
Study Guide/Practice Exam 2 Partial Solutions

This study guide/practice exam is longer and harder than the actual exam.

Problem A: Power Series.

(1) Recall that P (x) =
∑∞

n=0 xn/n!. Analyze error terms of the MacLau-
rin polynomials of ex to show that P (x) = ex for all x ∈ R.

Solution: Let g(x) = ex. Since g(n+1)(t) = et for all t ∈ R, we
have:

|g(n+1)(t)| ≤ ex if x ≥ 0 and t ∈ [0, x]
|gn+1(t)| ≤ e0 if x < 0 and t ∈ [x, 0]

Thus, by Taylor’s theorem

|g(x)− Pn(x)| ≤ ex

(n+1)!
xn+1 if x ≥ 0

|g(x)− Pn(x)| ≤ 1
(n+1)!

|x|n+1 if x < 0

where Pn(x) =
∑n

i=0 xi/i! is the nth Taylor approximation to g(x)
based at 0. Now by a result proved in class:

lim
n→∞

exxn+1

(n + 1)!
= 0

and

lim
n→∞

|x|n+1

(n + 1)!
= 0.

Consequently, by the squeeze theorem,

lim
n→∞

|g(x)− Pn(x)| = 0

for all x ∈ R. This statement is equivalent to the statement that

lim
n→∞

Pn(x) = g(x)

for all x ∈ R. But, by definition, limn→∞ Pn(x) = P (x). �
(2) Find a series representation of f(x) = ex2 . Be sure to carefully

explain why the series you give converges to ex2 for all values of x.
Solution: Continue to use the notation from the previous part.

We know that P (x) = g(x) for all x ∈ R. If x ∈ R, then obviously
x2 ∈ R. Hence, P (x2) = g(x2) = ex2 . That is,

ex2

= P (x2) =
∞∑
i=0

x2i/i!
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(3) Find a series representation of
∫ x

0
et2 dt. Be sure to carefully explain

why the series you give converges to
∫ x

0
et2 dt for all values of x.

By a theorem discussed in class, integrating (or differentiating)
does not change the radius of convergence of a power series. Con-
sequently: ∫ x

0

et2 dt =

∫ x

0

∑
i=0

t2i/i! dt

By the same theorem, this equals
∞∑
i=0

∫ x

0

t2i/i! dt =
∞∑
i=0

x2i+1

(2i + 1)i!
.

This last series is the one we are looking for.
(4) Find a series representation of∫ x

0

(
t

∫ t

0

es2

ds
)

dt.

Be sure to explain why the series has the right convergence proper-
ties.

Solution: The reasons are the same as in the previous problem.
Here is the work: ∫ x

0

(
t
∫ t

0
es2

ds
)

dt =

∫ x

0
t
∑∞

i=0
t2i+1

(2i+1)i!
dt =∫ x

0

∑∞
i=0

t2i+2

(2i+1)i!
dt =

∑∞
i=0

x2i+3

(2i+3)(2i+1)i!

(5) Find a series which represents (on an interval centered at 0) the
function

f(x) =
4x2

1 + x3
.

On what interval (centered at 0) does the series represent the func-
tion? (Hint: Begin with a series representing 1/(1− x).

Solution: We know (by the geometric series test) that for all x ∈
(−1, 1)

1

1− x
=

∞∑
i=0

xi
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Thus, for all x with −x3 ∈ (−1, 1) (equivalently, x ∈ (−1, 1))

1/(1 + x3) =
∞∑
i=0

(−x3)i =
∞∑
i=0

(−1)ix3i

Thus,

4x2/(1 + x3) = 4x2

∞∑
i=0

(−1)ix3i =
∞∑
i=0

4(−1)ix3i+2.

(6) Find a series solution to the initial value problem:

f ′′(x) = f(x) + f ′(x)
f(0) = 1
f ′(0) = 1

Solution: Let

f(x) = c0 + c1x + c2x
2 + c3x

3 + . . .

Then,
f ′(x) = c1 + 2c2x + 3c3x

2 + 4c4x
3 + . . .

f ′′(x) = 2c2 + 3 · 2c3x + 4 · 3c4x
2 + 5 · 4c5x

3 + . . .
f(x) + f ′(x) = (c0 + c1) + (c1 + 2c2)x + (c2 + 3c3)x

2 + (c3 + 4c4)x
3 + . . .

Comparing coefficients using the equation f ′′(x) = f(x) + f ′(x)
we have

2c2 = c0 + c1

6c3 = c1 + 2c2

12c4 = c2 + 3c3

20c5 = c3 + 4c4

. . .

