,x).
Example 1b.i Compute [, F - ds.

Answer: We have:

JopF-ds = [y F(Li(1))-
)

|
o

Example 1b.ii Compute [[(curlF)-kdA.
D

In this case, curl F -k = 2. Thus,

1 1

//curlF-de:/ / 2dA =8.
—1J-1

D

Notice that this is the same as in Example 1b.i as predicted by Green’s
theorem.

Example 15.3. Let F(x,y) = (sinx,In(1+y?)). Let C be a simple closed
curve which is made up of 24 line segments in a star shape. Compute
JoFds.



70

Answer: Let D be the region bounded by C. Notice that curlF = 0, so
[fcurlF -kdA = 0. By Green’s theorem, this is also the answer to the

D
requested integral.

cost sin(3t)
sinz cos(3¢)
of the region D enclosed by ¢.

Example 15.4. Let ¢(¢) = > for 0 <t < m/2. Find the area

Answer: Notice that ¢ travels clock-wise around D, we need it to go
counter-clockwise to use Green’s theorem. Changing the direction that ¢
travels, changes the sign of a path integral of a vector field. Thus, by Green’s
theorem, the area of D is given by

// 1dA:—/F-ds,
D ¢

where F is a vector field having the property that curl F = (0,0,1). The
vector field: F(x,y) = %(—y, x) has that property. Thus,
JfpldA = —[,F- ds
= —(1/2) Jy (—sintcos3t,costsin3t) ¢’ (t)dt
= —(1/2) fo % cos 3t sin3t — 3sint cost dt
—(1/2) T sin(6t) /2 — 3sin(2t) /2t
)

—(1/2)(1/6-3/2)
2/3.
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16. PROOF OF GREEN’S THEOREM

No typed notes available.

17. WHEN IS A FIELD CONSERVATIVE?

So far we know two theorems about conservative vector fields:

Theorem 17.1. Suppose that D C R3 is open. If F: D — R3 is C' and
conservative, then curl F(x) = 0 for all x € D.

If D C R" is open and if F is a C! vector field on D, we say that F has path
independent line integrals on D if whenever ¢; and ¢, are two C! paths
with the same endpoints and oriented in the same direction, then

F-ds= [ F-ds.
) )
Theorem 17.2. Suppose that D C R”" is open and that F is a C! conservative

gradient field on D. Then F has path independent line integrals on D. In fact,
if ¢ joins point a to b and if f is a potential function of F, then |, oF-ds=

f(b)—f(a).

We set about showing some partial converses of these theorems. This will
allow us to develop a good criterion for determining if a vector field on R?
1s conservative.

In Calc I, you learn that if f: [a,b] — R is a continuous function, then
F(x) = [; f(¢)dt will always be an antiderivative of f(x). The next theorem
generalizes this to vector fields.

Theorem 17.3. Suppose that D C R” and that F: D — R” is a C! vector
field. If F has path independent line integrals on D then F is conservative.

Proof. We need to define a C? potential function f: D — R? for F. To
that end, let a € D, be considered as a basepoint. If x € D, choose a path
¢ joining a to x and define f(x) = [, F-ds. Notice that definition of f
requires that the path ¢ be chosen, but that the choice does not matter — any
two paths will give the same answer, by our hypothesis.

We need to show that f is differentiable and that Vf = F. Since D is open,
there exists an open disc centered at X and contained in D. Let x+h be a
vector in this disc. Let & = ||h||. Let ¢ be a path from a to x and let y be a
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straight line path in D from x to x+ h. Then:
F(f(x+h)—f(x) =
%(fq,F-dsquwF-ds—fq,F-ds) =
i JyFds

Since v is a straight line path, we may assume that y(z) = x +rh so that
v/ (¢) = h. Then,

iﬁpﬁ:%A%@W»ha

Write h = hu with u a unit vector. Then
] i) F-ds
LI E () (s
Jo ¥(y (1)) -udt
When £ is very small, F(y(z)) ~ F(x) with the approximation improving

as h — 0. Thus, if u is constant, we have the directional derivative of f in
the u direction as:

nm%g@+m—f@»:F@yu

h—0

By making wise choices of h, we see that % =F-iand ‘3—5 =F-j. Conse-

quently, Vf = F. Furthermore, because F is C!, f is differentiable and is
c2. O

It may be difficult to imagine why the previous theorem is useful, since
it seems impossible to check the integral of a vector field over all paths
joining two points. However, the next theorem shows that, in fact, path-
independence can be useful.

