
Partial Solutions to Study Guide/Practice Exam 1

These solutions are intended to help you check your work. In general, you
should provide more detail and explanation for your answers than is pro-
vided here.

Problem 1: Know the general formula for the nth Taylor approximation
to a differentiable function f based at x = a.

Problem 2: Know the formulae for the nth MacLaurin polynomials for
the functions ln(1 + x), and ex.

Problem 3: Find the formula for the 2n + 1st MacLaurin polynomial for
sin(x)

Solution: Let f(x) = sin(x). The first few derivatives of f are

f(x) = sin(x)
f ′(x) = cos(x)
f ′′(x) = − sin(x)
f ′′′(x) = − cos(x)
f iv(x) = sin(x)

and the other derivatives repeat in a similar fashion. Thus, f (n)(0) = 0
whenever n is even. Consequently

P2n+1(x) = x− x3

3!
+

x5

5!
− . . . +

(−1)nx2n+1

(2n + 1)!
.

In summation notation this is:

P2n+1(x) =
2n+1∑
i=0

(−1)ix2i+1

(2i + 1)!
.

Problem 4: Find the formula for the 2nth MacLaurin polynomial for
cos(x).

Problem 5: What is the nth Taylor polynomial Pn(x) for the function
f(x) = 1

x2 based at a = −1?

Solution: Here are the first few derivatives of f(x):

f(x) = 1/x2

f ′(x) = −2/x3

f ′′(x) = 6/x4

In general,
f (n)(x) = (−1)n−1(n + 1)!/xn+2
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So at x = −1, we have:
f(−1) = 1
f ′(−1) = 2
f ′′(−1) = 6
f (n)(−1) = (n + 1)!

Thus,

Pn(x) = 1 + 2(x + 1) + 3(x + 1)2 + 4(x + 1)3 + . . . + (n + 1)(x + 1)n.

Problem 6: What is the 3rd MacLaurin polynomial P3(x) for the function
f(x) = sin(x2)?

Solution: Here are the first 3 derivatives:
f(x) = sin(x2)
f ′(x) = 2x cos(x2)
f ′′(x) = −4x2 sin(x2) + 2 cos(x2)
f ′′′(x) = −8x3 cos(x2)− 8x sin(x2)− 4x sin(x2)

Thus, at x = 0:
f(0) = 0
f ′(0) = 0
f ′′(0) = 2
f ′′′(0) = 0

Thus,
P3(x) = x2.

Problem 7: Find an upper bound on the absolute value of the error of
P4(x) for x ∈ [1, 2] if f(x) = 1

x2 . (See problem 5.)

Solution: Since we will use Taylor’s theorem, we need to find an M , so
that

|f (5)(t)| ≤M for all t ∈ [1, 2].

By our formula from problem 5:

|f (5)(t)| = 6!/|t|7

The function 6!/|t|7 is a decreasing function for t ≥ 0, and so its maximum
on [1,2] occurs when t = 1. Thus,

|f (5)(t)| = 6!/|t|7 ≤ 6!

Consequently, by the theorem,

|f(x)− P4(x)| ≤ 6!

5!
|x + 1|5 = 6|x + 1|5

for x ∈ [1, 2].
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Problem 8: Find an upperbound on the absolute value of the error of P3(x)
for x ∈ [0, 1] if f(x) = sin(x2). (See problem 6)

Solution: We need the 4th derivative of f(x). In problem 6, we found the
third derivative. Thus,

f (4)(x) = 16x4 sin(x2)− 24x2 cos(x2)− 8 sin(x2 − 16x2 cos(x2)− 4 sin(x2)− 8x2 cos(x2)
= 16x4 sin(x2)− 12 sin(x2)− 48x2 cos(x2)

The functions sine and cosine have maximum and minimum values of ±1.
Thus (keeping in mind that cos(t2) may be negative when sin(t2) is positive)
we have

|f (4)(t)| ≤ |16t4 − 12|+ 48t2 ≤ 16t4 + 12 + 48t2

If t ∈ [0, 1], then |f (4)(t)| ≤ 16 + 12 + 48 = 76.

Thus,

|f(x)− P3(x)| ≤ 76

4!
|x|4 ≤ 76/24.

Problem 9: This problem is designed to test your understanding of Tay-
lor’s theorem on the error bound of Taylor polynomials. You may not di-
rectly use that result in your answer to this problem.

Suppose that f(x) is an infinitely differentiable function so that f ′′(t) ≤ 12
for t ≥ 0. Show that f(x) − P1(x) ≤ 6x2 where P1(x) is the tangent line
approximation to f(x) based at x = 0.