Using the initial conditions we obtain c0 = 1 and c1 = 1. Thus,

c0 = 1
c1 = 1
c2 = 1
c3 = 1/2
c4 = 5/24
c5 = 1/15

. . .

That is,

f(x) = 1 + x + x2 + x3/2 + 5x4/24 + x5/15 + . . .

If you want a general recursive formula for the coefficients, notice
that

n(n− 1)cn = cn−2 + (n− 1)cn−1.
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Problem B: Graphing functions f : R2 → R.

(1) Let f(x, y) = x2y. Draw at least 3 x-slices, at least 3 y-slices, and
at least 3 level sets. Describe with words or pictures the graph in
3-dimensions of this equation.

(2) For x ∈ R2, define f(x) = ||x||. Carefully describe, with words
and pictures the 3-dimensional graph of this equation.

Problem C: Vector Operations

(1) Use the law of cosines to prove that for two vectors a and b in R2,

a · b = ||a||||b|| cos(θ)

where θ is the (interior) angle between the vectors.
(2) Find the equation of the plane in R3 which contains the point (7,−19, 21)

and is perpindicular to the vector (1, 4,−3).
Solution: The solutions to the equation

(1, 4,−3) · (x, y, z) = 0

consist of all vectors perpindicular to the vector (1, 4,−3) since the
dot product of two vectors is zero if and only if the vectors are per-
pindicular. Every plane parallel to this plane is also perpindicular to
(1, 4,−3) and so the plane asked for in the problem has equation

(1, 4,−3) · (x− 7, y + 19, z − 21) = 0

or equivalently

(x− 7) + 4(y + 19)− 3(z − 21) = 0.

(3) Find the equation of the plane in R3 which contains the points (1, 4,−1),
(0, 3, 2), and (−1, 1,−1).

Solution: First we find the equation of the plane which contains
the points (0, 0, 0), (−1,−1, 3), and (−2,−3, 0). (These points
were obtained from the given points by translating them by−(1, 4,−1).)
A normal vector to the plane which contains these points can be ob-
tained by using the cross product: (−1,−1, 3) × (−2,−3, 0). This
gives the normal vector (9,−6, 1). Thus the equation of the plane
which contains these three points is

9x− 6y + z = 0

The plane which contains the three given points is obtained by trans-
lating this plane by (1, 4,−1). We obtain the equation:

9(x− 1)− 6(y − 4) + (z + 1).
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(4) Find the area of the parallelogram defined by the vectors (6,−2)
and (−1, 8) in R2.

Solution: We put these vectors into the xy plane in R3 to obtain
the vectors (6,−2, 0) and (−1, 8, 0). The magnitude of the cross
product is the area of the parallelogram defined by these vectors.
That is, the desired area is

||(6,−2, 0)× (−1, 8, 0)|| = ||(0, 0, 46)|| = 46.

(5) Find the area of the parallelpiped in R3 defined by the vectors (1, 4,−1),
(0, 3, 2), and (−1, 1,−1). Carefully explain why your calculation
produces the volume of the parallelpiped.

Solution: Let v, w, and u be the three vectors (in the given or-
der). The area of the parallelogram defined by v and w is ||v×w||.
Some trigonometry shows that the height of the parallelogram in
the u direction is ||u||| cos θ|| where θ is the angle between u and a
normal vector to the parallelogram defined by v and w. The cross
product v × w is a normal vector to the plane containing v and w
and so the volume of the parallelpiped is

||v ×w||||u||| cos(θ)| = |(v ×w) · u| = 16.

(6) Find the distance from the point (1, 4, 7) to the plane defined by
3x− 2y + z = 8. Carefully explain why your calculation produces
the correct answer.

Solution: This is best done with a picture which I won’t include
here. The given plane can be written as

3x− 2y + (z − 8) = 0.

It contains the point (0, 0, 8).
We begin by translating the problem so that 0 is contained in the

plane. Translation does not change distances and so the problem
is equivalent to the problem of finding the distance from the point
(1, 4,−1) to the plane P defined by

3x− 2y + z = 0.

