
MA 253: Final Review and Practice Problems Name:

1. PROBLEMS

(1) Let

Tn =
{

T : T is a linear transformation Mn → R
}

.

You may wish to do this problem assuming that n = 2 or n = 3.
(a) Prove that Tn is a vector space.

Solution: Let T, S ∈ Tn be linear transformations and let α, β
be real numbers. We begin by showing that Tn is closed under
linear combinations. Define P = αT +βS. We must show that
P is a linear transformation. Let M, N ∈ Mn and a, b ∈ R.
Then:

P (aM + bN) = αT (aM + bN) + βS(aM + bN)

by the definition of P . Since T and S are linear transformations
we have

αT (aM+bN)+βS(aM+bN) = α(aT (M)+bT (N))+β(aS(M)+bS(N)).

The right hand side consists of real numbers so we have:

α(aT (M)+bT (N))+β(aS(M)+bS(N)) = a(αT (M)+βS(M))+b(αT (N)+βS(N))

The right hand side is exactly aP (M)+bP (N), so P is a linear
transformation.
The fact that addition of elements of Tn is associative and com-
mutative follows directly from the fact that addition in R is
associative and commutative. The neutral element is the linear
transformation Z : Mn → R defined so that

Z(M) = 0

for all n×n matrices M . If T ∈ Tn then if we define S : Mn →
R by

S(M) = −T (M)

it is easy to see that S is linear and that S + T = Z; thus,
elements of Tn have additive inverses.
The fact that the distributive properties hold follows immedi-
ately from the fact that multiplication and addition of real num-
bers satisfy the distributive properties. It is also clear that for
any T ∈ Tn, 1 · T = T . Hence, Tn is a vector space.
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(b) Find a basis for Tn.
Solution: For a matrix M , let mij denote the entry in the ith
row and jth column. Define

Tij(M) = mij.

It is easy to check that Tij is linear. We need to check that {Tij}
is linearly independent. Suppose that there exist constants cij ,
not all zero, such that∑

ij

cijTij = Z.

This means that, for all M ∈ Mn∑
ij

cijTij(M) = 0.

Since not all the cij are zero, there exists at least one ckl 6= 0.
Let Mkl be the matrix having a 1 in the kth row and lth column
and zeroes everywhere else. Then∑

ij

cijTij(Mkl) = cklTkl(Mkl) = ckl 6= 0.

Hence, the constants cij cannot exist. Therefore {Tij} is lin-
early independent.
We now need to show that {Tij} spans Tn. Let T ∈ Tn be an
arbitrary linear transformation. Let Mij be the n × n matrix
with a 1 in the ij location and zeroes everywhere else. Let
αij = T (Mij). Then for an arbitrary matrix M ,

T (M) = T (
∑
ij

mijMij) =
∑
ij

mijαij

since T is linear. On the other hand,∑
ij

αijTij(M) =
∑
ij

αijTij(
∑
kl

mklMkl).

Since each Tij is linear and since Tij(Mkl) = 0 unless i = k
and j = l (in which case Tij(Mkl) = 1) we have,∑

ij

αijTij(
∑
kl

mklMkl) =
∑
ij

αijmij.

Thus,
T =

∑
ij

αijTij.
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Thus, {Tij} is both linearly independent and spans Tn. It is,
therefore, a basis.

(c) Construct an isomorphism from Mn to Tn.
Solution: Use the notation from the previous part and define
τ : Mn → Tn by

τ(M) = TM

where TM is the linear transformation

TM(N) =
∑
ij

mijnij

(nij is the ijth entry of N .) To see that τ is an isomorphism,
we need only prove that ker τ = {0} since both Tn and Mn

are finite dimensional. Suppose that M ∈ ker τ . Then for all
N ∈ Mn:

TM(N) = 0.

Notice that
TM(Mij) = mij

Thus, if M ∈ ker τ , mij = 0 for all entries of M . That is M is
the zero matrix. Hence, τ is an isomorphism.

(2) Let V be the set of all 3× 3 matrices that commute with

0 1 0
0 0 1
0 0 0


(a) Show that V is a subspace of M3.