A region D C R? is simply connected if it is connected (i.e. consists of one
piece) and if each loop in D can be continuously shrunk to a point all the
while remaining in D (that is, D has “no holes”).

Theorem 17.4. Suppose that D C R? is simply connected and that F: D —
R? is a C! vector field. If curl F(x,y) = 0 for all (x,y) € D, then F has path
independent line integrals on D.

Proof Sketch. We assume by hypothesis that curlF = 0. Let ¢; and ¢, be
two paths which join A to B. For simplicity, assume that the paths do not
intersect except at A and B. Then the images of ¢; and ¢, form the bound-
ary of a region E C D since D is simply connected. Giving the boundary
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the correct orientation amounts to traversing one of ¢; and ¢, in the given
direction and traversing the other in the reverse direction. Thus, by Green’s

theorem:
F-ds— F-ds:i/ F-ds://curlF-de.
ol ) JOE .

By our initial hypothesis that curl F = 0, we have shown that this last inte-
gral is 0. Consequently, the line integrals over ¢; and over ¢, have the same
values. U

For vector fields defined on regions in R? we put all these results together
to obtain:

Theorem 17.5 (Poincaré). Let D C R? be simply connected, and letF: D —
R2 be a C! vector field. Then, the following are equivalent:

(1) F is conservative.
(2) F has path independent line integrals on D
(3) curlF =0.
Proof. (1) = (3)
This is Theorem 17.1.
3 =(2)
This is Theorem 17.4.
2 =@
This is Theorem 17.3. l
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18. SURFACES

18.1. The Topological idea of a Surface. Recall that a surface is a 2—
dimensional manifold: that is, every point on a surface has a region around
it (in the surface) that looks like the region around some point in R%r.

Examples of surfaces are spheres, tori, tori with holes in them, infinite
cones, mobius bands, Klein bottles, and projective planes. Here are three
definitions of what it means for a surface to be orientable. They more-or-
less (but not exactly) are equivalent.

Combinatorial: A surface is orientable if there is a triangulation of the
surface, such that the boundary of each triangle is oriented and if two tri-
angles share an edge e they induce opposite orientations on that edge. For
a given triangulation of a connected surface there are at most two possible
orientations.

Exercise 18.1. Triangulate the Mdbius band and prove that there is no way
to orient that triangulation.

Topological A surface is not orientable if and only if it contains a Mobius
band as a subset.

Exercise 18.2. Prove that the Klein bottle and Projective Plane are not ori-
entable.

We will wait to define the calculus notion of “orientable” until we have
discussed parameterizations in more detail.

18.2. Parameterizations of Surfaces in R3. Suppose that X: D — R? is
a function defined on a 2—dimensional region D C R?. We require that D
have piece-wise C! boundary and that X be continuous and injective on the
interior of D (that is on D — d D). We say that X is a parameterized surface
and that it is a parameterization of the surface X(D) C R>. It is possible
that X (D) is not a surface in the topological sense.

Example 18.3. Let X(s,7) = (s,2,0) for (s,7) € D with D some region in
R2.
Example 18.4. The graph of a function z = f(x,y) can be parameterized as

X(s,t) = (8,2, f(s,1)).

Example 18.5. Suppose that x: [a,b] — R? and y: [a,b] — R? are two
simple curves. Define X(s,7) = (1 —s)x(¢) +sy(¢) for (s,z) € [0,1] x [a,b].
This is the surface of lines that joint the path x to the path y.
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Example 18.6. Suppose that u, v, and w are three non-collinear points in
R3. The plane containing the three points can be parameterized as X(s,t) =
su+1v+ (1 —s—r)w. If we restrict (s,7) to be in [0, 1] x [0, 1] then we have
a parameterized solid triangle with corners at v, u, and w.

Example 18.7. If x(r) = (x(¢),y(¢)) is a curve in the x — y plane, the surface
obtained by rotating that curve around the y axis can be parameterized as

cos(s)x(t)

X(s,t)=1{ ()
sin(s)x(z)

with s € [0,271].