Let l be a line segment from the point (1, 4,−1) to P which is at
right angles to P . Let θ be the angle between l and the line segment
joining (1, 4,−1) to 0. The angle θ is the same as the angle between
(1, 4,−1) and a normal vector to P which is on the same side of P
as (1, 4,−1). The vector (3,−2, 1) is a normal vector to the plane
and so

cos θ = |(1, 4,−1) · (3,−2, 1)|/(||(1, 4,−1)||||(3,−2, 1)|| = 6√
18
√

14
.
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The length of l is ||(1, 4,−1)||| cos θ| = 6/
√

14.
(7) A canoe is in the middle of a portion of the Kennebec river which

faces north-south. The current is moving at 3 mph southward. In
the absence of the current, the wind would blow the canoe at 1 mph
northwest. How fast and in what direction must the canoeists paddle
to stay in the same position?

Solution: Choose a coordinate system so that the canoe is at
(0, 0) and so that north is in the direction (1, 0). Then the current
c velocity vector is (0, 3). The wind velocity vector w has mag-
nitude 1 and is at an angle of 135◦ from the positive x axis. Thus
w = (−

√
2/2,

√
2/2). The canoeists must paddle with a velocity

of −(w + c) = (
√

2/2, 3 +
√

2/2). The magnitude of this vector is
approx 3.77 mph.

Problem D: Limits and Continuity

(1) Suppose that f : R2 → R. Carefully state the formal definition of

lim
x→a

f(x).

Solution:
lim
x→a

f(x) = L

if and only if for every ε > 0, there exists δ > 0 such that if ||x −
a|| < δ then |f(x)− L| < ε.

(2) Let

f(x, y) =
x2y

x3 + y3
.

Show that limx→0 f(x) does not exist.
Solution: Notice that

lim
(x,0)→(0,0)

f(x, y) = lim
x→0

0/x3 = 0.

On the other hand,

lim
(x,x)→(0,0)

f(x, y) = lim
x→0

x3/2x3 = 1/2.

Since these limits are different, the limit limx→0 f(x) does not exist.
(3) Let

f(x, y) =
|x + y|
x− y

.

Show that lim(x,y)→0 f(x, y) does not exist (you should assume that
we only consider points (x, y) in the domain of f when calculating
the limit).
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Solution: Consider

lim
(x,0)→(0,0)

f(x, y) = lim
x→0

|x|
x

.

This limit does not exist (it is ±1 depending on the sign of x) thus
the requested limit does not exist.

(4) Let

f(x, y) =
{ xy

x2−xy+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Show that f is not continuous at (0, 0).
Solution: Notice that lim(x,0)→(0,0) f(x, y) = 0 but lim(x,x)→(0,0) f(x, y) =

1. Since these limits are different, limx→0 f(x) does not exist and
so the f cannot be continuous at (0, 0).

Problem E: Partial and Directional Derivatives

(1) Calculate ∂/∂x and ∂/∂y for the following functions:
(a) f(x, y) = xexy2

(b) f(x, y) = cos(xy)

(c) f(x, y) = (x2 + y2)ex2+y2

Solution:
(a) fx(x, y) = exy2 + xexy2

(a) fy(x, y) = 2yxex

(b) fx(x, y) = −y sin(xy)
(c) fy(x, y) = −x sin(xy)

(c) fx(x, y) = (x2 + y2)2xex2+y2
+ 2xex2+y2

(c) fy(x, y) = (x2 + y2)2yex2+y2
+ 2yex2+y2

(2) Calculate all second partial derivatives of the following functions
(a) f(x, y) = x3y2

(b) f(x, y) = x3 + y2.
Solution:

(a) fxx(x, y) = 6xy2

(a) fxy(x, y) = 6x2y
(a) fyx(x, y) = 6yx2

(a) fyy(x, y) = 2x3

(b) fxx(x, y) = 6x
(b) fxy(x, y) = 0
(b) fyx(x, y) = 0
(b) fyy(x, y) = 2

(3) Carefully describe the geometric meaning of the (first) partial deriva-
tives.
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Solution: The slope of the tangent line in a y–slice.
(4) Carefully describe the meaning the second partial derivative fxy(a, b)

at a point (a, b) ∈ R2.
Solution: fy(a, b) is the slope of the tangent line to the graph of

f in the slice x = a. fxy(a, b) is the rate of change of the slope of
the tangent lines in the x–slices as the x–slices pass through x = a.

(5) Let

f(x, y) =
{ x2y2

x4+y4 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
.

Find fx(0, 0).
Solution: By definition,

fx(0, 0) = lim
h→0

(0 + h)2(0)2

(0 + h)4 + 04
= lim

h→0
0 = 0.

(6) Let f(x, y) = xy2 + x and v = (1/2,
√

3/2). Find fv(0, 0) using
the formal definition of “directional derivative”.

