MA 122: Weekly HW 6

Answer these questions on a separate sheet of paper. Remember that your work must be very neat and complete.

Problem 1: Consider the graph in \mathbb{R}^4 of the function $f: \mathbb{R}^3 \to \mathbb{R}$ defined by

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

- (1) Describe the *x*, *y*, and *z*–slices.
- (2) Describe the level sets.
- (3) This object in 4-dimensions is an analogue of well-known objects in lower dimensions what objects?

Problem 2: Solve the following problems (all are taken from the 5th edition of your text pg 700– the odd numbered solutions should be in the back.)

- (11) The velocity of the current in a river is $\mathbf{c} = (0.6, 0.8)$ km/hr. The boat moves relative to the water with velocity $\mathbf{v} = (8, 0)$. What is the speed of the boat relative to the riverbed? What angle does the velocity of the boat relative to riverbed make with the vector \mathbf{v} . Explain in practical terms.
- (18) A partial moving with speed v hits a barrier at an angle of 60° and bounces off at an angle of 60° in the opposite direction with speed reduced by 20%. Find the velocity vector of the object after impact (relative to the point of impact.)
- (21) Two forces, represented by the vectors $\mathbf{F}_1 = (8, -6)$ and $\mathbf{F}_2 = (3, 2)$ are acting on an object. Give a vector representing the force that must be applied to the object if it is to remain stationary.

Problem 3: Find the angle between the vectors:

(1) (-1,1,2) and (2,-3,1)(2) (0,1,3) and (3,3,-1)

Problem 4:

- (1) Find the equation of the plane perpendicular to the vector (-2, 3, -1) and which contains the point (1, 2, 3).
- (2) Find a normal vector to the plane 2x + y z = 23.

(3) Consider the point $\mathbf{v} = (1,0,0)$ and the plane *P* defined by 2x - y + 3z = 0. What is the shortest distance between the point \mathbf{v} and the plane *P*?

Problem 5: If $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ both lie in the *xy* plane, what can you say about $\mathbf{v} \times \mathbf{w}$? Explain.

Problem 6: The circle S^1 is the set of all points $(x, y) \in \mathbb{R}^2$ such that

$$x^2 + y^2 = 1.$$

(1) Let $\mathbf{v} = (v_1, v_2)$ be an arbitrary point on S^1 with $v_2 > 0$. Recall that this means that $v_2 = \sqrt{1 - v_1^2}$. Use the derivative of $f(x) = \sqrt{1 - x^2}$ to explain why the equation of the line tangent to S^1 at the point (v_1, v_2) is:

$$y = -\frac{v_1}{v_2}(x - v_1) + v_2.$$

- (2) Find a vector w such that w is parallel to the line from (a) and has magnitude 1. (Hint: find the equation of the line which is parallel to the line from (a) and which contains (0,0). Pick a point on that line which has distance 1 from the origin.)
- (3) Show that \mathbf{v} and \mathbf{w} are perpindicular using the dot product.

Problem 7: The sphere S^2 is the set of all points $(x, y, z) \in \mathbb{R}^3$ such that $x^2 + y^2 + z^2 = 1$.

- (1) Suppose that $\mathbf{v} = (v_1, v_2, v_3)$ is an arbitrary point on the sphere S^2 .
- (2) Find the equation of the plane perpindicular to \mathbf{v} which contains \mathbf{v} .
- (3) Suppose that $v_3 = 0$ so that v lies on the *xy*-plane. Also assume that $v_2 > 0$. Show that the intersection of the plane you found in (2) with the *xy*plane is the line you found in poblem 6 part 1. Explain the significance.
- (4) Do you think it likely that the plane you found in (2) is the tangent plane to S^2 containing **v**? Explain.