If X: D — R3 is a surface and if we fix some 7o then the curve x(s) =
X(s,19) is called a s—coordinate curve. Similarly, if s¢ is fixed, then x(¢) =
X(s0,t) is a t—coordinate curve. We let T and T, be the tangent vectors of
these curves. That is: Ts(s,t) = %X(s,t) and T,(s,t) = %X(s,t). Notice
that the vectors Ty(s,7) and T;(s,#) are tangent to the surface X (D). Indeed,
if X(D) has a tangent plane at the point (s,#) then Ts(s,7) and T, (s,?) lie in
that plane. The following definition, therefore, is likely to be useful:

If X is C' at the point (s,¢), then the vector N(s,#) = T, x T} is called the
normal vector at (s,7). If N(s,7) # 0, then we say that X is smooth at (s,?).
Being smooth at (s,#) is equivalant to the statment that the vectors T and
T, form a basis for the tangent plane to X(D) at X(s,?).

If D is connected and if X is smooth, then if N varies continuously with
(s,t), then X is oriented with orientation N/||N||. Notice that since X is
smooth and since N is continuous, a connected smooth surface has exactly
two orientations.

In fact this sort of orientation is called a “normal orientation”. In R3, a
smooth connected surface has a normal orientation if and only if it has a
combinatorial orientation if and only if it does not contain a Mobius band.
In other 3—dimensional spaces, the combinatorial and calculus versions of
orientation may differ.

Example 18.8. Let

cosscost
X(s,t) = sint
Sinscost
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for (s,t) € [0,2x] x [—m,x|. This is a parameterization of the unit sphere.
Calculations show that
—sinssin’7 — cos scos ¢
N(s,t) = | —cos?scostsint — sin’ scost sint
—cos?sins + sin’7 coss

It is possible to check that N is everywhere non-zero and continuous. Thus
X is smooth and orientable.

18.3. Surface Integrals. Notes will be added later.

18.4. Reparameterizations.

Definition 18.9. Suppose that D and E are 2-dimensional regions in R?
with C! boundary. Let 4: E — D be a function such that:

(1) his a surjection.
(2) except on a finite set of points, / is C'

(3) Let & be the set of points such that the determinant of the derivative
of his 0. If £ is infinite, then & C JE.

Then we say that £ is a change of coordinates function.

Example 18.10. Let D be the disc 0 < s2+12<4inthes—r plane. Let E
be the rectangle [0,27] x [0,2] in the u — v plane. Define:

s veosu
(t) = hlu,v) = <vsinu> '
Claim: £ is a change of coordinates function.

Clearly, £ is a surjection and % is C!. Notice that:

i) = (

Thus, detDh(u,v) = —v. As long as v > 0, detDh(u,v) # 0. The set & =
{(0,v)} lies in JE. Thus, A is a change of coordinates function.

—vsinu cosu
vcosu sinu )’

Lemma 18.11. Suppose that E is connected and that 4: E — D is a change
of coordinates function. If x; and x; are points in £ at which £ is C! and
with detDh(x;) # 0 and detDh(x;) # 0, then either both detDh(x;) and
detDh(x;) are positive, or both are negative.

Proof. Let &2 be the set of points at which either % is not C! or at which
detDh is zero. By our hypotheses on &2 and the fact that E is connected,
there is a continuous path in E — & joining X to X,. Since his C' on E — 2,
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det Dh varies continuously along the path. Since the path misses the places
where det Dh(u,v) = 0, det Dh(x;) and det Dh(x;) are both positive or both
negative. U

Definition 18.12. If #: E — D is a change of coordinates function, and
if E is connected then 4 is orientation preserving if detDh > 0 on all
points where detDh is defined and non-zero. Otherwise, 4 is orientation
reversing.

Definition 18.13. Suppose that X: D — R? is a surface and that Y: E —
R3 is a surface such that there exists a change of coordinates function
h: E— D with Y = Xoh. Then Y is a reparameterization of X.

s
Example 18.14. Let X(s,1) = t for0 < s2+1><4.Let Y(u,v) =
2.2
sT+1
vcosu
vsinu |. Notice that X and Y are parameterizations of the same parab-

V2

vcosu
vsinu
an orientation reversing change of coordinates.

oloid. Define h(u,v) = . Then Y is a reparameterization of X by

Lemma 18.15. Suppose that X: D — R3 and that 4: E — D is a change of
coordinates function. Let Y = X o /. Let Nx and Ny be the normal vectors
of X and Y respectively. Then,

Ny (u,v) = (det Dh(u,v))Nx (h(u,v)).