Solution: Let A be the given matrix and let M and N be arbi-
trary matrices. We know that MA = AM and NA = AN . Let
a, b ∈ R. Then,

(aM+bN)A = a(MA)+b(NA) = a(AM)+b(AN) = A(aM)+A(bN) = A(aM+bN)

by properties of matrix multiplication. Hence V is closed under
linear combinations. It is, therefore, a subspace.

(b) Find a basis for V . What is its dimension?
Solution: Consider:a b c

d e f
g h i

0 1 0
0 0 1
0 0 0

 =

0 1 0
0 0 1
0 0 0

a b c
d e f
g h i


Comparing the entries shows that if a matrix B commutes with
A then

B =

a b c
0 a b
0 0 a

 .
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Thus, a basis for V is{1 0 0
0 1 0
0 0 1

 ,

0 1 0
0 0 1
0 0 0

 ,

0 0 1
0 0 0
0 0 0

}
Thus, V is 3–dimensional.

(3) Let A be an n × n matrix such that A4 = I . Show that each real
eigenvalue of A is ±1.

Solution: If λ is an eigenvalue of A, then λ4 is an eigenvalue of
A4. Since A4 = I , λ4 = 1. Thus, if λ is real, λ = ±1.

(4) Let A be an n × n matrix such that A4 is the zero matrix. Find all
eigenvalues of A.

Solution: As in the previous problem, if λ is an eigenvalue of A,
λ4 is an eigenvalue of A4 = 0. The only complex number which
when raised to the fourth power produces zero is 0. Hence, λ = 0
and all eigenvalues of A are zero.

(5) Let V be the vector space of all infinite sequences of real numbers
having only finitely many nonzero terms. Let a = (a0, a1, a2, . . . , am, 0, 0, . . .)
be a fixed vector of V . Define a function T : V → R by

T (b) =
∑

aibi

where b = (b0, b1, b2, . . .).
(a) Show that T is linear.

Solution: Let b = (b0, b1, . . .) and c = (c0, c1, . . .) ∈ V . Let
a, b ∈ R. Then:

T (ab + bc) =
∑

ai(abi + bci) =
∑

(aaibi + baici).

This can be rewritten as

a
∑

aibi + b
∑

aici = aT (b) + bT (c).

Hence, T is linear.
(b) Suppose that a = (1,−1, 0, 0, . . .). Find ker T .

Solution: Suppose
∑

aibi = 0. Then, because of the choice
of a, we have b0 − b1 = 0. That is, b0 = b1. Thus, ker T
consists of all sequences of real numbers having only finitely
many nonzero terms whose first two entries are equal.

(6) Let B be the following set in R4:{
1
−1
0
0

 ,


−1
0
1
0

 ,


0
−1
1
1

 ,


1
0
0
1


}

.
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(a) Prove that B is a basis for R4.
Solution: There are several ways to do this. Probably the eas-
iest is to put the four vectors into a matrix (in the order given).
Call the matrix B. Then the determinant of B is one, so the
columns of B are linearly independent. Since we have four
linearly independent vectors in R4, they must be a basis for R4.

(b) Write the vector (2, 2, 2, 1) in this basis.
Solution: (3, 7,−5, 6).

(c) Let T be the following linear transformation. Find a matrix
which represents T in the basis B.

T (x) =


1 0 1 1
0 1 1 1
0 0 0 1
−1 0 0 1

x.

Solution: 
2 −1 2 3
1 0 4 5
−1 0 −3 −4
0 1 4 4


B

(d) Apply the Gram-Schmidt process toB to obtain an orthonormal
basis for R4.
Solution:{

1/
√

2

−1/
√

2
0
0

 ,


−1/

√
6

−1/
√

6√
2/
√

3
0

 ,


0
0
0
1

 ,


√

3/3√
3/3√
3/3
0


}

.

(7) Consider the plane in R3 defined by 2x − y + z = 0. Find a 3 × 3
matrix which represents orthogonal projection onto this plane.

Solution: Notice that {(1, 0,−2), (0, 1, 1), (2,−1, 1)} forms a
basis B for R3 where the first two vectors are in the plane and third
is orthogonal to the plane. With respect to B the matrix for the pro-
jection is:

P =

1 0 0
0 1 0
0 0 0


B

.

