
MA 253: Practice Exam 1 Solutions

You may not use a graphing calculator, computer, textbook, notes, or refer
to other people (except the instructor). Show all of your work; your work
is your answer.

Problem 1: Solve the following system of linear equations using Gauss-
Jordan elimination on a matrix.

x − y + z = 3
2y − z = −1

4x + y = 0

Solution: x = −2/3, y = 8/3, and z = 19/3.

Problem 2: Which of the following matrices are in reduced row echelon
form? For each that is not, circle an entry in the matrix which shows that it
is not in reduced row echelon form.

(a.)
[
1 0
2 0

]
(b.)

[
1 1
0 1

]

(c.)
[
1 0 1
0 1 3

]
(d.)

π 0 0
0 1 0
0 0 1



(e.)


1 0 0 3 5

0 1 0 −2
√

2
0 0 1 0 2
0 0 0 0 0
0 0 0 0 0

 (f.)


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


Solution: Matrices (c.) and (e.) are in reduced row echelon form. For
matrix (a.), the 2,1 entry violates the requirements for being in reduced row
echelon form. For matrix (b.), the 1,2 entry violates the requirements. For
matrix (d.), the 1,1 entry violates the requirements and for matrix (f.) the
4,2 entry violates the requirements.
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Problem 3: Suppose that T : Rn → Rm is a linear transformation. Prove
that there is a matrix A such that

T (x) = Ax

for all x ∈ Rn.

Solution: Let ei be the ith standard basis vector of Rn. Define the matrix:

A =

T (e1) T (e2) . . . T (en)


where the ith column of A is T (ei). We now need to show that T (x) = Ax
for all x ∈ Rn.

Let x ∈ Rn be an arbitrary vector. Then, since {ei} is a basis for Rn, there
are scalars, x1, . . . , xn so that

x = x1e1 + x2e2 + xnen.

Hence,
T (x) = T (x1e1 + . . .+ xnen).

Since T is linear this equivalent to:

T (x) = x1T (e1) + . . .+ xnT (en).

By the construction of A,
Aei = T (ei).

Hence,

T (x) = x1Ae1 + . . .+ xnAen.

By the properties of matrix multiplication,

T (x) = A(x1e1 + . . .+ xnen).

Consequently,
T (x) = Ax

as desired. �

Problem 4: Define what it means for a set of vectors to be linearly in-
dependent and describe a method whereby you can determine if a given
collection of vectors is linearly independent.
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Solution: A set of vectors is linearly independent if no nontrivial linear
combination (that is, a linear combination with at least one non-zero coef-
ficient) is equal to the zero vector. To test if k vectors are linearly inde-
pendent, make a matrix whose columns are those vectors. If the matrix has
rank k if and only if the vectors are linearly independent.

Problem 5: Suppose that A is an n×m matrix. Let T (x) = Ax.

(a.) Define rank(A).
Solution: The number of leading ones in ref(A). Equivalently,

the dimension of the image of A.
(b.) If m > n, what can you say about rank(A)?

Solution: Since there are more columns than rows, the rank of A
is no more than the number of rows, which is n.

(c.) What is the domain of T ?
Solution: Rm.

(d.) What is the codomain of T ? (In other words, what is k so that
T (x) ∈ Rk? Your answer should be either Rn or Rm.

Solution: Rn.
(e.) Prove that T is a linear transformation. You may assume basic facts

about matrix multiplication.
Solution:

T (ax + by) = A(ax + by) = aAx + bAy = aT (x) + bT (y).

(f.) Define ker(T ) and prove that it is a subspace.
Solution:

ker(T ) = {x ∈ Rm : T (x) = 0}.

Suppose that x1 and x2 are in ker(T ) and that a, b ∈ R. Then,

T (ax1 + bx2) = aT (x1) + bT (x2) = a0 + b0 = 0

since T is a linear tranformation and x1,x2 ∈ Rm. �
(g.) Define im(T ) and prove that it is a subspace.

Solution:

im(T ) = {b ∈ Rn : there exists x ∈ Rm such that T (x) = b}

Suppose that y1,y2 ∈ im(T ) and that a, b ∈ R. By the definition
of image there are vectors x1,x2 ∈ Rm such that T (x1) = y1 and
T (x2) = y2. Then, since T is a linear transformation

T (ax1 + bx2) = aT (x1) + bT (x2) = ay1 + by2.