Solution: Since f ′′ and f ′ are continuous, we may use the fundamental
theorem of Calculus. Hence:

f ′′(t) ≤ 12∫ x

0
f ′′(t) dt ≤

∫ x

0
12 dt

f ′(t)|x0 ≤ 12t|x0
f ′(x)− f ′(0) ≤ 12x∫ x

0
f ′(t)− f ′(0) dt ≤

∫ x

0
12t dt

f(t)− f ′(0)t|x0 ≤ 6t2|x0
f(x)− f ′(0)x− f(0) ≤ 6x2

f(x)− (f(0) + f ′(0)x) ≤ 6x2

f(x)− P1(x) ≤ 6x2

Problem 10: Let c ∈ [−1, 1] be a fixed real number. Show that

lim
n→∞

| sin(c)− P2n+1(c)| = 0

where P2n+1(x) is the nth MacLaurin polynomial of sin(x).
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Solution: Let f(x) = sin(x). Then since 2n + 2 is an even number, for all
t ∈ R:

|f 2n+2(t)| = | sin(t)| ≤ 1.

Hence, by Taylor’s theorem:

|f(c)− P2n+1(c)| ≤
1

(2n + 2)!
|c|2n+2 ≤ 1

(2n + 2)!
.

The last inequality is true because |c| ≤ 1. Since

lim
n→∞

1

(2n + 2)!
= 0,

and since,

0 ≤ |f(c)− P2n+1(c)| ≤
1

(2n + 2)!

by the squeeze theorem:

lim
n→∞

|f(c)− P2n+1(c)| = 0.

Problem 11: A certain infinitely differentiable function satisfies

|f (n)(t)| ≤ (n− 1)2|t|
for all t ∈ R and for all n ≥ 2. Let En(x) denote the error of the nth Taylor
approximation to f(x) based at x = 1. Find a number n, so that

|En(2)| ≤ .01.

Solution: Notice that
|f (n+1)(t)| ≤ n2|x|

for all t ∈ [1, x]. By Taylor’s theorem

|f(x)− Pn(x)| ≤ n2|x|
(n + 1)!

|x− 1|n+1

Thus, if x = 2,

|f(x)− Pn(x)| ≤ 2n2

(n + 1)!

Now, for n ≥ 3,
2n2

(n + 1)n(n− 1)(n− 2)!
≤ 2

(n− 2)!
≤ 2

n− 2
.

Thus, if
2

n− 2
≤ .01

then
|f(x)− Pn(x)| ≤ .01
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Now,
2

n− 2
≤ .01 ⇔ 202 ≤ n.

Thus, if n ≥ 202, then |f(x)− Pn(x)| ≤ .01.

Problem 11: Carefully state the ε definition of the limit of a sequence (an).

Solution: The sequence (an) converges to a number L if, for each ε > 0,
there exists a number N such that whenever n ≥ N , then

|an − L| < ε.

Problem 12: Use the ε definition of limit, to prove that

lim
n→∞

1

ln(n)
= 0.

Solution: Let ε be given. Then∣∣∣ 1

ln(n)
− 0

∣∣∣ =
1

ln(n)
.

Notice,
1

ln(n)
≤ ε ⇔ e1/ε ≤ n.

Thus, if n ≥ e1/ε then |1/ ln(n)− 0| ≤ ε.

Problem 13: Let a1 = 1 and for n ≥ 2, define an = ln(1 + an−1). Prove
that (an) converges.

Solution: First we show that (an) is an decreasing sequence.

Notice that a1 = 1 and a2 = ln(2) < 1. So a2 < a1. Now consider:

an+1 < an ⇔
ln(1 + an) < ln(1 + an−1) ⇔

1 + an < 1 + an−1 (since ln is increasing ⇔
an < an−1

Continuing in this manner we see that

an+1 < an ⇔ a2 < a1.

We know this latter inequality to be true, so an+1 < an for all n.
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Next we show that (an) is bounded. Consider:

an < 1 ⇔
ln(1 + an−1) < 1 ⇔

an−1 < e− 1 ⇔
ln(1 + an−2) < ee−1 − 1 ⇔

. . .

Eventually we will end up with

a1 < C

where C is some number formed by starting with 1 and repeatedly applying
the exponential function and subtracting 1. Notice that ex > 1 if x > 1
and so the number C is bigger than 1. Thus, a1 < c and we conclude that
an < 1 for all n.

Since each an is non-negative and less than 1, the sequence (an) is an in-
creasing, bounded sequence. Therefore, (an) converges.

Problem 14: Suppose that for all i, 0 ≤ ai ≤ bi. Prove that if
∑∞

i=1 bi

converges, then
∑∞

i=1 ai converges.

