Group Project 1 Answers: Visualizing Vectors

Names:

Problem 1: Describe how to represent vector addition graphically. In other words, given vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^{2} or \mathbb{R}^{3} draw a picture representing \mathbf{x}, \mathbf{y}, and $\mathbf{x}+\mathbf{y}$ and describe in words what is going on. You work a specific example in \mathbb{R}^{2} and a specific example in \mathbb{R}^{3}.

Answer: Slide \mathbf{x} along \mathbf{y} so that the tail of \mathbf{x} is at the head of \mathbf{y}. The head of \mathbf{x} points to $\mathbf{x}+\mathbf{y}$.
Problem 2: Suppose that $\lambda \in \mathbb{R}$ is a constant and that \mathbf{v} is a vector. Compare the arrow representing $\lambda \mathbf{v}$ to the arrow representing \mathbf{v}. There are several cases to consider. For each case you should draw picture to demonstrate your point.

Answer: You should have 3 cases: $\lambda>0, \lambda<0$, and $\lambda=0$. In the first case, $\lambda \mathbf{x}$ points in the same direction as \mathbf{x} but might be of a different length. In the second case, $\lambda \mathbf{x}$ points in the opposite direction as \mathbf{x}. In the third case, $\lambda \mathbf{x}=0$.
Problem 3: Let $\mathbf{v} \in \mathbb{R}^{2}$ be a fixed non-zero vector and onsider the set of vectors

$$
L_{\mathbf{v}}=\{t \mathbf{v}: t \in \mathbb{R}\} .
$$

What do you get if you plot each point in this set? Draw a picture which gives a specific example.
Answer: You get the line passing through \mathbf{v} and the origin.
Problem 4: Let $\mathbf{v} \in \mathbb{R}^{2}$ be a fixed non-zero vector and let $\mathbf{w} \in \mathbb{R}^{2}$ be another vector such that $\mathbf{v} \neq \mathbf{w}$. Consider the sets:

$$
\begin{aligned}
& L_{\mathbf{v}, \mathbf{w}}=\{t \mathbf{v}+(1-t) \mathbf{w}: t \in \mathbb{R}\} \\
& l_{\mathbf{v}, \mathbf{w}}=\{t \mathbf{v}+(1-t) \mathbf{w}: 0 \leq t \leq 1\} .
\end{aligned}
$$

Describe each of these sets and use pictures and specific examples to illustrate your answers. You should consider the case when \mathbf{v} and \mathbf{w} are linearly independent and the case when \mathbf{v} and \mathbf{w} are linearly dependent separately.

Answer: $L_{\mathbf{v}, \mathbf{w}}$ is the line passing through \mathbf{v} and \mathbf{w}. If you want a proof, here is one:

Proof. Notice that:

$$
t \mathbf{v}+(1-t) \mathbf{w}-\mathbf{w}=t(\mathbf{v}-\mathbf{w})
$$

Subtracting \mathbf{w} from every point on the line through \mathbf{v} and \mathbf{w} produces the line going through the origin and the vector $\mathbf{v}-\mathbf{w}$. Subtracting \mathbf{w} from every point in $L_{\mathbf{v}, \mathbf{w}}$ produces the set

$$
L_{\mathbf{v}-\mathbf{w}, \mathbf{0}}=\{t(\mathbf{v}-\mathbf{w}): t \in \mathbb{R}\}
$$

By Problem 3, these are the same. Thus, adding \mathbf{w} to both still produces the same thing.
$l_{\mathbf{v}, \mathbf{w}}$ is the line segment between \mathbf{v} and \mathbf{w}.
Problem 5: Let \mathbf{v} and \mathbf{w} be as in problem 4. Describe and illustrate the set

$$
M_{\mathbf{v}, \mathbf{w}}=\{\mathbf{v}+t \mathbf{w}: t \in \mathbb{R}\}
$$

Answer: This is the line through \mathbf{v} in the direction of \mathbf{w}.
Problem 6: Consider the vectors $\mathbf{u}=(2,3,5), \mathbf{v}=(0,5,5)$, and $\mathbf{w}=(1,0,1)$ in \mathbb{R}^{3}. Describe and sketch the set

$$
P=\{r \mathbf{u}+s \mathbf{v}+t \mathbf{w}: r, s, t \in \mathbb{R}\} .
$$

Answer: This is all of \mathbb{R}^{3}.
Problem 7: In Problem 6, what happens if we require $r+s+t=1$?
Answer: You get the plane through \mathbf{v}, \mathbf{w}, and \mathbf{u}.
Problem 8: If \mathbf{u}, \mathbf{v}, and \mathbf{w} are three vectors in \mathbb{R}^{3}. What are the possibilities for the set:

$$
P=\{r \mathbf{u}+s \mathbf{v}+t \mathbf{w}: r, s, t \in \mathbb{R}\} ?
$$

Hint: Think about the case when the vectors are linearly independent separately from when they are linearly dependent.
Answer: If the vectors are linearly independent, you get all of \mathbb{R}^{3}. If they are linearly dependent you get either a plane through the origin, a line through the origin, or the zero vector.

Problem 9: Do Problem 8 again, but require that $r+s+t=1$.
Answer: In all cases you get a plane containing \mathbf{u}, \mathbf{v}, and \mathbf{w}. If the vectors are linearly independent, the plane is unique. If they are linearly dependent, the plane is not unique.

Problem 10: (Bonus!) Suppose that a, b, c, d are four linearly indendent vectors in \mathbb{R}^{4}. Describe the set (but don't sketch a picture!)

$$
S=\{q \mathbf{a}+r \mathbf{b}+s \mathbf{c}+t \mathbf{d}: q+r+s+t=1\} .
$$

You don't need to prove that your answer is correct, but you should be reasonably confident in it.
Answer: You get a " 3 -space" in \mathbb{R}^{4} containing the four vectors.

