Notes on Determinants

1. Determinants and Row Operations

Theorem 1. Suppose that an \(n \times n \) matrix \(A' \) is obtained from \(A \) by a single row operation. Then the following are true:

1. If the row operation switches two rows, then \(\det(A') = -\det(A) \).
2. If the row operation scales a row by \(k \neq 0 \), then \(\det(A') = k \det(A) \).
3. If the row operation replaces a row \(i \) by the sum of row \(i \) and row \(j \), then \(\det(A') = \det(A) \).

We prove only the third possibility. Our method of proof is by induction.

Base Case: \(n = 2 \)

Suppose that \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and \(A' = \begin{bmatrix} a & b \\ a + c & b + d \end{bmatrix} \). Then

\[
\det(A) = ad - bc
\]

and

\[
\det(A') = a(b + d) - b(a + c) = ab + ad - ba - bc = ad - bc,
\]

so the theorem holds. If \(A' = \begin{bmatrix} a + c & b + d \\ c & d \end{bmatrix} \), then \(\det(A') = d(a + c) - c(b + d) = ad - bc \), as desired.

Inductive Case: Suppose that the theorem is true for \(n \times n \) matrices and that we want to prove it for \((n + 1) \times (n + 1) \) matrices with \(n \geq 2 \).

Our row operation replaces row \(i \) with the sum of row \(i \) and row \(j \). By an important theorem, we can calculate \(\det(A') \) by LaPlace expansion across row \(k \), where \(k \neq i, j \) (using the fact that \(n + 1 \geq 3 \). The formula for LaPlace expansion tells us that

\[
\det(A') = \sum_{c=1}^{n+1} a'_{kc} \det(A'_{kc})
\]

where \(a'_{kc} \) is the entry in row \(k \) and column \(c \) of \(A' \). Since row \(k \) of \(A' \) and row \(k \) of \(A \) are exactly the same \(a'_{kc} = a_{kc} \) for all \(c \). The matrix \(A'_{kc} \) is an \(n \times n \) matrix which is obtained from the matrix \(A_{kc} \) by a row replacement operation. Since we are assuming the theorem is true for \(n \times n \) matrices, \(\det(A'_{kc}) = \det(A_{kc}) \). Hence,

\[
\det(A') = \sum_{c=1}^{n+1} a'_{kc} \det(A'_{kc}) = \sum_{c=1}^{n+1} a_{kc} \det(A_{kc}) = \det(A).
\]

This result has an important corollary:

Corollary 2. If \(A \) is an \(n \times n \) matrix and if \(E \) is an elementary matrix, then \(\det(EA) = \det(E) \det(A) \).
Proof. Notice, first, that $\det(I_n) = 1$. Thus, if E is obtained from I_n by a row swap, $\det(E) = -1$. If E is obtained from I_n by scaling a row of I_n by $k \neq 0$, $\det(E) = k$. And if E is obtained from I_n by a row replacement operation, $\det(E) = 1$. The matrix EA is obtained by performing the row operation corresponding to E on A, thus, if the row operation is a row swap, $\det(EA) = -\det(A)$; if the row operation scales a row of A by $k \neq 0$, then $\det(EA) = k \det(A)$; and if the row operation is a row replacement operation, $\det(EA) = \det(A)$. The result follows immediately. □

We can now prove the most important theorem about determinants:

Theorem 3. If A and B are $n \times n$ matrices, $\det(AB) = \det(A) \det(B)$.

Proof. Let E_1, \ldots, E_p be the elementary matrices so that $E_pE_{p-1}\ldots E_1A = \text{rref}(A)$.

Case 1: A is invertible. In this case $\text{rref}(A) = I_n$ and $E_p\ldots E_1A = I_n$. That is, $A = E_1^{-1}\ldots E_p^{-1}$. Then taking the determinant of $AB = E_1^{-1}\ldots E_p^{-1}B$ gives us:

$$\det(AB) = \det(E_1^{-1}\ldots E_p^{-1}B).$$

By Corollary 2, since the inverse of an elementary matrix is an elementary matrix:

$$\det(AB) = \det(E_1^{-1})\ldots \det(E_p^{-1}) \det(B).$$

Applying Corollary 2 again,

$$\det(AB) = \det(E_1^{-1}\ldots E_1^{-1}) \det(B).$$

And this is just,

$$\det(AB) = \det(A) \det(B)$$

as desired.

Case 2: A is not invertible. In this case, $\text{rref}(A)$ is not I_n and so must have a row of all zeroes. Performing LaPlace expansion across this row shows that $\det(\text{rref}(A)) = 0$. We have, (using Corollary 2),

$$(*) 0 = \det(\text{rref}(A)) = \det(E_p\ldots E_1A) = \det(E_p)\ldots \det(E_1) \det(A).$$

If E is an elementary matrix, then E is invertible. Hence, by Corollary 2

$$1 = \det(I_n) = \det(E) \det(E^{-1}).$$

This implies that the determinant of an elementary matrix is not zero. Hence, Equation (*) shows us that $\det(A) = 0$. In other words, the determinant of a non-invertible matrix is zero.

If A is not invertible, neither is AB by Exercise 34 of Section 2.4. Hence, $\det(AB) = 0$. Thus, $\det(AB) = \det(A) \det(B) = 0$. □