MA 253: Practice Exam 2

You may not use a graphing calculator, computer, textbook, notes, or refer to other people (except the instructor). Show all of your work; your work is your answer.

Problem 1: Prove or Disprove: The set of 2×2 matrices with determinant 0 form a vector subspace of M_{2}. (M_{2} is the vector space of all 2×2 matrices.

Problem 2: Prove or Disprove: The set of 2×2 matrices with trace 0 form a vector subspace of M_{2}.
Problem 3: Prove or Disprove: The set of all functions $f: \mathbb{N} \rightarrow \mathbb{R}$ form a vector space. (That is, functions from the natural numbers to the real numbers.)

Problem 4: Let B denote the set of all biinfinite sequences $\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right)$. Recall that B is a vector space. For

$$
\mathbf{a}=\left(\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots\right)
$$

define

$$
R(\mathbf{a})=\left(\ldots, a_{2}, a_{1}, a_{0}, a_{-1}, a_{-2}, \ldots\right)
$$

(That is, $R \mathbf{a}$) is obtained by "reflecting" a about the term a_{0}.)
(i) Prove that $R: \mathbf{B} \rightarrow \mathbf{B}$ is a linear transformation. Is it an isomorphism?
(ii) Prove that

$$
W=\{\mathbf{a} \in \mathbf{B}: R(\mathbf{a})=\mathbf{a}\}
$$

is a vector subspace of \mathbf{B}. W is the set of "palindromes".
(iii) Find an eigenvalue and eigenvector for R. (i.e. find an x and a $\lambda \in \mathbb{R}$ so that $R(\mathbf{x})=\lambda \mathbf{x}$.
(iv) Find a linear transformation $T: \mathbf{B} \rightarrow \mathbf{B}$ such that $W=\operatorname{ker} T$.

Problem 5: Let \mathcal{P}_{3} denote the set of polynomials of degree three or less.
Let $I\left(a x^{3}+b x^{2}+c x+d\right)=\int_{0}^{x} b x^{2}+c x+d d t$.
(i) Show that $\left\{t^{3}-t^{2}+t-1, t^{3}-t^{2}, t^{2}-t, t+1\right\}$ is a basis for \mathcal{P}_{3}.
(ii) Show that $I: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ is a linear transformation.
(iii) Calculate ker I.
(iv) Write down a matrix for I with respect to the basis in part (i).

Problem 6: Prove that the determinant of an upper triangular matrix is the product of its diagonal entries.

Problem 7: Calculate the following determinant:

$$
\operatorname{det}\left[\begin{array}{cccc}
2 & -1 & 0 & 3 \\
-1 & 2 & 3 & 0 \\
3 & 0 & 2 & -1 \\
0 & 3 & 2 & -1
\end{array}\right]
$$

Problem 8: Find eigenvectors and eigenvalues for the following matrices.
(i)

$$
\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

(ii)

$$
\left[\begin{array}{ccc}
1 & -1 & -2 \\
-1 & 2 & -1 \\
1 & 1 & 4
\end{array}\right]
$$

Problem 9: Prove that similar matrices have the same eigenvalues.
Problem 10: Suppose that A is an $n \times n$ matrix with n real eigenvalues (counted with algebraic multiplicity). Show that the trace of A is the sum of the eigenvalues and that the determinant of A is the product of the eigenvalues.
Problem 11: Suppose that A is an $n \times n$ matrix with n an odd number. Prove that A has at least one real eigenvalue.

Problem 12: Prove that if A is an $n \times n$ matrix with n distinct eigenvalues then A is diagonalizable. Give an example of a 3×3 matrix without 3 distinct eigenvalues, which is, nevertheless, diagonalizable.
Problem 13: Let $P: M_{2} \rightarrow M_{2}$ be the linear transformation

$$
P(M)=\frac{1}{2}\left(M+M^{T}\right) .
$$

Find all the eigenvalues of M and their associated eigenvectors.

