
MA 302: More Practice Problems Name:

(1) Find a parameterization of the surface formed by the graph of z =
x2− y2 with (x,y) in the triangle in the xy-plane formed by the x-
axis, the y-axis, and the line y =−x+1.

Solution: How about:

X(s, t) =

 s
t

s2− t2


with 0≤ s≤ 1 and 0≤ t ≤−s+1?

(2) Is the surface in the previous problem a smooth surface? If no, at
what points is it not smooth?

Solution: The answer depends (somewhat) on your parameteriza-
tion. The answer here is based on the parameterization above.

You can calculate that

Ts = (1,0,2s)
Tt = (0,1,−2t)
N = (−2s,2t,1)

Since N is never 0, and since X is obviously C1, X is a smooth
surface.

(3) Find a parameterization of the surface formed by rotating the curve(
cos t +5

2sin t

)
with 0≤ t ≤ 2π around the y-axis.

Solution: How about

X(s, t) =

coss(cos t +5)
2sin t

sins(cos t +5)

?

(4) Consider the surface

X(s, t) =

2sin3t + t
cos2s
t2 + s2

 , 0≤ t ≤ π/4, 0≤ s≤ π
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Find the tangent and normal vectors to X at the point (π/6,π/6). Is
the surface smooth?

Solution:

We have
Ts = (0,−2sin2s,2s)
Tt = (6cos(3t)+1,0,2t)
N = (−4t sin2s,2s(6cos3t +1),2sin2s(6cos3t +1)

Plug (π/6,π/6) into the above equations to get:

Ts = (0,−
√

3,π/3)
Tt = (1,0,π/3)
N = (−π

√
3/3,π/3,

√
3)

Since N(π/6,π/6) 6= 0, the surface is smooth at that point.

(5) Suppose that F : R3→R3 is a C1 vector field, and that X : D→R3

is a smooth, oriented surface. Let h : E → D be a smooth, orienta-
tion reversing change-of coordinate function. Prove that∫∫

X
F ·dS =−

∫∫
X◦h

F ·dS.

Solution: See your course notes or adapt the solution to the next
problem.

(6) Suppose that f : R3→ R is a C1 vector field, and that X : D→ R3

is a smooth, oriented surface. Let h : E→D be a smooth change-of
coordinate function. Prove that∫∫

X
f dS =

∫∫
X◦h

f dS.

Solution: By definition,∫∫
X◦h

f dS =
∫∫

E
f (X◦h)||N||dA

Let Y=X◦h. It is a fact (proved in class) that NY = (detDh)NX◦h.
Thus, ∫∫

X◦h
f dS =

∫∫
E

f (X◦h)||NX ◦h|| |detDh|dA

By the change of coordinates theorem, this give us:∫∫
X◦h

f dS =
∫∫

E
f (X)||NX|| dA
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By the definition of surface integral we then get our result:

∫∫
X◦h

f dS =
∫∫

X
f dS.

(7) Suppose that X : D→ R3 is a smooth, oriented surface with unit
normal n. Suppose that F : R3→R3 is a C1 vector field. Prove that∫∫

X
F ·dS =

∫∫
X

F ·ndS.

Solution: We have n = N/||N||. Thus,∫∫
X F ·dS =

∫∫
D(F◦X) ·NdA

=
∫∫

D(F◦X) · (||N||n)dA
=

∫∫
D(F◦X) ·n ||N||dA

=
∫∫

X F ·ndS.

(8) Use the previous result to integrate the vector field F(x,y,z)= (x,y,z)
over the unit sphere (with outward normal) in R3.

Solution: At a point (x,y,z) on the unit sphere S, there is the normal
n = (x,y,z). Thus, F ·n = x2 + y2 + z2. Since (x,y,z) is on the unit
sphere, F ·n = 1. Thus,∫∫

S
FdS =

∫∫
S

F ·ndS =
∫∫

S
1dS.

This last quantity is just the surface area of the sphere, which is 4π .

(9) Let S be the disc of radius 1 centered at (1,0,0) in R3 which is
parallel to the yz-plane. Orient S with normal vector pointing in the
direction of the postive x-axis. Use the definition of surface integral
to calculate the flux of F(x,y,z) = (−xy,yz,xz) through S.

Solution: Parameterize S as:

X(s, t) =

1
s
t


with (s, t) in the region D defined by 0 ≤ s2 + t2 ≤ 1. It is easy to
calculate N = (1,0,0). Then,

F ·N(x,y,z) =−xy.

Thus, by the definition of surface integral, the flux of F through S is∫∫
D

F ·N(X(s, t))dA =
∫∫

D
−sdsdt.
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Change to polar coordinates by setting s = r cosθ and t = r sinθ .
Then the integral above is equal to (by the change of coordinates
theorem): ∫ 1

0

∫ 2π

0
−r2 cosθ dθdr

Since
∫ 2π

0 cosθdθ = 0, the flux equals 0.

(10) Use the same surface S and F as in the previous problem, but now
use Stoke’s theorem to calculate the flux of the curl of the previous
problem.

Solution: By Stoke’s theorem,∫∫
S

curlF ·dS =
∫

∂S
Fds.

Parameterize ∂S as:

x(t) =

 1
cos t
sin t


with 0≤ t ≤ 2π .

Notice that x gives ∂S the orientation induced by the orientation on
S. Then, ∫

x
F ·ds =

∫ 2π

0
F(x)(t) ·x′(t)dt.

Calculations show that this equals∫ 2π

0 −cos t sin2 t + sin t cos t dt =
∫ 2π

0 −cos t sin2 t dt +
∫ 2π

0 sin t cos t dt
= 0.

(11) Let S be a surface formed by rotating the image of
(

x
y

)
=

(
t

sin t

)
,

2π ≤ t ≤ 3π around the y–axis. Orient S so that at the point (2π +
π/2,1,0) there is an upward pointing normal vector. For the follow-
ing vector fields, find the flux of the vector field through S. (Hint:
there are easy ways and there are hard ways...)

For all of the solutions below, let A be the annulus in the xz-plane
with the same boundary as S and oriented upward. Let V be the
region between A and S.

(a) F(x,y,z) =

 x+ y
−y+ z
−x+ y


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Solution:

Parameterize A as:

X(s, t) =

t coss
0

t sins


for 2π ≤ t ≤ 3π and 0≤ s≤ 2π . Calculate:

N =

0
t
0


Notice that this gives A the correct orientation.

Now, F ·N(s, t) = t2 sins. Thus, the flux through A is∫ 2π

0

∫ 3π

2π

t2 sinsdtds = 0.

(b) F(x,y,z) =

0
1
0


Solution: For this problem you can either use Stokes’ theorem
or the method of the previous part. In this case∫∫

A
F ·dS =

∫∫
A

F ·ndS =
∫∫

A
dS = 5π

3.

(c) F(x,y,z) =

1
0
0


Solution: Once again the flux through S equals the flux through
A, and so since F is tangent to A, the flux through A is zero.

(d) F(x,y,z) = 1
x2+z2

−z
0
x


Solution: In this case, recall that the flow lines for F are circles
centered at the origin parallel to the xz-plane. Consequently, F
is tangent to S and so the flux through S is zero.


