Study Guide/Practice Exam 2 Partial Solutions

This study guide/practice exam is longer and harder than the actual exam.
Problem A: Power Series.
(1) Recallthat P(z) = 3" ° 2™ /nl. Analyze error terms of the MacLau-
rin polynomials of e to show that P(x) = e” for all z € R.

Solution: Let g(z) = ¢*. Since g™+ (t) = ¢! forall t € R, we
have:

gt @) < et ifr >0andt € [0, z]
g™ (t)] < € ifr <Oandt € [z,0]

Thus, by Taylor’s theorem

9(2) = Pa(w)] < et if 7 >0
9(@) ~P(@)] < giglel™ iz <0

where P,(z) = Y1 z'/il is the nth Taylor approximation to g(z)
based at 0. Now by a result proved in class:

x n+1
lim 2 —0
n—oo (n + 1)!

and
n+1
T
n—oo (n + 1)!
Consequently, by the squeeze theorem,

lim |g(z) — Pa(z)[ =0

for all z € R. This statement is equivalent to the statement that
lim P,(z) = g(x)
n—oo

for all x € R. But, by definition, lim,, ., P,(x) = P(z). O
(2) Find a series representation of f(z) = ¢*’. Be sure to carefully
explain why the series you give converges to ¢*~ for all values of x.
Solution: Continue to use the notation from the previous part.
We know that P(x) = g(x) for all z € R. If x € R, then obviously

2? € R. Hence, P(2?) = g(2?) = €*°. That is,

e’ = P(2?) = Zin/z’!
i=0
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(3) Find a series representation of fOQC e!” dt. Be sure to carefully explain

why the series you give converges to foz et” dt for all values of x.
By a theorem discussed in class, integrating (or differentiating)
does not change the radius of convergence of a power series. Con-

sequently:
/etht:/ > t/ildt
0 0 =0

By the same theorem, this equals

2i+1

Z / PI= D G

This last series is the one we are looking for.
(4) Find a series representation of

/Ox <t/0t e ds) dt.

Be sure to explain why the series has the right convergence proper-
ties.

Solution: The reasons are the same as in the previous problem.
Here is the work:

fox (t f(f s ds) dt =
f tZz 0 2t7,2—:—+11 dt =

OO t21+2 o
fO =0 (2i+1) (2i+1)i! dt =

00 2743
D im0 GG
(5) Find a series which represents (on an interval centered at 0) the
function

4 2
@)=

On what interval (centered at 0) does the series represent the func-
tion? (Hint: Begin with a series representing 1/(1 — x).
Solution: We know (by the geometric series test) that for all x €

(_171)
= ;xz




Thus, for all z with —2? € (—1,1) (equivalently, z € (—1,1))

1/(1+ w?’) = Z(—l'd)l — Z(_szsz

Thus,
4x2/(1 + x3) — 42 Z(_Dix&' — 24(_1)ix3i+2'
=0 i=0

(6) Find a series solution to the initial value problem:

f'(x) = f(x)+ f(2)
f0) =1
f10) =1

Solution: Let
f(z) =co+ 1o + cox® + ez’ + . ..
Then,

f(x) = ¢+ 2w+ 3c3x? + dega® + ...
f"(x) = 2c+3-2c3x +4-3cux® +5-desa® + ...

fx)+ f'(x) = (co+c1)+ (c1+2¢)x + (ca + 3ez)x? + (c3 + deq)z® + . ..

Comparing coefficients using the equation f”(z) = f(x) + f'(z)

we have
202 = ¢+
603 = C+ 202
1204 = C+ 303
2065 = c3+ 404

Using the initial conditions we obtain ¢y = 1 and ¢; = 1. Thus,

Ch —= 1
T = 1
Cy = 1
c3 = 1/2
¢ = 5/24
Cy = 1/]_5

That is,
fle)=14z+2>+2°/24 52" /24 +2°/15+ ...

If you want a general recursive formula for the coefficients, notice
that

nn—1)c, = cpo + (n—1)c,1.



