
MA 253: Practice Exam 2

You may not use a graphing calculator, computer, textbook, notes, or refer
to other people (except the instructor). Show all of your work; your work
is your answer.

Problem 1: Prove or Disprove: The set of 2× 2 matrices with determinant
0 form a vector subspace ofM2. (M2 is the vector space of all 2×2 matrices.

Answer: It is not a vector subspace. Consider the matrices
[
1 0
0 0

]
and[

0 0
0 1

]
. They each have determinant zero, but adding them produces the

identity matrix which has determinant 1. Thus the set is not closed under
addition and so cannot be a vector subspace.

Problem 2: Prove or Disprove: The set of 2×2 matrices with trace 0 form
a vector subspace of M2.

Answer: Suppose that A =

[
a1 a2

a3 a4

]
and B =

[
b1 b2
b3 b4

]
both have trace

zero. Let α and β be real numbers. Then

trace(αA+βB) = trace

([
αa1 + βb1 αa2 + βb2
αa3 + βb3 αa4 + βb4

])
= αa1+βb1+αa4+βb4.

This can be rewritten as α(a1 + a4) + β(b1 + b4). Since both A and B have
trace zero, a1+a4 = 0 and b1+b4 = 0. Consequently, trace(αA+βB) = 0.
Hence, the set is closed under linear combinations and so is a subspace.

Problem 3: Prove or Disprove: The set of all functions f : N → R form
a vector space. (That is, functions from the natural numbers to the real
numbers.)

Answer: We will prove that this set, let’s call it N is a vector space. If f
and g are two functions from N to R, then f+g is defined to be the function
such that (f + g)(x) = f(x) + g(x) for all x ∈ N. If k ∈ R, the function
kf is defined to be the function such that (kf)(x) = kf(x). The fact that
addition is associative and commutative follows immediately from the fact
that addition of real numbers is associative and commutative. The neutral
element is the zero function Z(x) = 0 for all x ∈ N. If f is in N , then
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−f is the function (−1)f . Suppose that f, g ∈ N and that k ∈ R. Then
k(f + g)(x) = k(f(x) + g(x)) = kf(x) + kg(x) = (kf + kg)(x). Hence,
k(f + g) = kf + kg. Similarly, If k, l ∈ R then (k + l)f(x) = kf(x) +
lf(x) = (kf)(x) + (lf)(x) = (kf + lf)(x). Hence, (k + l)f = kf + kl.
Also, (kl)(f)(x) = klf(x) = (klf)(x) and 1f(x) = f(x) so 1f = f . �

Problem 4: Let B denote the set of all biinfinite sequences (. . . , a−2, a−1, a0, a1, a2, . . .).
Recall that B is a vector space. For

a = (. . . , a−2, a−1, a0, a1, a2, . . .)

define
R(a) = (. . . , a2, a1, a0, a−1, a−2, . . .).

(That is, Ra) is obtained by “reflecting” a about the term a0.)

(i) Prove that R : B → B is a linear transformation. Is it an isomor-
phism?

Answer: Let a = (. . . , a−2, a−1, a0, a1, a2, . . .) and b = (. . . , b−2, b−1, b0, b1, b2, . . .)
and let k, l ∈ R. Then

R(ka+lb) = R(. . . , ka−1+lb−1, ka0+lb0, ka1+lb1, . . .) = (. . . , ka1+lb1, ka0+lb0, ka−1+lb−1, . . .) = kR(a)+lR(b).

(ii) Prove that
W = {a ∈ B : R(a) = a}

is a vector subspace of B. W is the set of “palindromes”.
Answer: Notice that (. . . , 0, 0, 0, . . .) ∈ W and that if a,b ∈ W

then since we add them term by term, a + b ∈ W . Similarly, if
k ∈ R, then to calculate ka we take k times each entry in a, thus if
a ∈ W then ka ∈ W . Thus, W is a subspace.

(iii) Find an eigenvalue and eigenvector for R. (i.e. find an x and a
λ ∈ R so that R(x) = λx.

