MA 302: HW 7 additional problems

Answer these questions on a separate sheet of paper. Remember that your work must be very neat and complete.

Problem A: Suppose that $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ is a \mathbb{C}^1 vector field. Let D be a type 3 region in \mathbb{R}^2 . Orient ∂D so that D is on the left as ∂D is traversed. In class we showed that

$$\iint_{D} -\frac{\partial M}{\partial y} dA = \int_{\partial D} M dx.$$

Using similar methods, show the following:

$$\iint_D \frac{\partial N}{\partial x} dA = \int_{\partial D} N \, dy.$$

Problem B: Suppose that $f: \mathbb{R}^3 \to \mathbb{R}$ is a \mathbb{C}^2 scalar field. Prove that $\operatorname{curl}(\nabla f) = \mathbf{0}$. (This was discussed a while ago, but never proven. You can do it by a simple, somewhat tedious calculation.)

Problem C: Let $\mathbf{F}(x,y) = \frac{1}{x^2+y^2} \begin{pmatrix} -y \\ x \end{pmatrix}$. Let D_r be closed disc of radius r > 0 centered at the origin.

- (1) Compute $\int_{\partial D_r} \mathbf{F} \cdot d\mathbf{s}$. Does your answer depend on r?
- (2) Explain why Green's theorem cannot be used to calculate the line integral in the previous part.
- (3) Calculate $\operatorname{curl} \mathbf{F}(x, y)$.
- (4) Suppose that $0 < r_0 < r_1$. Let R be the region between ∂D_{r_0} and ∂D_{r_1} . Explain why $\iint_R (\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} \, dR$ is defined and calculate it directly.
- (5) Explain why the calculation in the previous part, combined with Green's theorem gives another method of showing that the answer from (1) does not depend on r.

Problem D: Suppose that **F** is a vector field which is defined and is C^1 on all of \mathbb{R}^2 except for n points: $\mathbf{p}_1, \dots, \mathbf{p}_n$. Suppose that $\operatorname{curl} \mathbf{F}(x,y) = \mathbf{0}$ for all $(x,y) \in \mathbb{R}^2 - \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$. Let C_1 and C_2 be two disjoint simple closed curves in $\mathbb{R}^2 - \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$, both oriented counterclockwise or both

oriented clockwise. C_2 bounds a closed, bounded region inside \mathbb{R}^2 ; assume that C_1 is contained in that region. Let A be the region between C_1 and C_2 .

Prove that if A does not contain any of the points $\{\mathbf{p}_1, \dots, \mathbf{p}_n\}$, then

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}.$$

Problem E: Construct a vector field **F** with the following properties:

- (1) **F** is not defined at the points $\mathbf{p}_1 = (0,0)$ and $\mathbf{p}_2 = (1,0)$. Furthermore, $\lim_{\mathbf{x} \to \mathbf{p}_i} F(\mathbf{x})$ does not exist (for i = 1,2). (This last requirement on the limit is basically to keep you from taking some nice well-behaved vector field and simply redefining it at \mathbf{p}_i .)
- (2) curl $\mathbf{F}(x,y) = \mathbf{0}$ for $(x,y) \neq \mathbf{p}_1, \mathbf{p}_2$.
- (3) For a smooth simple closed curve C_1 (oriented counter-clockwise) which encloses \mathbf{p}_1 but not \mathbf{p}_2 ,

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \pi.$$

(4) For a smooth simple closed curve C_2 (oriented counter-clockwise) which encloses \mathbf{p}_2 but not \mathbf{p}_1 ,

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{s} = 7.$$

After defining \mathbf{F} , answer this question: If C_3 is a simple closed curve (oriented counter-clockwise) which encloses both \mathbf{p}_1 and \mathbf{p}_2 , what must be the value of

$$\int_{C_3} \mathbf{F} \cdot d\mathbf{s}?$$