Problem B: Graphing functions f: R? — R.

(1) Let f(z,y) = x*y. Draw at least 3 z-slices, at least 3 y-slices, and
at least 3 level sets. Describe with words or pictures the graph in
3-dimensions of this equation.

(2) For x € R?, define f(x) = ||x||. Carefully describe, with words
and pictures the 3-dimensional graph of this equation.

Problem C: Vector Operations

(1) Use the law of cosines to prove that for two vectors a and b in R?,
a-b = |[a|[[b][ cos(0)

where 6 is the (interior) angle between the vectors.
(2) Find the equation of the plane in R? which contains the point (7, —19, 21)
and is perpindicular to the vector (1,4, —3).
Solution: The solutions to the equation

(1,4, -3) - (z,y,2) =0

consist of all vectors perpindicular to the vector (1,4, —3) since the
dot product of two vectors is zero if and only if the vectors are per-
pindicular. Every plane parallel to this plane is also perpindicular to
(1,4, —3) and so the plane asked for in the problem has equation

or equivalently
(x—=T7)+4(y+19) —3(z—21) =0.

(3) Find the equation of the plane in R® which contains the points (1, 4, —1),

(0,3,2),and (—1,1,—1).
Solution: First we find the equation of the plane which contains

the points (0,0,0), (—1,—1,3), and (—2,—3,0). (These points
were obtained from the given points by translating them by — (1,4, —1).)
A normal vector to the plane which contains these points can be ob-
tained by using the cross product: (—1,—1,3) x (—2,—3,0). This
gives the normal vector (9, —6, 1). Thus the equation of the plane
which contains these three points is

9z -6y +2=0

The plane which contains the three given points is obtained by trans-
lating this plane by (1,4, —1). We obtain the equation:

9Yx—1)—6(y —4) + (= + 1).
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(4) Find the area of the parallelogram defined by the vectors (6, —2)
and (—1,8) in R%,

Solution: We put these vectors into the zy plane in R? to obtain
the vectors (6, —2,0) and (—1,8,0). The magnitude of the cross
product is the area of the parallelogram defined by these vectors.
That is, the desired area is

(5) Find the area of the parallelpiped in R? defined by the vectors (1,4, —1),
(0,3,2), and (—1,1,—1). Carefully explain why your calculation
produces the volume of the parallelpiped.

Solution: Let v, w, and u be the three vectors (in the given or-
der). The area of the parallelogram defined by v and w is ||v x w||.
Some trigonometry shows that the height of the parallelogram in
the u direction is ||ul|| cos || where 6 is the angle between u and a
normal vector to the parallelogram defined by v and w. The cross
product v X w is a normal vector to the plane containing v and w
and so the volume of the parallelpiped is

[[v < wl|[[uf[[cos(0)] = |(v x w) - u| = 16.

(6) Find the distance from the point (1,4,7) to the plane defined by
3z — 2y + z = 8. Carefully explain why your calculation produces
the correct answer.

Solution: This is best done with a picture which I won’t include
here. The given plane can be written as

3z —2y+ (2 —8) =0.

It contains the point (0, 0, 8).

We begin by translating the problem so that O is contained in the
plane. Translation does not change distances and so the problem
is equivalent to the problem of finding the distance from the point

(1,4, —1) to the plane P defined by
3r—2y+z2=0.

Let [ be a line segment from the point (1,4, —1) to P which is at
right angles to P. Let 0 be the angle between [ and the line segment
joining (1,4, —1) to 0. The angle @ is the same as the angle between
(1,4,—1) and a normal vector to P which is on the same side of P
as (1,4, —1). The vector (3, —2, 1) is a normal vector to the plane
and so

cost = |(1747 _1) ) (3’ —2, 1)|/(||(1>47 _1)||||(37 -2, 1)” = ﬁ



The length of [ is ||(1,4, —1)||| cos 0] = 6/+/14.

