Group Project 1 Answers: Visualizing Vectors

Names:

Problem 1: Describe how to represent vector addition graphically. In other words, given vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^2 or \mathbb{R}^3 draw a picture representing \mathbf{x} , \mathbf{y} , and $\mathbf{x} + \mathbf{y}$ and describe in words what is going on. You work a specific example in \mathbb{R}^2 and a specific example in \mathbb{R}^3 .

Answer: Slide x along y so that the tail of x is at the head of y. The head of x points to x + y.

Problem 2: Suppose that $\lambda \in \mathbb{R}$ is a constant and that **v** is a vector. Compare the arrow representing $\lambda \mathbf{v}$ to the arrow representing **v**. There are several cases to consider. For each case you should draw picture to demonstrate your point.

Answer: You should have 3 cases: $\lambda > 0$, $\lambda < 0$, and $\lambda = 0$. In the first case, $\lambda \mathbf{x}$ points in the same direction as \mathbf{x} but might be of a different length. In the second case, $\lambda \mathbf{x}$ points in the opposite direction as \mathbf{x} . In the third case, $\lambda \mathbf{x} = 0$.

Problem 3: Let $v \in \mathbb{R}^2$ be a fixed non-zero vector and onsider the set of vectors

$$L_{\mathbf{v}} = \{ t\mathbf{v} : t \in \mathbb{R} \}.$$

What do you get if you plot each point in this set? Draw a picture which gives a specific example.

Answer: You get the line passing through v and the origin.

Problem 4: Let $v \in \mathbb{R}^2$ be a fixed non-zero vector and let $w \in \mathbb{R}^2$ be another vector such that $v \neq w$. Consider the sets:

$$L_{\mathbf{v},\mathbf{w}} = \{t\mathbf{v} + (1-t)\mathbf{w} : t \in \mathbb{R}\}$$

$$l_{\mathbf{v},\mathbf{w}} = \{t\mathbf{v} + (1-t)\mathbf{w} : 0 \le t \le 1\}.$$

Describe each of these sets and use pictures and specific examples to illustrate your answers. You should consider the case when v and w are linearly independent and the case when v and w are linearly dependent separately.

Answer: $L_{\mathbf{v},\mathbf{w}}$ is the line passing through **v** and **w**. If you want a proof, here is one:

Proof. Notice that:

$$t\mathbf{v} + (1-t)\mathbf{w} - \mathbf{w} = t(\mathbf{v} - \mathbf{w}).$$

Subtracting w from every point on the line through v and w produces the line going through the origin and the vector v - w. Subtracting w from every point in $L_{v,w}$ produces the set

$$L_{\mathbf{v}-\mathbf{w},\mathbf{0}} = \{t(\mathbf{v}-\mathbf{w}) : t \in \mathbb{R}\}.$$

By Problem 3, these are the same. Thus, adding **w** to both still produces the same thing. \Box

 $l_{\mathbf{v},\mathbf{w}}$ is the line segment between **v** and **w**.

Problem 5: Let v and w be as in problem 4. Describe and illustrate the set

$$M_{\mathbf{v},\mathbf{w}} = \{\mathbf{v} + t\mathbf{w} : t \in \mathbb{R}\}$$

Answer: This is the line through v in the direction of w.

Problem 6: Consider the vectors $\mathbf{u} = (2,3,5)$, $\mathbf{v} = (0,5,5)$, and $\mathbf{w} = (1,0,1)$ in \mathbb{R}^3 . Describe and sketch the set

$$P = \{ r\mathbf{u} + s\mathbf{v} + t\mathbf{w} : r, s, t \in \mathbb{R} \}.$$

Answer: This is all of \mathbb{R}^3 .

Problem 7: In Problem 6, what happens if we require r + s + t = 1?

Answer: You get the plane through v, w, and u.

Problem 8: If **u**, **v**, and **w** are three vectors in \mathbb{R}^3 . What are the possibilities for the set:

$$P = \{r\mathbf{u} + s\mathbf{v} + t\mathbf{w} : r, s, t \in \mathbb{R}\}?$$

Hint: Think about the case when the vectors are linearly independent separately from when they are linearly dependent.

Answer: If the vectors are linearly independent, you get all of \mathbb{R}^3 . If they are linearly dependent you get either a plane through the origin, a line through the origin, or the zero vector.

Problem 9: Do Problem 8 again, but require that r + s + t = 1.

Answer: In all cases you get a plane containing **u**, **v**, and **w**. If the vectors are linearly independent, the plane is unique. If they are linearly dependent, the plane is not unique.

Problem 10: (Bonus!) Suppose that **a**, **b**, **c**, **d** are four linearly indendent vectors in \mathbb{R}^4 . Describe the set (but don't sketch a picture!)

$$S = \{q\mathbf{a} + r\mathbf{b} + s\mathbf{c} + t\mathbf{d} : q + r + s + t = 1\}.$$

You don't need to prove that your answer is correct, but you should be reasonably confident in it.

Answer: You get a "3–space" in \mathbb{R}^4 containing the four vectors.