Notes on Determinants

1. Determinants and Row Operations

Theorem 1. Suppose that an $n \times n$ matrix A^{\prime} is obtained from A by a single row operation. Then the following are true:
(1) If the row operation switches two rows, then $\operatorname{det}\left(A^{\prime}\right)=-\operatorname{det}(A)$.
(2) If the row operation scales a row by $k \neq 0$, then $\operatorname{det}\left(A^{\prime}\right)=k \operatorname{det}(A)$.
(3) If the row operation replaces a row i by the sum of row i and row j, then $\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}(A)$.

We prove only the third possibility. Our method of proof is by induction.
Base Case: $n=2$
Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $A^{\prime}=\left[\begin{array}{cc}a & b \\ a+c & b+d\end{array}\right]$. Then

$$
\operatorname{det}(A)=a d-b c
$$

and

$$
\operatorname{det}\left(A^{\prime}\right)=a(b+d)-b(a+c)=a b+a d-b a-b c=a d-b c,
$$

so the theorem holds. If $A^{\prime}=\left[\begin{array}{cc}a+c & b+d \\ c & d\end{array}\right]$, then $\operatorname{det}\left(A^{\prime}\right)=d(a+c)-c(b+d)=$ $a d-b c$, as desired.
Inductive Case: Suppose that the theorem is true for $n \times n$ matrices and that we want to prove it for $(n+1) \times(n+1)$ matrices with $n \geq 2$.
Our row operation replaces row i with the sum of row i and row j. By an important theorem, we can calculate $\operatorname{det}\left(A^{\prime}\right)$ by LaPlace expansion across row k, where $k \neq$ i, j (using the fact that $n+1 \geq 3$. The formula for LaPlace expansion tells us that

$$
\operatorname{det}\left(A^{\prime}\right)=\sum_{c=1}^{n+1} a_{k c}^{\prime} \operatorname{det}\left(A_{k c}^{\prime}\right)
$$

where $a_{k c}^{\prime}$ is the entry in row k and column c of A^{\prime}. Since row k of A^{\prime} and row k of A are exactly the same $a_{k c}^{\prime}=a_{k c}$ for all c. The matrix $A_{k c}^{\prime}$ is an $n \times n$ matrix which is obtained from the matrix $A_{k c}$ by a row replacement operation. Since we are assuming the theorem is true for $n \times n$ matrices, $\operatorname{det}\left(A_{k c}^{\prime}\right)=\operatorname{det}\left(A_{k c}\right)$. Hence,

$$
\operatorname{det}\left(A^{\prime}\right)=\sum_{c=1}^{n+1} a_{k c}^{\prime} \operatorname{det}\left(A_{k c}^{\prime}\right)=\sum_{c=1}^{n+1} a_{k c} \operatorname{det}\left(A_{k c}\right)=\operatorname{det}(A) .
$$

This result has an important corollary:
Corollary 2. If A is an $n \times n$ matrix and if E is an elementary matrix, then $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.

Proof. Notice, first, that $\operatorname{det}\left(I_{n}\right)=1$. Thus, if E is obtained from I_{n} by a row swap, $\operatorname{det}(E)=-1$. If E is obtained from I_{n} by scaling a row of I_{n} by $k \neq 0$, $\operatorname{det}(E)=k$. And if E is obtained from I_{n} by a row replacement operation, $\operatorname{det}(E)=1$. The matrix $E A$ is obtained by performing the row operation corresponding to E on A, thus, if the row operation is a row swap, $\operatorname{det}(E A)=$ $-\operatorname{det}(A)$; if the row operation scales a row of A by $k \neq 0$, then $\operatorname{det}(E A)=$ $k \operatorname{det}(A)$; and if the row operation is a row replacement operation, $\operatorname{det}(E A)=$ $\operatorname{det}(A)$. The result follows immediately.

We can now prove the most important theorem about determinants:
Theorem 3. If A and B are $n \times n$ matrices, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
Proof. Let E_{1}, \ldots, E_{p} be the elementary matrices so that $E_{p} E_{p-1} \ldots E_{1} A=$ $\operatorname{rref}(A)$.
Case 1: A is invertible.
In this case $\operatorname{rref}(A)=I_{n}$ and $E_{p} \ldots E_{1} A=I_{n}$. That is, $A=E_{1}^{-1} \ldots E_{p}^{-1}$. Then taking the determinant of $A B=E_{1}^{-1} \ldots E_{p}^{-1} B$ gives us:

$$
\operatorname{det}(A B)=\operatorname{det}\left(E_{1}^{-1} \ldots E_{p}^{-1} B\right)
$$

By Corollary 2, since the inverse of an elementary matrix is an elementary matrix:

$$
\operatorname{det}(A B)=\operatorname{det}\left(E_{1}^{-1}\right) \ldots \operatorname{det}\left(E_{p}^{-1}\right) \operatorname{det}(B)
$$

Applying Corollary 2 again,

$$
\operatorname{det}(A B)=\operatorname{det}\left(E_{1}^{-1} \ldots E_{1}^{-1}\right) \operatorname{det}(B)
$$

And this is just,

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

as desired.
Case 2: A is not invertible.
In this case, $\operatorname{rref}(A)$ is not I_{n} and so must have a row of all zeroes. Performing LaPlace expansion across this row shows that $\operatorname{det}(\operatorname{rref}(A))=0$. We have, (using Corollary 2),

$$
\begin{equation*}
0=\operatorname{det}(\operatorname{rref}(A))=\operatorname{det}\left(E_{p} \ldots E_{1} A\right)=\operatorname{det}\left(E_{p}\right) \ldots \operatorname{det}\left(E_{1}\right) \operatorname{det}(A) \tag{*}
\end{equation*}
$$

If E is an elementary matrix, then E is invertible. Hence, by Corollary 2

$$
1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}(E) \operatorname{det}\left(E^{-1}\right)
$$

This implies that the determinant of an elementary matrix is not zero. Hence, Equation (*) shows us that $\operatorname{det}(A)=0$. In other words, the determinant of a non-invertible matrix is zero.
If A is not invertible, neither is $A B$ by Exercise 34 of Section 2.4. Hence, $\operatorname{det}(A B)=$ 0 . Thus, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=0$.