(7) A canoe is in the middle of a portion of the Kennebec river which
faces north-south. The current is moving at 3 mph southward. In
the absence of the current, the wind would blow the canoe at 1 mph
northwest. How fast and in what direction must the canoeists paddle
to stay in the same position?

Solution: Choose a coordinate system so that the canoe is at
(0,0) and so that north is in the direction (1,0). Then the current
c velocity vector is (0,3). The wind velocity vector w has mag-
nitude 1 and is at an angle of 135° from the positive x axis. Thus
w = (—v/2/2,1/2/2). The canoeists must paddle with a velocity
of —(w +¢) = (v/2/2,3 + v/2/2). The magnitude of this vector is
approx 3.77 mph.

Problem D: Limits and Continuity

(1) Suppose that f: R? — R. Carefully state the formal definition of
lim f(x).

Solution:
lim f(x) =L

if and only if for every € > 0, there exists § > 0 such that if ||x —
al| <dthen|f(x)— L| <e.

(2) Let
2

_ Ty
f(x7y)_$3+y3

Show that lim, . f(x) does not exist.
Solution: Notice that

. . . 3 o
o f (z,y) = lim 0/2” = 0.

On the other hand,

lim z,y) = lim 2® /22 = 1/2.
(z,2)—(0,0) f( y) z—0 / /
Since these limits are different, the limit lim,_.¢ f(x) does not exist.
(3) Let

|z 4yl
f(xay)_ _y'

Show that lim, )¢ f(z,y) does not exist (you should assume that
we only consider points (x,y) in the domain of f when calculating
the limit).



Solution: Consider
x
li = lim —.
(x,o)lg%o,o)f(x’w b T

This limit does not exist (it is =1 depending on the sign of x) thus
the requested limit does not exist.
(4) Let

Fle,y) = { T if (2,) # (0,0)
) O . ~

Show that f is not continuous at (0, 0).

Solution: Notice that lim(%o)_)((),()) f(l’, y) = (0 but lim(x,x)_)((),g) f(l’, y) =

1. Since these limits are different, lim,_.¢ f(x) does not exist and
so the f cannot be continuous at (0, 0).

Problem E: Partial and Directional Derivatives

(1) Calculate 0/0x and 0/0y for the following functions:
@) f(z,y) = zey?
(b) f(z,y) = cos(zy)
(©) fla,y) = (a* +y?)e
Solution:

(@) folz,y) = €"y?+ze™y?

(a) fy(z,y) = 2yxe®

(0) fuolz,y) = —ysin(zy)

(¢) fylzx,y) = —xsin(xy)

(¢) folm,y) = (224 y?)2we” V" 4 2™ v
(€) fylzy) = (2% +y?)2ye” " + 2ye”+V

(2) Calculate all second partial derivatives of the following functions
@) f(z,y) =2y
(b) f(z,y) =2°+ 9
Solution:
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fw(zy) = 2

(3) Carefully describe the geometric meaning of the (first) partial deriva-
tives.



Solution: The slope of the tangent line in a y—slice.
(4) Carefully describe the meaning the second partial derivative f,(a, b)
at a point (a, b) € R?.
Solution: f,(a,b) is the slope of the tangent line to the graph of
f in the slice * = a. fy,(a,b) is the rate of change of the slope of
the tangent lines in the z—slices as the x—slices pass through = = a.
(5 Let
2

2y if ( 0.0
_ [ ks if (z,y) 7 (0,0)
o) = {77 i (z.3) = (0.0)
Find f,(0, 0).
Solution: By definition,

O+ R0
1:(0,0) = lim O+ n) +0t im0 = 0.
(6) Let f(x,y) = 2y> + z and v = (1/2,/3/2). Find f,(0,0) using
the formal definition of “directional derivative”.
Solution: By definition,

£2(0,0) = lim %(f(O b ) — F(V).

h—0
Since 0 + hv = (h/2, h\/3/2). Thus,

3h  h

By the formula,

/+(0)

(7) Give a careful description of the geometric meaning of the result
from the previous problem.

