
Groups, Linear Algebra, and the Geometry of the Torus

These are some notes and exercises to help you complete the group project. You should try all the
exercises but should not feel pressured to complete all, or even many, of them.

Your write-up should include a minimal exposition of the relationship between linear algebra and
the geometry of the torus and your solutions to a few of the exercises. Your writing style should
be as much like a textbook’s writing style as possible. You should definitely include many pictures
and examples to demonstrate your point. You may refer the reader to these notes, but your write-up
must make it clear that you have internalized these ideas and are able to make use of them.

Your oral presentation should include an overview of the relationship between linear algebra and
the geometry of the torus. You should also include a few of your findings, which could be a
summary of some of the exercises you’ve completed or interesting examples or new things you’ve
discovered. The notes and exercises below are intended to be a starting point. You should not feel
constrained by them, but you should be learning about interesting mathematics. You are welcome
and encouraged to look up these topics in other sources (library or internet), but remember to cite
all sources. This includes giving credit for any pictures or diagrams taken or copied from other
sources. You are also welcome and encouraged to ask questions and push the boundaries of the
topics below.

1. GROUPS

A group is a set G and an operation called either addition or multiplication, such that the follow-
ing properties hold (ab denotes a times b or a+b.):

G1. If a,b ∈ G then ab ∈ G (closed under multiplication/addition)
G2. There is an element I ∈ G such that for every a ∈ G, aI = Ia = a (there is a multiplica-

tive/additive identity)
G3. For every a ∈ G, there is a b ∈ G so that ab = ba = I. We write b = a−1. (Multiplica-

tive/Additive inverses exist)

The most important (for us) examples of groups are the following

(1) The set of pairs of integers {(m,n) : m,n ∈ Z} with addition as the operation. This set is
denoted Z2.

(2) The set of 2×2 matrices having integer entries and an inverse matrix with integer entries.
The operation is multiplication. This set is denoted GL2(Z).

Exercises.

(1) Show that these two examples are actually groups.
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2. THE EASIEST DISTANCE ON THE TORUS

A metric or distance function is a way of measuring the distance between two points on a surface.
As long as the distance function is “nice enough”, we can use it to define the length of a path on
a surface. To study the geometry of a surface we focus on “geodesics”. A path joining points x
and y is a geodesic if it minimizes length. For example, the geodesics in IR2 are just lines and line
segments, since the shortest distance between two points is a line segment.

For (a,b) ∈ Z2, define fa,b : IR2 → IR2 by

fa,b(x,y) = (x+a,y+b).

Notice that if you consider what happens to the square R with vertices (0,0), (1,0), (0,1), (1,1),
under all possible fa,b, the square tiles IR2.

R
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FIGURE 1. The image of R under fa,b tiles the plane.

Given a point (x,y) ∈ IR2, we can figure out which square it is located in. Suppose it is located
in the square with lower left corner (a,b). Then f−1

a,b (x,y) is a point in the original square R. See
Figure 2. The square R is called a fundamental domain.

If we glue the top of the fundamental domain to the bottom and the left side to the right side
(imagine it made out of fabric), we obtain the torus.

This construction gives us a way of measuring the distance between points on the torus. Suppose
that p and q are two points in the torus. By cutting the torus open, we obtain two points p̃ and q̃ in
the square R.

The shortest path between p and q on the torus, may not correspond to the shortest path between
p̃ and q̃ in R. See Figure 2.A. To find the shortest path on the torus, let Q be the set of all points in
IR2 which are translates of q̃. Find the shortest path from p to a point in Q and move that path back
into the fundamental domain using f−1

a,b for certain choices of a and b. See Figure 2.B. The length
of the path in the torus is just the length of the line segment in IR2 joining p̃ to q̃.

With this method of measuring distance on the torus, each geodesic on the torus is obtained from a
line segment in IR2. We can measure the length of a geodesic in the torus by measuring the distance
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FIGURE 2. The result of translating the line y = 3x back to the fundamental domain.

FIGURE 3. The result of gluing the top and bottom of R and the left and right sides.
Two lines on the fundamental domain are drawn to show you where they end up on
the torus.

of the line segment in IR2. For example, the path in the torus (drawn in the fundamental domain
and which starts and ends at (0,0)) in Figure 2 has length

√
13 because the line segment in IR2

joins (0,0) to (2,3).

Exercises.

(1) Draw some geodesics on the torus and measure their length by the above method. Some of
your examples should be geodesics which start and end at (0,0).

(2) Let P denote the set of geodesics on the torus which start and end at the same point (say,
(0,0)∈ R) and which don’t run over themselves more than once. Let Q∗ denote the rational
numbers, together with ∞. Show that there is a one-to-one correspondence between P and
Q∗. That is, it is possible to assign a rational number or ∞ to each geodesic in P such that
each rational number is assigned to a unique geodesic. (Hint: Think about the slopes of
line segments in IR2 that go through (0,0).)