Proof. We simply provide a sketch for those who have taken Linear Alge-
bra. The book provides a different method.

Let S = X(D) = Y(E). Assume that both X and Y are smooth, so that
there exists a tangent plane 7S, to S at p = X(s,7) = Y(u,v). Assume that
coordinates on R have been chosen so that TSy is the xy-plane in R3.

We think of T'S(u,v) as lying in the tangent space T, in R? at p. Since both
X and Y are smooth, the sets of vectors {Ty,T;} and {T,,T,} are each a
basis for T'Sp. Identifying T'Sp with both the s — ¢ plane and with the u —v
plane.

By the chain rule,

DY (u,v) = DX(h(u,v))Dh(u,v).
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We have
DY(u,v) = (Tu(u,v) T,(u,v))
DX(h(u,v)) = (Ts(h(u,v)) T,(h(u,v)))
Recall that the absolute value of the determinant of a 2 x 2 matrix is the
area of the parallelogram formed by its column vectors. Recall also that

determinant is multiplicative. Thus, by taking determinants and absolute
values we get:

( Area of parallelogram formed by T, (u,v) and T, (u,v) ) =
( Area of parallelogram formed by T(h(u,v)) and T;(h(u,v)) )| det Dh(u,v)|

Thus,
[Ny (u,,v)[| = [[Nx(h(u,v))|| | det Dh(u,v)|.

Since we have arranged that T'Sj, is the xy-plane, both Ny («,v) and Nx point
in the £K direction. That is:

0
Ny(u,,v) = 0
detDY (u,v)
0
Nx(h(u,v)) = 0

det DX(h(u,v))
Since, detDY (u,v) = det DX(h(u,v))det Dh(u,v), the result follows. [

Thus, if X and Y are both smooth and connected surfaces and if Y is a
reparameterization of X by a change of coordinates function 4, then Y has
the same normal orientation as X if and only if there exists a point («,v)
with det Dh(u,v) > 0.

s
Example 18.16. Let X(s,¢) = t for0 < s> +1><4.Let Y(u,v) =
2 2
sT 4t
vcosu
vsinu |. Notice that X and Y are parameterizations of the same parab-
2
v

veosu

oloid. Define h(u,v) = (vsinu

). Notice that Y = X o h where h(u,v) =

(vcosu,vsinu).
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Calculations show that:

—2s
Nx = —2t
1

2v2cosu
Ny = 2v2 sinu
—y

Recalling that det Dh(u,v) = —v, we see that the lemma gives us the same
relationship between Nx and Ny.

18.5. Surface Integrals: Definitions and Calculations. Suppose thatX: D —
R3 is a smooth surface. Suppose that f: X(D) — R and f: X(D) — R?
are C!. Then define:

[IxF-dS = [[(FoX)-NdA

D
Iixfds = JJ(foX)|INJ|dA.
veosu
Example 18.17. Let Y(u,v) = | vsinu | for (u,v) € E where E = [0,27] x
2
v
-y
[0,4]. Let F(x,y,z) = | x |. Calculate [[xF-dS.
0
2v2 cosu
Recall that Ny = [ 2v2sinu |. Thus,
—v

JIy¥dS = [[gF(Y(u,v)) -NydA

—vsinu 2v2cosu
= [ 5" | veosu |- | 2v2sinu | dudv
0 —v

= [ JFT0dudy
0.

You may wonder how surface integrals change under reparameterization.
The following theorem provides the answer:
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Theorem 18.18. Suppose that X and Y are parameterized connected sur-
faces and that Y is a reparameterization of X. If the change of coordinate
function 4 is orientation-preserving, let € = +1. If & is orientation revers-
ing, let £ = —1. Let f be a C! scalar field and let F be a C! vector field,
both defined in a neighborhood of the image of X and Y. Then:

iy fdS = [JxfdS
JxF-dS = [|xF-dS

Proof. We will need the change of variables theorem:

Theorem. Suppose that D and E are regions in the st plane and the uv
plane respectively and that 2: E — D is a change of coordinates function.
Let g: D — Rbe C!. Then

//g0h|dech(u,v)|dudv:// gdsdt
E D

Both equations are a rather immediate application of this. We prove only
the second, in the case when /4 is orientation reversing.

