

Answer these questions on a separate sheet of paper. Remember that your work must be very neat and complete.

Problem 1: If a force of constant magnitude f is used to push an object in the direction of the force a distance d, the work done is W = fd. If, however, the force is pushing an object in a direction different from the direction of motion (see the figure below) the work done is defined to be $W = \mathbf{F} \cdot \mathbf{d}$ where \mathbf{F} is the force vector and \mathbf{d} is the vector indicating the direction and distance of motion.

Suppose that a wagon is pulled a distance of 100 m along a horizontal path by a constant force of 50 N. The handle of the wagon is held at an angle of 30° above the horizontal. How much work is done?

Problem 2: Draw a picture of and calculate the volume of the parallelpiped defined by the vectors $\mathbf{v} = (3,0,0)$, $\mathbf{w} = (2,4,0)$ and $\mathbf{u} = (1,3,1)$.

Problem 3: Find the formula for the plane containing the points (-1, 1, 1), (1, -1, 1) and (2, 1, -1).

Problem 4: Let $f(x,y) = \frac{x^3y}{x^6+y^2}$. Show that $\lim_{x\to 0} f(x,y)$ does not exist.

Problem 5: Let

$$f(x,y) = \begin{cases} xy/(x^2 + xy + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Explain why *f* is continuous at all $(x, y) \neq 0$ but discontinuous at (x, y) = (0, 0).

Problem 6: Find the ∂/∂_x and ∂/∂_y of the following functions:

(1) $f(x,y) = \sqrt{x^2 + y^2}$ (2) $f(x,y) = \ln(x + \sqrt{x^2 + y^2})$ (3) f(x,y) = (x-y)/(x+y)(4) $f(x,y) = \int_x^y \cos(t^2) dt$ (Hint: Use the fundamental theorem of calculus) **Problem 7:** Let $f(x, y) = x^2 y^3 + x$.

- (1) Find $f_x(1,2)$ (2) Find $f_y(1,2)$ (3) Find $f_{xx}(1,2)$ (4) Find $f_x(1,2)$
- (4) Find $f_{xy}(1,2)$
- (5) Find $f_{yx}(1,2)$ (6) Find $f_{yy}(1,2)$

Problem 8: Let $f(x,y) = \sqrt{1 - (x^2 + y^2)}$. Let $\mathbf{v} = (v_1, v_2)$ be a point in the domain of f.

- (1) What is the graph of f(x, y)?
- (2) Find $f_x(\mathbf{v})$ and find a point \mathbf{u} on the line through the origin in the *xz* plane with slope $f_x(\mathbf{v})$.
- (3) Find $f_y(\mathbf{v})$ and find a point \mathbf{w} on the line through the origin in the *yz* plane with slope $f_y(\mathbf{v})$.
- (4) Find the equation of the plane containing $\mathbf{0}$, \mathbf{u} and \mathbf{w} .
- (5) Show that $(v_1, v_2, f(\mathbf{v}))$ is a normal vector for the plane.
- (6) Find the equation of the tangent plane to f(x, y) at **v**.