Problem 15: Suppose that |r| 6= 1 and that a 6= 0. Prove that the geometric
series

∞∑
i=0

ari

converges if and only if |r| < 1.

Problem 16: Carefully explain why the sequence
∑∞

i=0
1
i!

converges to e.

Solution:

Let f(x) = ex. Since f (n)(x) = ex for all n, by Taylor’s theorem

|f(x)− Pn(x)| ≤ ex

(n + 1)!
xn+1

for all x ≥ 0. If x = 1 we have:

|f(1)− Pn(1)| ≤ e

(n + 1)!

As n→∞, e
(n+1)!

→∞. Consequently,

lim
n→∞

|f(1)− Pn(1)| = 0.

This means that eventually all terms of the sequence (Pn(1)) are arbitrarily
close to 0. Thus,

lim
n→∞

Pn(1) = f(1) = e
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By definition,
∞∑
i=0

1

i!
= lim

n→∞

n∑
i=0

1

i!

We also know,

Pn(1) =
n∑

i=0

1

i!
.

Thus,
∞∑
i=0

1

i!
= lim

n→infty
Pn(1) = e.

Problem 17: Find
∞∑
i=0

(−1)i

(2i + 1)!
= 1− 1

6
+

1

5!
− . . .

Be sure to thoroughly explain your answer.

(Hint: Consider the 2n + 1st MacLaurin polynomial for sin(x) evaluated at
x = 1.)

Solution: The 2n+1st MacLaurin polynomial for sin(x) evaluated at x = 1
is:

P2n+1(1) =
2n+1∑
i=0

(−1)i

(2i + 1)!
.

In an earlier problem we showed that

lim
n→∞

| sin(1)− P2n+1(1)| = 0.

This is the same as saying that

lim
n→∞

Pn(1) = sin(1).

Then,
∞∑
i=0

(−1)i

(2i + 1)!
= lim

n→∞

n∑
i=0

(−1)i

(2i + 1)!
= lim

n→∞
Pn(1) = sin(1).

Problem 18: For each of the following series, determine if they converge
or diverge. Be sure to provide a thorough explanation for each.

The following are hints: not complete solutions

(1)
∑∞

i=1 1/i
Solution: Diverges by the integral test.
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(2)
∑∞

i=1 1/i2

Solution: Converges by the integral test.
(3)

∑∞
i=0

3
5i

Solution: It is a geometric series and it converges.
(4)

∑∞
i=0

3i

5i

Solution: It is a geometric series and it converges.
(5)

∑∞
i=1

3i

5ii!
Solution: Use a comparison test with the previous series.

(6)
∑∞

n=1
3

n2−5

Solution: Use the integral test to see that
∞∑

n=3

3

n2 − t

converges. Or use a comparison test using the fact that n2 − 5 ≥
(n− 1)2 for n ≥ 3.

(7)
∑∞

n=1
2

3i+4i

Solution: Use the comparison test and compare to a geometric
series.

(8)
∑∞

n=1
(−1)n
√

n

Solution: Use the alternating series test.
(9)

∑∞
n=1

nn

n!
.

Solution: Use the ration test:

(n + 1)(n+1)(n + 1)!

nnn!
= (n+1)

((n + 1)

n

)n (n + 1)!

n!
= (n+1)2

((n + 1)

n

)n

As n→∞ this also heads to∞.

Problem 19: For what values of x do the following series converge?

(1)
∑∞

n=1(3x)n

Solution: Converges if |3x| < 1. Hence, converges if |x| < 1/3.
(Geometric Series)

(2)
∑∞

n=1
3

xn

Solution: Use the ratio test to discover that if
1

|x|
< 1 ⇔ |x| > 1

then the series converges and if

1

|x|
> 1 ⇔ |x| < 1

then the series diverges.
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If x = 1, then
∞∑

n=1

3

xn
=

∞∑
n=1

3

which diverges.
If x = −1 then

∞∑
n=1

3

(−1)n
= −3 + 3− 3 + 3− . . .

which also diverges.
Thus, the series if and only if |x| > 1.

(3)
∑∞

n=1 nn(x− 3)n

Solution: Use the ratio test. The series diverges if

lim
n→∞

(n + 1)(n+1)

nn
|x− 3| > 1

But
(n + 1)(n+1)

nn
|x− 3| = (n + 1)

(n + 1

n
)n|x− 3|

which heads to ∞ as n → ∞ unless x = 3. Thus the series con-
verges if and only if x = 3.

(4)
∑∞

n=1
(−1)n(x−3)n

n
Converges if and only if 2 < x ≤ 3.

(5)
∑∞

n=1
n
xn .

Solution: Converges if and only if |x| > 1.