J[yFdS = [[z(FoY)-Nydudv
= [[z((FoX)oh) - (Nx-h)(detDh(u,v))dudv
= [[p(FoX)-Nxdsdt
= [IxF-dS.
The second to last equality comes from an application of the change of
variables theorem. U

19. FLUX

If F: R? — R3 is a vector field and if S ¢ R? is an oriented surface, with
normal orientation n, then the flux of F across S is, by definition, [[x F-dS,
where X is any parameterization of S, with normal vector N pointing in the
same direction as n.

Informally, the flux of F across S, measures the rate of fluid flow across S.

Example 19.1. Let S be the paraboloid which is the graph of f(x,y) =
x? +y? for x> +y*> < 4. Orient S. If F(x,y,z) = (—,x,0), then the flux of F
across S 1s O since the vector field is tangent to S. (Notice that the flow lines
for F which contain points of S, actually lie on S.
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Example 19.2. Let S be the unit sphere in R with outward pointing normal.
Let F(x,y,z) = (x,,2z). Then the flux of F across S is simply the surface area
of § (which is 47r/3) since, at (x,y,z) € S.

To see this, let X: D — R3 be a smooth parameterization of S with outward
pointing normal vector. Noticing that ||F(X)|| = 1, we have:
[xF-dS = [[,F(X) -Ndsdt
= Jlp (FX)- N7 ) [INlldsar
JIp [[EX)I[||N[|dsdt
= JIp|IN||dsd:

= JxdS

and this last expression is the surface area of S.

This last example can be generalized to:

Theorem 19.3. Suppose that S is a compact surface in R3 and that F is
a non-zero C! vector field defined in a neighborhood of S such that for
each (x,y,z) € S, F(x,y,7) is perpindicular to S. If ||F(x,y,z)|| > 0 for all
(x,y,z) € S, then the flux of F across S is simply £ [/ ||F||dS.

Example 19.4. Suppose that a thin sphere of radius 1 centered at the origin
is given a constant +1 charge. Then the sphere generates an electric field
given by:

E(a,b,¢) = V(ape)- / /S £ds,

-1
a—x)2+(b—y)?+(c—2)*

where f(X,y,Z) = (

By the theorem, this does not depend on a parameterization for S.
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20. STOKES’ AND GAUSS’ THEOREMS

Definition 20.1. Suppose that S is a piecewise smooth surface which has
normal orientation n (a unit vector). Let ¥ be a component of dS. Orient 7.
We say that y has been oriented consistently with n if it is possible to put
a little triangle on 7, give the edges of the triangle arrows circulating in the
direction of the orientation of 7, use the right hand rule and obtain a normal
vector pointing in the direction of n. We also say that dS has been given the
orientation induced from the orientation of S.

Example 20.2. Suppose that A C R3 is an oriented annulus (i.e. cylinder)
with two boundary components. Those boundary components must have
opposite orientations.

Theorem 20.3 (Stokes” Theorem). Let S be a compact, oriented, piecewise
smooth surface in R?. Give 95 the orientation induced by the orientation of
S. Let F be a C! vector field defined on an open set containing S. Then,

//(curlF) -dS= [ F-ds.
S as

Theorem 20.4 (Divergence Theorem/Gauss’ Theorem). Let D be a com-
pact solid region in R3 such that dD consists of piecewise smooth, closed,
orientable surfaces. Orient dD with unit normals pointing out of D. Sup-
pose that F is a C! vectorfield defined on an open set containing D. Then:

/D//divF-dS:a/D/F-ds
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21. GRAVITY

Suppose that for each point x € R3, there is a point mass p(x). Then the
gravitational field exerted by x is:

F(r) = (Gp(x))

where G is the gravitational constant. It is easy to check that the divergence
of F with respect to r (denoted V- F is 0.

X—r
[x—r[]>

Fundamental to the study of gravitation is:

Theorem 21.1 (Gauss’ Law). Let V be a 3—dimensional region. The flux
of the gravitational field exerted by V across dV is:

/ F-dS:—47rG///pdV
oV |4

Proof. Case 1: There exists a point x € V with p(x) # 0 and all other
points in V have zero mass. Let S be a small sphere of radius a enclosing x
contained inside V. then

Jfs, F-dS = ffs F-ndS
= Gp(X) [[s Tx— ru 5(x—r)- HX:IrH (x—r)dS
= —Gp(x) [[s HX =g ds
= —Gp (X) x— rHS ffS ds
= —Gp(x(4m

Now notice that since V- F = 0, by the divergence theorem, we have:

//aVF-dS://SF-dS:—Mer(x).

