MA 122: Weekly HW 9

Answer these questions on a separate sheet of paper. Remember that your work must be very neat and complete.

Problem A:

- Use differentials to estimate the error in calculating the surface area of a closed cylindrical can that has been measured to be *h* centimeters tall and *d* centimeters in diameter if the measurement error is at most .05 cm. The formula for surface area of such a can is A = πhd + 2π(d/2)². Do this for the following values of *h* and *d*: (a) h = 15, d = 30
 - (b) h = 27, d = 42
- (2) If *R* is the total resistance of three resistors connected in parallel with resistances R_1 , R_2 , and R_3 , then

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}.$$

If the resistances are measured in ohms as $R_1 = 25\Omega$, $R_2 = 40\Omega$, and $R_3 = 50\Omega$, with a possible error of 0.5% in each case, estimate the maximum error in the calculated value of *R*.

Problem B:

- (1) Let $\phi(t) = (\cos t + 5, 3\sin t + 3)$ and let f(x, y) = x y.
 - (a) Draw the image of ϕ in \mathbb{R}^2 . That is, mark all points $(a,b) \in \mathbb{R}^2$ such that there exists $t \in \mathbb{R}$ with $\phi(t) = (a,b)$.
 - (b) Find an equation for $f \circ \phi(t)$ and take its derivative (with respect to *t*).
 - (c) Use the chain rule to find $\frac{d}{dt}f \circ \phi(t)$.
- (2) Let $\phi(t) = (\cos(t), 3\sin(t))$ and let s(x, y) denote the square of the distance from a point $(x, y) \in \mathbb{R}^2$ to the line -x + 3y = 0.
 - (a) Find an equation for s(x, y). (Hint: use the dot product as we did in class.)
 - (b) Use the chain rule to find $\frac{d}{dt}s \circ \phi(t)$.
 - (c) Find a number $t_0 \in [-\pi, \pi)$, such that $\phi(t_0)$ is the point on the curve farthest from the line defined by the equation -x + 3y = 0.

(3) Let $\phi(t) = (t, \cos(t) + 4, \sin(t) + 4)$ and let s(x, y, z) denote the square of the distance from the point (x, y, z) to the plane *P* defined by the equation y + z = 0. You may want to use Grapher or Mathematica¹ to draw the image of $\phi(t)$ in \mathbb{R}^3 . Find the number t_0 such that the point $\phi(t_0)$ is the point on the image of ϕ closest to the plane *P*.

Problem C: A function f(x,y) is **homogeneous of degree** p if for all $t, x, y \in \mathbb{R}$:

$$f(tx,ty) = t^p f(x,y).$$

Let $\mathbf{x_0} = (x_0, y_0) \in \mathbb{R}^2$. Show that any differentiable, homogeneous function of degree *p* satisfies:

$$\nabla f(\mathbf{x_0}) \cdot \mathbf{x_0} = pf(\mathbf{x_0}).$$

(Hint: Define $\phi(t) = t\mathbf{x}_0$ and compute $\frac{d}{dt}|_{t=1} f \circ \phi(t)$ using the chain rule.)

Problem D: Let $f(x, y) = x^4 + y^4 - 4xy + 1$.

- (1) Find $f_x(x, y)$ and $f_y(x, y)$.
- (2) Find all second partial derivatives of f.
- (3) Find the 1st order Taylor approximation to f(x, y) at (0, 0).
- (4) Find the 2nd order Taylor approximation to f(x,y) at (0,0).
- (5) Find all critical points of f.
- (6) Classify the critical points of f using the 2nd derivative test.

Problem E: The cost of building a box depends on the *h*, *l*, and *w* (all measured in feet). For a particular design, materials cost 3 dollars per square foot for the base and top and 5 dollars per square foot for the sides. If the box must have a volume of 100 cubic feet, what is the cheapest it can be built for? (Hint: use the constraint that the volume is 100 ft³ to define a function A(h, l) which you will minimize.)

¹In Grapher use "Curves" under "Create New Equation From Template". In Mathematica help look at "spacecurve".