(3) Consider L, a line in IR2 which goes through (0,0) and which has irrational slope. What
can you say about the result of translating L into R? Does it hit every point in R? For a
fixed point p ∈ R, what is the distance from p to the translated L? (It is quite difficult to
give a rigourous answer to this question; just do your best.)
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FIGURE 4. A: On the left we have the shortest path on the torus joining p and q.
On the right, we have the shortest path in R joining p̃ and q̃. B: On the left we have
the path in IR2 joining p̃ to Q. On the right we have translated this path into the
fundamental domain.

(4) Let T 2 denote the torus. What is the area of the torus with the metric we have constructed?
(Hint: What’s the area of R?)

(5) A path in T 2 which consists of a single horizontal line segment in R is called a longitude.
A path in T 2 which consists of a single vertical line segment in R is a meridian. Figure 2
depicts a meridian and longitude on T 2 and in R. What are the lengths of the meridian and
longitude?

(6) An isometry of T 2 is a map f : T 2 → T 2 which doesn’t change distance. Let I denote
the set of isometries of T 2 which fix a point p. We may assume that p corresponds to
(0,0) ∈ R. Show that I consists of the identity isometry and the isometry which reflects R
about a diagonal.

(7) Show that if h : IR2 → IR2 is a linear map which takes Z2 to itself, then h defines a function
h′ : T 2 → T 2.

(8) A bijective continuous function f : T 2 → T 2 is called a homeomorphism. Each homeo-
morphism can be continuously deformed to a linear map of IR2 → IR2 which takes Z2 to
itself. The inverse homemorphism can be deformed to an inverse linear transformation
which takes Z2 to itself. Thus, to study homeomorphisms of T 2, it turns out that it suffices
to study linear maps h : R2 → IR2 which are bijections of Z2 and whose inverse linear map
also takes Z2 to itself. Show that the set of all such maps can be naturally identified with

GL2(Z) = {2×2 matrices with integer entries and non-zero determinant}.
(9) Define a basic matrix to be a matrix of the form,[

1 n
0 1

]
or

[
1 0
m 1

]



where n,m ∈ Z. Notice that basic matrices correspond to certain types of elementary row
or column operations.

Show that if A ∈ GL2(Z), there are basic matrices E1, . . . ,Ep and F1, . . . ,Fq such that
Ep . . .E1AF1 . . .Fq is one of the following matrices:[

1 0
0 1

]
,

[
0 1
1 0

]
,

(Hint: Try an easier version of this exercise first, by assuming that the 1,1 entry of A is
equal to 1. You may also want to see the instructor for further hints.)

(10) Use the previous exercise to show that if A ∈ GL2(Z) then the determinant of A is ±1.
(11) Suppose that detA = 1. Look up the Cayley-Hamilton theorem and use it to show the

following:
(a) If tr(A) = 0 then A4 = I.
(b) If tr(A) =±1 then A12 = I.

In either case, the homeomorphism of the torus associated to A is said to be periodic. In
other words, if we repeat it often enough, eventually it’s the same as not doing anything.

(12) Suppose that detA = 1 and that tr(A) = ±2. Show that A has a single real eigenvector
and that the homeomorphism of T 2 associated to A leaves a curve, beginning and ending
at (0,0) fixed. In this case, it can be shown that the homeomorphism is a power of what
is called a Dehn Twist of T 2 along this curve. Look up the definition of “Dehn Twist”.
(See the picture on the wikipedia page, for example.) The homeomorphism is called “re-
ducible”.

(13) Suppose that detA = 1 and that | tr(A)| ≥ 3. Show that there is a real number such that
|λ |> 1 and such that both λ and 1/λ are eigenvalues for A. Explain why this implies that
A expands IR2 in one direction and shrinks IR2 in a different direction. The homeomorphism
of T 2 associated to A is called an Anosov homeomorphism.

(14) If you can, write a program in Maple, or the language of your choice, to show what happens
to a point in the torus under repeated applications of an Anosov map. The way it would
work is that you would show a picture of R and we would watch the point move around
in R based on the action of the Anosov map. If you have never programmed before, you
probably shouldn’t try this.

(15) Notice that we constructed a metric on the torus by tiling IR2 with squares. You can also do
this by tiling IR2 with parallelograms. This is most commonly done with parallelograms of
area 1. Explain how this works and show that this corresponds to choosing two curves on
the torus which intersect exactly once and calling one of them a meridian and the other a
longitude. Explain why the meridian and longitude will have the same length if and only if
the fundamental domain is a square.

(16) Look up the definition of “Teichmuller Space” and “Moduli Space” for the torus and ex-
plain its connection to the previous exercise and to linear algebra.


