- (1) Give an example of a vector field **F** having $\operatorname{curl} \mathbf{F} = \mathbf{0}$, but where **F** is not a gradient field.
- (2) Know the formal definitions of the following terms or the complete precise statements of the following theorems:
 - (a) Green's theorem
 - (b) planar divergence theorem
 - (c) conservative vector field
 - (d) gradient field
 - (e) potential function
 - (f) parameterized surface
 - (g) orientable surface
 - (h) one-sided surface
- (3) Give an example of a one-sided surface in \mathbb{R}^3 .
- (4) Give an example of an orientable surface in \mathbb{R}^3 .
- (5) Prove the following:
 - (a) Suppose that $D \subset \mathbb{R}^2$ is a type III region and that $\mathbf{F}: D \to \mathbb{R}^2$ satisfies the hypotheses of Green's theorem. Prove that the conclusion of Green's theorem holds.
 - (b) Suppose that $D \subset \mathbb{R}^2$ is the union of two type III regions along a portion of their boundaries. Suppose also that $\mathbf{F}: D \to \mathbb{R}^2$ satisfies the hypotheses of Green's theorem. Prove that the conclusion of Green's theorem holds.
 - (c) Suppose that $D \subset \mathbb{R}^2$ is simply connected and that $\mathbf{F}: D \to \mathbb{R}^2$ has curl $\mathbf{F} = \mathbf{0}$. Prove that \mathbf{F} has path independent line integrals in D.
 - (d) Suppose that $\mathbf{F}: D \to \mathbb{R}^n$ has path independent line integrals. Describe the creation of a potential function for \mathbf{F} and prove that the gradient of this function is \mathbf{F} .

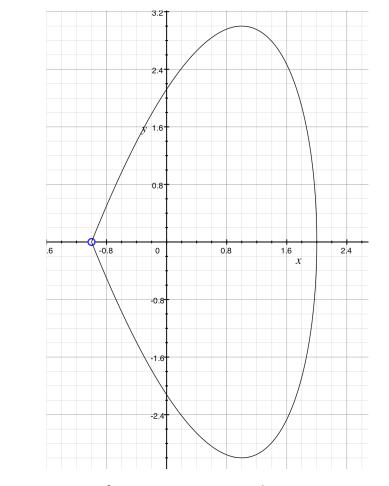
- (e) Prove that if $\mathbf{F}: D \to \mathbb{R}^n$ is a gradient field and if *C* is a simple closed curve in *D*, then $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$.
- (6) Let $D \subset \mathbb{R}^2$ be the region bounded by the graphs of the equations $y = x^3$ and y = x and with $x \ge 0$. Suppose that $\mathbf{F}(x, y) = (xy+y, y^2x)$.
 - (a) Is D a type I, II, or III region or none of the above?
 - (b) Orient ∂D so that *D* is always on the left. Calculate $\int_{\partial D} \mathbf{F} \cdot d\mathbf{s}$ directly.
 - (c) Calculate $\iint_D \operatorname{curl} \mathbf{F} \cdot \mathbf{k} \, dA$ directly.
 - (d) What is the relevance of Green's theorem to the preceding problems?
 - (e) Is the vector field **F** conservative?

(7) Let
$$\mathbf{F}(x, y, z) = \frac{-1}{(x^2 + y^2 + z^2)^{3/2}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
. Suppose that a particle is located

1 \

at the point (1,1,0) and moves via the path $\mathbf{x}(t) = (t, \cos t, t \sin t)$ to the point $(\pi/2, 0, \pi/2)$. How much work is done?

- (8) What is the flux of the vector field $\mathbf{F}(x, y) = (-y^2 x, x^2 y)$ across the circle of radius 2 centered at the origin? Just set up an appropriate single-variable integral. You do not need to solve it.
- (9) What is the circulation of the vector field $\mathbf{F}(x, y) = (-y^2x, x^2y)$ around the circle of radius 2 centered at the origin? Just set up an appropriate single-variable integral. You do not need to solve it.
- (10) A wire C is bent into the shape of a circle of radius 1 centered at the origin in ℝ². It is given a charge of +1 and so generates an electric field F. How much work is done in moving a charged particle from (1/2,0) to (0,0)? Does it matter what path is taken? Why not? (You may leave your answer in integral form.)
- (11) Explain why curl $\mathbf{F}(\mathbf{a}) \cdot \mathbf{k} = \lim_{r \to 0^+} \frac{1}{r^2} \int_{S_r} \mathbf{F} \cdot d\mathbf{s}$ where S_r is a square centered at \mathbf{a} with the distance between midpoints of opposite sides equal to *r*. \mathbf{F} is a planar vector field.
- (12) Explain why div $\mathbf{F}(\mathbf{a}) = \lim_{r \to 0^+} \frac{1}{r^2} \int_{S_r} \mathbf{F} \cdot \mathbf{n} \, ds$ where S_r is a square centered at \mathbf{a} with the distance between midpoints of opposite sides equal to *r*. \mathbf{F} is a planar vector field.



(13) Find a single variable integral representing the area enclosed by the path $\phi(t) = (2\cos(2t), 3\sin(3t))$ for $-\pi/3 \le t \le \pi/3$.

(14) Let $\sigma: [1,2] \to \mathbb{R}^2$ be the path $\sigma(t) = (e^{t-1}, \sin(\pi/t))$. Let $\mathbf{F}(x,y) = (2x\cos y, -x^2\sin y)$. Compute $\int_{\sigma} \mathbf{F} \cdot d\mathbf{s}$.