(1) Let S ⊂ ℝ³ be an ellipsoid enclosing the origin, oriented outward. Let P ⊂ ℝ³ be a cube enclosing the origin and enclosed by S. Orient P outward. Let F be an incompressible vector field defined on ℝ³ - {0}. Prove that the flux of F through P is the same as the flux of F through S.

Solution: Let *V* be the region between *S* and *P*. Orient ∂V with a unit normal that points out of *V*. Then by the divergence theorem:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} - \iint_{P} \mathbf{F} \cdot d\mathbf{S} = \iint_{\partial V} \mathbf{F} \cdot d\mathbf{S}$$

= $\iint_{V} \operatorname{div} \mathbf{F} dV$
= $\iint_{V} 0 dV$
= 0.

Consequently, $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ equals $\iint_{P} \mathbf{F} \cdot d\mathbf{S}$.

(2) Let $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$. Let **a** be a point in \mathbb{R}^3 . For each $n \in \mathbb{N}$, let V_n be a compact 3-dimensional region containing **a**, such that the regions V_n limit to **a**. Orient the boundary of V_n outwards. Use the divergence theorem to prove that

div
$$\mathbf{F}(\mathbf{a}) = \lim_{n \to \infty} \frac{1}{\operatorname{vol} V_n} \iint_{\partial V_n} \mathbf{F} \cdot d\mathbf{S}.$$

Solution: Suppose that *n* is large enough so that $\mathbf{F}(\mathbf{x}) \approx \mathbf{F}(\mathbf{a})$ for all $\mathbf{x} \in V_n$. Then, by the divergence theorem:

$$\iint_{\partial V_n} \mathbf{F} \cdot d\mathbf{S} = \iiint_{V_n} \operatorname{div} \mathbf{F} dV$$

$$\approx \iiint_{V_n} \operatorname{div} \mathbf{F}(\mathbf{a}) dV$$

$$= \operatorname{div} \mathbf{F}(\mathbf{a}) \iiint_{V_n} dV$$

$$= \operatorname{div} \mathbf{F}(\mathbf{a}) (\operatorname{vol} V_n).$$

That is,

div
$$\mathbf{F}(\mathbf{a}) \approx \frac{1}{\operatorname{vol} V_n} \iint_{\partial V_n} \mathbf{F} \cdot d\mathbf{S}$$

As $n \to \infty$ this approximation becomes exact, proving the result.

(Note: This proof is actually non-rigorous. To make it rigorous we would need to use the mean value theorem for integrals.)

(3) Let *S* be the box with corners $(\pm 1, \pm 1, \pm 1)$, oriented outward. Let

$$\mathbf{F}(x, y, z) = \begin{pmatrix} xyz \\ xy \\ z \end{pmatrix}.$$
 Find the flux of **F** through *S*.

Solution: Use the divergence theorem. We have $\operatorname{div} \vec{F}(x, y, z) = yz + x + 1$. The divergence says the flux through S is equal to

$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} yz + x + 1 \, dx \, dy \, dz = 8.$$

(4) Prove that inside a hollow planet there is no gravity. (You may use Gauss' Law of Gravitation.)

See the online course notes for a solution.

(5) Give a complete, precise statement of the divergence theorem.

See the book or the online notes.