Case 2: There is a 3-dimensional region R C V with non-zero mass (possi-
bly all of V') then by superposition:

/ F-dS:—47rG///pdV.
oV R

We can now prove an important theorem:

Theorem 21.2 (Shell Theorem). Suppose that W is a 3—dimensional region
of constant mass which is the region between a sphere of radius @ > 0 and
a sphere of radius b > a, both centered at the origin.

Then the following hold:
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(1) For a point r, with ||r|| > b, the force of gravity is the same as if W
were a point mass.

(2) In either case, for a point r with a < ||r|| < b, the force of gravity
varies linearly with distance from the origin.

(3) For a point r with ||r|| < a, the force of gravity is zero.

Proof. Let r be a point in R3. By the principal of superposition, the gravi-
tational field at r is a vector that points toward the origin. That is, if r # 0,
r

F(r) = —f(r)7—
[Ir|
where f(r) is a non-negative scalar function depending only on the magni-
tude r of r.

Let S be a sphere of radius r bounding a ball V centered at 0. We have:
[IsE-dS = f(r) [fs 72 dS
= —47rrf(r).

By the differential form of Gauss’ Law and the divergence theorem , we
also have:

JIs¥-dS = —4nG [[[zpdV
Thus,
—4nr?f(r) = —4piG / / pdV
B
Thus:

o Ifr>b, forallx e V—-W, p(x) =0, so the first result follows.
e If a < r < b, we have the second result.
e If r < a we have the 3rd result, since for all x € B, p(x) = 0.
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22. COHOMOLOGY THEORY

In this section we work entirely on subsets of R3. Throughout we assume
that whenever every appropriate that the objects under consideration are C!
or C2.

Theorem 22.1. Suppose that F and G are vector fields defined on D and
that whenever ¢ is a simple closed curve in D, then [;F-ds = [, G -ds.
Then there exists a scalar field 2: D — R such that F =G+ Vf.

Proof. Recall from the proof of Poincaré’s Theorem that if a vector field
has path independent line integrals then it is a gradient field. In particular,
this result did not rely on D being simply connected. Let H=F — G.

Claim: H has path independent line integrals.

Assume that ¢ and y are two paths joining a point a to a point b. Let C
be the closed curve obtained by traversing ¢ and then traversing ¥ in the
reverse direction. For simplicity, we assume that C is simple. Then,

/H-ds—/H-ds:/H~ds:/(F—G)-ds:/F-ds—/G-ds:O.
¢ v c c C C

Thus, by Poincaré’s Lemma, there exists a scalar function f: D — R such
that F — G = V f as desired. U

Corollary 22.2. Let D = R> — {0}. Suppose that F: D — R and that
curl F = 0. Then there exists a constant k € R and a scalar field f: D - R

such that
(‘y) +V(x,y).

F<x7y):x2+y2 X
Proof. Let C be a counter-clockwise oriented simple closed curve enclos-
ing the origin. Define k = ﬁ JoF -ds. Then evaluating both F and G =
S
x24y? X
grating F and G over any other simple closed curve containing the origin
produces k (by Green’s theorem and some topology). If C is a simple closed
curve not enclosing the origin, since curl F = 0 and since curl G = 0, F and
G once again have the same contour integrals. Thus, by the theorem F — G
is a gradient field. U

around C produces the same answer. Since curl F = 0 inte-

Let cycle?(D) be the set of all vector fields on a region D with 0 curl.
cycle?(D) is a real vector space. Let boundary! (D) be the set of all gradient
fields on D. boundary' (D) is also a real vector space. Since curlograd =
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0, boundary' (D) C cycle?(D). Let H'(D) be the quotient vector space
cycle?(D)/boundary' (D). That is, two vector fields with 0 curl on D are
considered “the same” if they differ by a gradient field. We conclude from
the above example that H'(R? — {0}) is a 1-dimensional vector space.
From Poincaré’s Theorem, we know that H'!(R?) is a O—dimensional vector
space (i.e. every vector field with 0 curl is a gradient field).

You might enjoy this (challenging) exercise: Let D be the result of removing
n points from R2. Prove that H'(D) is n—dimensional.



