Study Guide/Practice Exam 2

This study guide/practice exam is longer and harder than the actual exam.

Problem A: Power Series.

- (1) Recall that $P(x) = \sum_{n=0}^{\infty} x^n / n!$. Analyze error terms of the MacLaurin polynomials of e^x to show that $P(x) = e^x$ for all $x \in \mathbb{R}$.
- (2) Find a series representation of $f(x) = e^{x^2}$. Be sure to carefully explain why the series you give converges to e^{x^2} for all values of x.
- (3) Find a series representation of $\int_0^x e^{t^2} dt$. Be sure to carefully explain why the series you give converges to $\int_0^x e^{t^2} dt$ for all values of x.
- (4) Find a series representation of

$$\int_0^x \left(t \int_0^t e^{s^2} \, ds \right) dt.$$

Be sure to explain why the series has the right convergence properties.

(5) Find a series which represents (on an interval centered at 0) the function

$$f(x) = \frac{4x^2}{1+x^3}$$

On what interval (centered at 0) does the series represent the function? (Hint: Begin with a series representing 1/(1-x).

(6) Find a series solution to the initial value problem:

$$\begin{array}{rcl}
f''(x) &=& f(x) + f'(x) \\
f(0) &=& 1 \\
f'(0) &=& 1
\end{array}$$

Problem B: Graphing functions $f: \mathbb{R}^2 \to \mathbb{R}$.

- (1) Let $f(x, y) = x^2 y$. Draw at least 3 *x*-slices, at least 3 *y*-slices, and at least 3 level sets. Describe with words or pictures the graph in 3-dimensions of this equation.
- (2) For $\mathbf{x} \in \mathbb{R}^2$, define $f(\mathbf{x}) = ||\mathbf{x}||$. Carefully describe, with words and pictures the 3-dimensional graph of this equation.

Problem C: Vector Operations

(1) Use the law of cosines to prove that for two vectors **a** and **b** in \mathbb{R}^2 ,

$$\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}||||\mathbf{b}||\cos(\theta)$$

where θ is the (interior) angle between the vectors.

- (2) Find the equation of the plane in \mathbb{R}^3 which contains the point (7, -19, 21) and is perpindicular to the vector (1, 4, -3).
- (3) Find the equation of the plane in \mathbb{R}^3 which contains the points (1, 4, -1), (0, 3, 2), and (-1, 1, -1).
- (4) Find the area of the parallelogram defined by the vectors (6, -2) and (-1, 8) in \mathbb{R}^2 .
- (5) Find the area of the parallelpiped in ℝ³ defined by the vectors (1, 4, -1), (0, 3, 2), and (-1, 1, -1). Carefully explain why your calculation produces the volume of the parallelpiped.
- (6) Find the distance from the point (1, 4, 7) to the plane defined by 3x 2y + z = 8. Carefully explain why your calculation produces the correct answer.
- (7) A canoe is in the middle of a portion of the Kennebec river which faces north-south. The current is moving at 3 mph southward. In the absence of the current, the wind would blow the canoe at 1 mph northwest. How fast and in what direction must the canoeists paddle to stay in the same position?

Problem D: Limits and Continuity

(1) Suppose that $f: \mathbb{R}^2 \to \mathbb{R}$. Carefully state the formal definition of

$$\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x}).$$

(2) Let

$$f(x,y) = \frac{x^2y}{x^3 + y^3}.$$

Show that $\lim_{x\to 0} f(x)$ does not exist

(3) Let

$$f(x,y) = \frac{|x+y|}{x-y}$$

Show that $\lim_{(x,y)\to 0} f(x,y)$ does not exist (you should assume that we only consider points (x, y) in the domain of f when calculating the limit).

(4) Let

$$f(x,y) = \begin{cases} \frac{xy}{x^2 - xy + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that f is not continuous at (0, 0).

Problem E: Partial and Directional Derivatives

(1) Calculate ∂/∂x and ∂/∂y for the following functions:
(a) f(x, y) = xe^xy²

(b) $f(x,y) = \cos(xy)$

(c)
$$f(x,y) = (x^2 + y^2)e^{x^2 + y^2}$$

- (2) Calculate all second partial derivatives of the following functions
 (a) f(x, y) = x³y²
 (b) f(x, y) = x³ + y².
 - $\int (x, y) = x + y$
- (3) Carefully describe the geometric meaning of the (first) partial derivatives.
- (4) Carefully describe the meaning the second partial derivative $f_{xy}(a, b)$ at a point $(a, b) \in \mathbb{R}^2$.
- (5) Let

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{x^4 + y^4} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Find $f_x(0, 0)$.

- (6) Let $f(x, y) = xy^2 + x$ and $\mathbf{v} = (1/2, \sqrt{3}/2)$. Find $f_{\mathbf{v}}(0, 0)$ using the formal definition of "directional derivative".
- (7) Give a careful description of the geometric meaning of the result from the previous problem.
- (8) Suppose that v is a unit vector and that f: ℝ² → ℝ is differentiable at a. Give a thorough, but not necessarily completely rigorous, explanation of why f_v(a) = ∇f(a) · v.
- (9) Explain the meaning of the direction and magnitude of $\nabla f(\mathbf{a})$ (assuming that $\nabla f(\mathbf{a}) \neq 0$ and that f is differentiable at \mathbf{a}).
- (10) The temperature of a point (x, y) on a metal plate is given by $T(x, y) = \frac{60x}{(1 + x^2 + y^2)}$. If an ant is standing at (1, 2) in what direction should the ant walk (leaving from (1, 2)) to get the coolest quickest?

Problem F: Tangent Planes

- (1) Carefully explain why the function $f(x, y) = x^2 + y^2$ is differentiable at (0, 0).
- (2) Find the equation of the plane tangent to the graph of $f(x, y) = x y^3$ at the point (2, 1).
- (3) Find the local linearization of the function f(x, y) = x/y at the point (1, 1).
- (4) Use a theorem discussed in class to show that the function f(x, y) = x + y is differentiable at (0, 0).