Solution: By definition,

fv(0, 0) = lim
h→0

1

h
(f(0 + hv)− f(v)).

Since 0 + hv = (h/2, h
√

3/2). Thus,

f(0 + hv) =
3h3

8
+

h

2
.

By the formula,

fv(0) = lim
h→0

1

h
(3h3/8 + h/2− 0) = 1/2.

(7) Give a careful description of the geometric meaning of the result
from the previous problem.

Solution: The vector v is at 60◦ from the x–direction. Thus, if
we sliced the graph of f(x, y) by a plane through (0, 0) at an angle
of 60◦ and found the slope of the tangent line in that slice passing
through the origin, the slope would be 1/2.

(8) Suppose that v is a unit vector and that f : R2 → R is differentiable
at a. Give a thorough, but not necessarily completely rigorous, ex-
planation of why fv(a) = ∇f(a) · v.

Solution: Since f(x, y) is differentiable at a, there is a function
L(x, y) whose graph is the tangent plane to f(x, y) at a. Further-
more, L(x, y) is a good approximation to f(x, y). The tangent plane
has the equation

L(x, y) = ∇f(a) · (x− a) + f(a).
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Thus, for x near a:

f(x) ≈ ∇f(a) · (x− a) + f(a)
f(x)− f(a) ≈ ∇f(a) · (x− a)

Choosing x = a + hv we obtain:

f(a + hv)− f(a) ≈ ∇f(a) · (hv).

Dividing by h we obtain:

1

h

(
f(a + hv − f(a)

)
≈ ∇f(a) · v.

As h → 0, this approximation becomes exact, so that

limh→0
1
h

(
f(a + hv)− f(a)

)
= ∇f(a) · v

fv(a) = ∇f(a) · v

(9) Explain the meaning of the direction and magnitude of ∇f(a) (as-
suming that ∇f(a) 6= 0 and that f is differentiable at a).

Solution: The direction is the direction of greatest increase in f .
The magnitude is the amount of the greatest increase of f . (Equiva-
lently, the direction is the direction of maximum rate of change and
the magnitude is the amount of maximum rate of change of f .)

(10) The temperature of a point (x, y) on a metal plate is given by T (x, y) =
60x/(1 + x2 + y2). If an ant is standing at (1, 2) in what direction
should the ant walk (leaving from (1, 2)) to get the coolest quickest?

Solution:

∇T (x, y) =
(

60(1+x2+y2)−120x2

(1+x2+y2)2
, −120xy

(1+x2+y2)2

)
∇T (1, 2) =

(
240
36

,−240
36

)
Since ∇T (1, 2) is the direction of greatest increase in T , we need to use
−∇T (1, 2), the direction of greatest decrease in T . Thus, the direction of
greatest decrease in T is (−20

3
, 20

3
).

Problem F: Tangent Planes

(1) Carefully explain why the function f(x, y) = x2 + y2 is differen-
tiable at (0, 0).

Solution: The function f(x, y) is differentiable at (0, 0) (by def-
inition) if and only if both partial derivatives exist and the relative
error goes to 0 as (x, y) → (0, 0). It is clear that fx(0, 0) = 0 and
fy(0, 0) = 0 both exist. Then L(x, y) = 0 and so the limit of relative
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error is
lim(x,y)→(0,0)

f(x,y)−L(x,y)
||(x,y)−(0,0)|| =

lim(x,y)→(0,0)
x2+y2√
x2+y2

=

lim(x,y)→(0,0)

√
x2 + y2 = 0

Thus, f(x, y) is differentiable at (0, 0).
(2) Find the equation of the plane tangent to the graph of f(x, y) =

x− y3 at the point (2, 1).
Solution:

L(x, y) = ∇f(2, 1) · (x− 2, y − 1) + f(2, 1)
L(x, y) = (1,−3) · (x− 2, y − 1) + 1
L(x, y) = (x− 2)− 3(y − 1) + 1

(3) Find the local linearization of the function f(x, y) = x/y at the
point (1, 1).

Solution: The local linearization is the same as the function
whose graph is the tangent plane L(x, y). Thus,

L(x, y) = (x− 1)− (y − 1) + 1.

(4) Use a theorem discussed in class to show that the function f(x, y) =
x + y is differentiable at (0, 0).

Solution: We have fx(x, y) = 1 and fy(x, y) = 1. These func-
tions are clearly continuous on all of R2. If f(x, y) has continuous
partial derivatives on a disc centered at (0, 0) it is differentiable at
(0, 0). Thus, f(x, y) is differentiable at (0, 0).