Answer: Consider the vector a = (. . . , 1, 1, 17, 1, 1, . . .) where
the 17 is in the a0 spot. Then a is a palindrome, so R(a) = a.
Hence, a is an eigenvector and is associated to the eigenvalue 1.

(iv) Find a linear transformation T : B→ B such that W = kerT .
Answer: Let T (a) = R(a) − a. This is the difference of two

linear transformations and so is a linear transformation. The kernel
of T is those vectors such that R(a) = a. In other words, W .

Problem 5: Let P3 denote the set of polynomials of degree three or less.
Let I(ax3 + bx2 + cx+ d) =

∫ x

0
bx2 + cx+ d dt.

(i) Show that {x3 − x2 + x − 1, x3 − x2, x2 − x, x + 1} is a basis for
P3.
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Answer: Notice that all the elements, except the first two, of the
purported basis have different degrees. Thus, we need only check
that the first two are not multiples of each other. This is obvious.
Hence, the polynomials are linearly independent. P3 is a vector
space of dimension 4, and so they must also span P3. Hence, they
form a basis.

(ii) Show that I : P3 → P3 is a linear transformation.
Answer: Recall that the definite integral is linear. Let P : P3 →
P3 be the projection defined by dropping the x3 term from the poly-
nomial. (So that the image of P is P2 ⊂ P3. The function I is the
composition of the definite integral and the projection P . The com-
position of two linear transformations is linear and so I is linear.
Alternatively, you can prove this directly using the formula for I .

(iii) Calculate ker I .
Answer: Notice that

I(ax3 + bx2 + cx+ d) = (b/3)x3 + (c/2)x2 + dx.

Thus, I(f) = 0 if and only if f(x) = ax3. Thus, ker(f) = {ax3 :
a ∈ R}.

(iv) Write down a matrix for I with respect to the basis in part (i).
Answer: This requires more work and there are at least two ways

to do it. Here is a way that requires minimal effort. Consider the
basis B = {x3, x2, x, 1} for P3. With respect to B, I has the matrix

[I]B =


0 1/3 0 0
0 0 1/2 0
0 0 0 1
0 0 0 0

 .
The change of basis matrix that takes the basis from part (i) to B is

S =


1 1 0 0
−1 −1 1 0
1 0 −1 1
−1 0 0 1


Thus the matrix of I with respect to the basis from part (i) is

S−1[I]BS.

Problem 6: Prove that the determinant of an upper triangular matrix is the
product of its diagonal entries.

Answer: We prove this by induction on n, where the matrix under consid-
eration is size n× n. For n = 1, the statement is obvious. Suppose that the
statement is true for matrices of size n× n. We will show that it is true for
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matrics of size (n + 1) × (n + 1). Let A be an (n + 1) × (n + 1) matrix
and denote the entry in row i and column j by aij . We want to show that
detA =

∏
1≤i≤n aii. To calculate detA we use LaPlace expansion down

the first column. The only non-zero entry in this column is a11. So

detA = a11 det(A11)

where A11 is the matrix obtained from A by removing the first row and
column. A11 is an upper triangular matrix of size n×n. So by our induction
assumption,

detA11 =
∏

2≤i≤n

aii.

Hence,
detA = a11

∏
2≤i≤n

aii =
∏

1≤i≤n

aii.

�

Problem 7: Calculate the following determinant:

det


2 −1 0 3
−1 2 3 0
3 0 2 −1
0 3 2 −1


Answer: -72.

Problem 8: Find eigenvectors and eigenvalues for the following matrices.

(i) [
2 −1
−1 1

]
Answer: The eigenvalues are λ1 = 3−

√
5

2
and λ2 = 3+

√
5

2
. The

eigenvectors v1 and v2 corresponding to λ1 and λ2, respectively are
v1 = (1, 2 − 3−

√
5

2
) and v2 = (1, 2 − 3+

√
5

2
). (Remember that any

multiple of an eigenvector is an eigenvector and so you may have
differently looking eigenvectors.)