Hence, ay1 + by2 ∈ im(T ) as desired. �
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(h.) Carefully state and prove the rank-nullity theorem.
Solution: The statement is: For an n×mmatrixA, dim im(A)+

dim ker(A) = m. To prove it, recall that a basis for im(A) can be
formed by taking the non-redundant columns of A. Each redundant
column corresponds to a free variable. Thus dim im(A) plus the
number of free variables of A is equal to the number of columns
of A. Each free variable of A gives rise to a vector in a basis for
ker(A). Thus the sum of the dimensions of im(A) and ker(A) must
be the number of columns of A. �

(i.) Define what it means for T to be injective.
Solution: T is injective if and only if for every two distinct x1

and x2 in Rm, T (x1) 6= T (x2).
(j.) Define what it means for T to be surjective.

Solution: T is surjective if and only if for every b ∈ Rn, there
exists x ∈ Rm such that T (x) = b.

(k.) Explain why T is injective if and only if the system T (x) = b has
at most one solution for each b.

Solution: Suppose that there were some b such that x1 and x2

are solutions to T (x) = b . Then T (x1) = T (x2) and so by the
definition of “injective” given above, x1 = x2.

(l.) Explain why T is surjective if and only if the system T (x) = b is
consistent for each b.

Solution: The system is consistent if and only if there is a vector
x such that T (x) = b. But this means that b ∈ im(T ) for all
b ∈ Rn. This is the definition of “surjective”.

(m.) Prove that T is injective if and only if ker(T ) = {0}.
Solution: Suppose first that T is injective. Since T (0) = 0, by

(k) 0 is the only solution to T (x) = 0. Hence ker(T ) = {0}. Now
suppose that ker(T ) = {0}. Suppose that T (x1) = T (x2). Then,

T (x1)− T (x2) = 0.

Since T is linear, this is equivalent to

T (x1 − x2) = 0.

Hence, x1 − x2 ∈ ker(T ). Since ker(T ) = {0}, x1 − x2 = 0. But
this means that x1 = x2. Hence, by the definition of “injective”, T
is injective. �

(n.) Prove that if T is invertible, then its inverse function T−1 is a linear
transformation.

Solution: We must show that

T−1(ax + by) = aT−1(x) + bT−1(b).
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T is invertible and therefore injective. Thus the above equation is
equivalent to

T
(
T−1(ax + by)

)
= T

(
aT−1(x) + bT−1(b)

)
.

Since T is linear and T and T−1 are inverses, this is equivalen to

ax + by = aT
(
T−1(x)

)
+ bT

(
T−1(b)

)
.

This is equivalen to

ax + by = ax + by,

which is obviously true. �
(o.) Prove that if A is invertible then the system Ax = b has a unique

solution for every b.
Solution: Suppose that A−1 is the inverse of A. Then

A−1Ax = A−1b ⇒
x = A−1b

Since matrix multiplication is well-defined, A−1b is a single vec-
tor in Rn. Hence, there is a solution to Ax = b and it is unique. �

(p.) Prove thatA is invertible if and only if rref(A) is the identity matrix.
Solution: The matrix ref(A) is obtained fromA by finitely many

row operations. Let E1, . . . , Ep be the elementary matrices corre-
sponding to these row operations so that

rref(A) = EpEp−1 . . . E2E1A.

Every elementary matrix is invertible and so the above equation can
be rewritten as

E−1
1 E−1

2 . . . E−1
p−1E

−1
p rref(A) = A.

Hence, if rref(A) is the identity matrix, A is the product of elemen-
tary matrices. The product of invertible matrices is invertible and
so A is also invertible. Now suppose that A is invertible. The first
equation shows that rref(A) is the product of A and elementary ma-
trices. Hence rref(A) is invertible. This implies that it is square and
that the transformation

T (x) = rref(A)x

is injective and surjective. Since it is injective, the rank of rref(A)
is the number of columns (which is also the number of rows) or A.
Hence, every column and every row of rref(A) has a leading one.
Since rref(A) is in reduced row echelon form, rref(A) is the identity
matrix. �
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(q.) Suppose that {x1, . . . ,xk} is a set of vectors such that each vector
is a solution to the equation T (x) = b. Let

u =
k∑

i=1

cixi

where the ci are scalars such that
∑k

i=1 ci = 1. Prove that T (u) = b.