Thus, the matrix with respect to the standard basis is B−1PB where

B =

 1 0 2
0 1 −1
−2 1 1

 .
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(8) Suppose that A is a 7× 7 matrix with characteristic equation

fA(λ) = (−λ)3(2− λ)(3− λ)(4− λ)(−5− λ)

(a) What are the eigenvalues of A?
(b) What is the determinant of A?
(c) What is the trace of A?
(d) What is the characteristic equation of AT ?
(e) Is A invertible?
(f) What can you say about the dimension of ker A?
(g) What can you say about the dimension of im A?

Solution: The eigenvalues are 0 (with mult. 3), 2, 3, 4, and −5.
The determinant is the product of these and so is 0. This means
the matrix is not invertible. The trace is the sum of the eigenvalues
and so is 4. The characteristic equation of AT is the same since
(AT − λI) = (A − λI)T . The eigenspaces of all the non-zero
eigenvalues of A are 1–dimensional, this accounts for 4 out of the
7 dimensions. Thus, the dimension of ker A is not more than 3. By
the rank-nullity theorem, the dimension of im A is at least 4.

(9) Suppose that an n× n matrix A is similar to its inverse A−1. What
can you say about the determinant of A?

Solution: Similar matrices have the same determinant and in-
verse matrices have determinants which are reciprocals. Thus, if A
is similar to its inverse it must have determinant ±1.

(10) Suppose that 30 percent of math students in a given semester take a
math course the following semester, while 70 percent of them take
a poetry course. Suppose that 40 percent of poetry students in a
given semester take a poetry course the following semester while 60
percent of them take a math course. Is there some point in the future
where either the mathematics or the poetry department will have to
close down because of lack of students? If not, what happens in the
long term?

Solution: In the long term, the poetry courses will enroll 54 per-
cent of the students and the math courses will enroll 46 percent of
the students (approximately).

(11) Suppose that T : R3 → R3 is a linear transformation with positive
determinant such that T preserves the lengths of all vectors.
(a) Show that there is a vector x such that T (x) = x (That is, T

has a fixed point.)
Solution: The characteristic polynomial for T has degree 3.
Every degree 3 polynomial factors over the real numbers, and
so T has a real eigenvalue. If an eigenvalue is not±1, the length
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of the associated eigenvector is changed. Thus, all eigenval-
ues must be ±1. If T has two complex eigenvalues, they are
complex conjugates and when multiplied together produce a
positive number. Thus, since the determinant of T is positive,
in this case T must have +1 as an eigenvalue. If T has three
real eigenvalues at least one of them must be +1 since the de-
terminant of T is positive. Thus, in all cases T has +1 as an
eigenvalue. Any associated eigenvector will be a fixed point of
T .

(b) Must T be an orthogonal transformation? Hint: It is enough to
figure out whether T (x) · T (y) = x · y for all x,y. Consider
the equation

(x + y) · (x + y) = (T (x) + T (y)) · (T (x + T (y))

Solution: Yes. Working out the equation from the hint shows
that T preserves the dot product. Thus T preserves the property
of being orthonormal. Orthogonal linear transformations are
exactly the linear transformations that do this.

(12) Let W ⊂ Rn be a subspace. Define

W⊥ = {v ∈ Rn : v ·w = 0 for all w ∈ W}.

(a) Show that W⊥ is a subspace of Rn.
Solution: Let u,v ∈ W⊥ and a, b ∈ R. We must show that
au + bv ∈ W⊥. Let w ∈ W . We must show:

(au + bv) · w = 0.

This follows directly from the properties of dot product and the
fact that u,v ∈ W⊥.

(b) Describe a linear transformation T : Rn → Rn such that W⊥ =
ker T
Solution: Orthogonal projection onto W .

(c) What is the dimension of W⊥ in terms of the dimension of W ?
Solution: n− dim W by the rank-nullity theorem.

(13) Let {u1, . . . ,up} be a collection of orthonormal vectors in Rn. Prove
that they are linearly independent.

Solution: Suppose that ci are coefficients such that∑
ciui = 0.

If all the ci are zero we are done. So suppose that cj 6= 0. Then:

0 = uj ·
( ∑

ciui

)
=

∑
ci(uj · ui).
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Since the vectors {ui} are orthonormal the only term in the sum
which is non-zero is cj(uj · uj) = cj . Thus we have cj 6= 0 and
cj = 0, a contradiction. Hence, all the ci = 0. This implies that the
vectors {ui} are linearly independent.