(ii)  1 −1 −2
−1 2 −1
1 1 4


Answer: The eigenvalues are λ = 2 (with multiplicity 2) and

λ = 3. The eigenspace associated to λ = 2 is one-dimensional. The
vector (−1,−1, 1) forms a basis for it. The eigenspace associated
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to λ = 3 is also one-dimensional and the vector (−1, 0, 1) is a basis
for it.

Problem 9: Prove that similar matrices have the same eigenvalues.

Answer: Suppose that A and B are similar matrices and that S is a matrix
so that A = SBS−1. We present two proofs.

Here is the first proof. We first show that every eigenvalue for B is also an
eigenvalue for A. Let λ be an eigenvalue for B and let v be an associated
eigenvector. Define w = Sv. Then

Aw = SBS−1(Sv) = SBv = S(λv) = λSv = λw.

Thus, λ is an eigenvalue forAwith associated eigenvector w. We must now
show that every eigenvalue for A is also an eigenvalue for B. Here’s a trick.
Let T = S−1. Then B = TAT−1 and so we can apply our previous work
to conclude that every eigenvalue for A is also an eigenvalue for B. Hence,
they have the same eigenvalues.

Here is the second proof. We show that A and B have the same character-
istic polynomials.

det(A−λI) = det(SBS−1−SλIS−1) = det(S(B−λI)S−1) = det(B−λI).

Problem 10: Suppose that A is an n × n matrix with n real eigenval-
ues (counted with algebraic multiplicity). Show that the trace of A is the
sum of the eigenvalues and that the determinant of A is the product of the
eigenvalues.

Answer: We will use the fact (Fact 7.2.5) that the coefficient of λn−1 in the
characteristic polynomial is ±tr(A) and the constant term is detA. Since
we have n eigenvalues λ1, . . . , λn our characteristic polynomial factors as:

f(λ) = (λ1 − λ)(λ2 − λ) . . . (λn − λ).

Multiplying this out, we see that the constant term is the product λ1 . . . λn

which by the aforementioned fact is det(A). The term containing (−λ)n−1

is obtained by multiplying (−λ) times itself (n−1) times and then multiply-
ing by λi for some i. Thus, there are n of these terms, each with coefficient
λi and so the coefficient of (−λ)n−1 is the sum of the λi.

Problem 11: Suppose that A is an n × n matrix with n an odd number.
Prove that A has at least one real eigenvalue.

Answer: The characteristic polynomial f has degree nwhich is odd. Hence
limx→∞ f(x) = ±∞ and limx→−∞ = ∓∞. Thus, by the intermediate value
theorem, f must have a root. This root is a real eigenvalue.
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Problem 12: Prove that if A is an n×n matrix with n distinct eigenvalues
then A is diagonalizable. Give an example of a 3 × 3 matrix without 3
distinct eigenvalues, which is, nevertheless, diagonalizable.

Answer: Here is one posible answer:

1 0 0
0 1 0
0 0 1

. The eigenvalues of a tri-

angular matrix are the diagonal entries and so this matrix has an eigenvalue
of 1 with (algebraic) multiplicity 3. It is obviously diagonalizable.

Problem 13: Let P : M2 →M2 be the linear transformation

P (M) =
1

2
(M +MT ).

Find all the eigenvalues of M and their associated eigenvectors.

Answer:

Notice that if M is a symmetric matrix, then P (M) = M . The set of
symmetric matrices form a subspace of M2 of dimension 3. (They are all of
the form [

a b
b a

]
Thus λ = 1 is an eigenvalue of multiplicity 3 and has (linearly independent)
eigenvectors [

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
.

The kernel of P consists of matrices M such that M = −MT . In other
words, matrices of the form [

0 b
−b 0.

]
Thus λ = 0 is an eigenvalue of multiplicity 1 and has eigenvector

[
0 1
−1 0

]
.

Since M2 is four-dimensional, any matrix representing P is 4× 4. Hence P
has at most 4 eigenvalues (counted with multiplicity). Therefore, these are
all the eigenvalues.