Solution: Since T is linear,

T (u) = T
(∑

cixi

)
=
∑

ciT (xi) =
∑

cib = b
∑

ci = b.

Problem 6: Let

M =

1 0 −2
1 1 0
0 1 1

 .
Find M−1 and show that your answer is correct by performing a matrix
multiplication.

Solution: M =

−1 2 −2
1 −1 2
−1 1 −1

.

Problem 7: Let

A =


1 10 −17 38
2 10 −14 36
3 2 5 2
4 0 12 −8
5 0 15 −10
6 8 2 20

 .

The reduced row echelon form of A is

rref(A) =


1 0 3 −2
0 1 −2 4
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

(a.) Find a basis for ker(A).
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Solution: A basis for ker(A) is

{
−3
2
1
0

 ,


2
−4
0
1


}

(b.) Find a basis for im(A).
Solution: A basis for im(A) is

{
1
2
3
4
5
6

 ,


10
10
2
0
0
8


}

Problem 8: Let W be the subset of R3 consisting of the x axis, the y axis,
the z axis, and the line through the origin and the vector (1, 1, 1). Explain
why W is not a subspace of R3.

Solution: W is not closed under addition. For example, (1, 0, 0)+(0, 1, 0) =
(1, 1, 0) 6∈ W .

Problem 9: Prove that if B is a basis for the subspace V ⊂ Rn then each
vector in V can be uniquely written as a linear combination of vectors in B.

Solution: Since spanB = V , each vector in V is a linear combination of
vectors in B. Suppose that v ∈ V is a vector which can be written as a
linear combination of vectors in B in more than one way. That is, suppose

v =
∑

cibi =
∑

dibi

where the (finite) sum is taken over all elements of B. Hence,

0 =
∑

cibi −
∑

dibi =
∑

(ci − di)bi.

We have a linear combination of the vectors of B equalling zero. Since
B is a basis, its vectors are linearly independent. Consequently, the linear
combination must have all coefficients equal to zero. That is, for each i,
ci − di = 0. Therefore, ci = di for all i. Thus, there is a unique way of
writing v as the linear combination of vectors in B. �

Problem 10: Let W be a subspace of Rn and define

W⊥ = {v ∈ Rn : v ·w = 0 for all w ∈ Rn}.

Prove that W⊥ is a subspace.
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Solution: Let u and v be vectors in W⊥ and a, b ∈ R. We must show that
au + bv ∈ W⊥. Let w be an arbitrary vector in W . Then

(au + bv) ·w = (au) ·w + (bv) ·w = au ·w + bv ·w = a(0) + b(0) = 0

as desired. �

Problem 11: Consider the set

B =

{1
2
0

 ,
0

2
1

 ,
 1
−1
1

}.
It is a fact that B is a basis for R3.

(1) Write the vector

v =

1
1
1


as a linear combination of the vectors in B.

Solution: Let B =

1 0 1
2 2 −1
0 1 1

. Then

B−1 =
1

5

 3 1 −2
−2 1 3
2 −1 2

 .
Let

c = B−1

1
1
1

 =

2/5
2/5
3/5

 .
Then 2/5(1, 2, 0) + 2/5(0, 2, 1) + 3/5(1,−1, 1) = (1, 1, 1).

(2) In B-coordinates the vector w is written

[w]B =

10
−2
3

 .
Write w using the standard coordinate system for R3.

Solution:

w = 10

1
2
0

+ (−2)

0
2
1

+ 3

 1
−1
1

 =

13
13
1
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(3) Consider the linear tranformation T : R3 → R3 given (in standard
coordinates) by

T (x) =

1 0 0
0 1 0
0 0 0

x.

What is the matrix for T in B coordinates? (You do not need to
perform the required calculations. Simply write down an expression
which, if computed, will produce the matrix.)

Solution: Continue using the notation from part (a). Let

A =

1 0 0
0 1 0
0 0 0

 .
The answer is then B−1AB.