Solution: The vector v is at 60° from the x—direction. Thus, if
we sliced the graph of f(x,y) by a plane through (0, 0) at an angle
of 60° and found the slope of the tangent line in that slice passing
through the origin, the slope would be 1/2.

(8) Suppose that v is a unit vector and that f: R? — R is differentiable
at a. Give a thorough, but not necessarily completely rigorous, ex-
planation of why f,(a) = Vf(a) - v.

Solution: Since f(z,y) is differentiable at a, there is a function
L(z,y) whose graph is the tangent plane to f(x,y) at a. Further-
more, L(z,y) is a good approximation to f(z, y). The tangent plane
has the equation

L(z,y) = V[(a) - (x —a) + f(a).

0%(3%13/8 +h/2—0)=1/2.

=1
h—



Thus, for x near a:

f(x) Vf(a)-(x—a)+ f(a)
fx) = f(a) Vf(a)-(x—a)

Choosing x = a + hv we obtain:

fla+hv) = f(a) = Vf(a) - (hv).
Dividing by h we obtain:

Q&

H(fa+ by~ f(@)) ~ Vi(a) v.

As h — 0, this approximation becomes exact, so that

limhﬂo%<f(a+hv)—f(a)> = Vf(a)-v
fola) = Vf(a)-v

(9) Explain the meaning of the direction and magnitude of V f(a) (as-
suming that V f(a) # 0 and that f is differentiable at a).
Solution: The direction is the direction of greatest increase in f.
The magnitude is the amount of the greatest increase of f. (Equiva-
lently, the direction is the direction of maximum rate of change and
the magnitude is the amount of maximum rate of change of f.)
(10) The temperature of a point (z, y) on a metal plate is given by T'(z, y) =
60x/(1 + 22 4+ y?). If an ant is standing at (1, 2) in what direction
should the ant walk (leaving from (1, 2)) to get the coolest quickest?

Solution:
o 60(1+x2+y2)—120x> —120z
VT(QJ,Z/) - (1+:c2y-i-y2)2 7(1+x2+yy2)2>
_ 240 _ 240
VT(1,2) = %f%)

Since VT'(1,2) is the direction of greatest increase in 7', we need to use
—V1T(1,2), the direction of greatest decrease in 7". Thus, the direction of
20 20

greatest decrease in T'is (— 5, 3

Problem F: Tangent Planes

(1) Carefully explain why the function f(z,y) = x* + y? is differen-
tiable at (0, 0).

Solution: The function f(x,y) is differentiable at (0, 0) (by def-
inition) if and only if both partial derivatives exist and the relative
error goes to 0 as (x,y) — (0,0). It is clear that f,(0,0) = 0 and
f4(0,0) = 0 both exist. Then L(x,y) = 0 and so the limit of relative



error is fay)=L(zy)
hm(:c,y)—*(ovo)w N

ling)—~00) s =
lim(xjy)H(O,g) \/ x? + y2 =0
Thus, f(z,y) is differentiable at (0, 0).
(2) Find the equation of the plane tangent to the graph of f(x,y) =
x — y3 at the point (2, 1).
Solution:
L(z,y) = Vf(2,1) (z—-2,y—1)+ f(2,1)
L(z,y) = (1,-3)-(x—2,y—1)+1
L(z,y) = (x—2)—3(y—1)+1
(3) Find the local linearization of the function f(z,y) = z/y at the
point (1, 1).
Solution: The local linearization is the same as the function
whose graph is the tangent plane L(zx,y). Thus,

Liz,y)=(x—1)—(y— 1)+ 1.
(4) Use a theorem discussed in class to show that the function f(z,y) =
x + y is differentiable at (0, 0).
Solution: We have f,(z,y) = 1 and f,(z,y) = 1. These func-
tions are clearly continuous on all of R?. If f(z,y) has continuous

partial derivatives on a disc centered at (0, 0) it is differentiable at
(0,0). Thus, f(z,y) is differentiable at (0, 0).



