
Notes on Determinants

1. DETERMINANTS AND ROW OPERATIONS

Theorem 1. Suppose that an n × n matrix A′ is obtained from A by a single row
operation. Then the following are true:

(1) If the row operation switches two rows, then det(A′) = −det(A).
(2) If the row operation scales a row by k 6= 0, then det(A′) = k det(A).
(3) If the row operation replaces a row i by the sum of row i and row j, then

det(A′) = det(A).

We prove only the third possibility. Our method of proof is by induction.
Base Case: n = 2

Suppose that A =
[
a b
c d

]
and A′ =

[
a b

a + c b + d

]
. Then

det(A) = ad− bc

and

det(A′) = a(b + d)− b(a + c) = ab + ad− ba− bc = ad− bc,

so the theorem holds. If A′ =
[
a + c b + d

c d

]
, then det(A′) = d(a+c)−c(b+d) =

ad− bc, as desired.
Inductive Case: Suppose that the theorem is true for n × n matrices and that we
want to prove it for (n + 1)× (n + 1) matrices with n ≥ 2.
Our row operation replaces row i with the sum of row i and row j. By an important
theorem, we can calculate det(A′) by LaPlace expansion across row k, where k 6=
i, j (using the fact that n + 1 ≥ 3. The formula for LaPlace expansion tells us that

det(A′) =
n+1∑
c=1

a′kc det(A′kc)

where a′kc is the entry in row k and column c of A′. Since row k of A′ and row k
of A are exactly the same a′kc = akc for all c. The matrix A′kc is an n × n matrix
which is obtained from the matrix Akc by a row replacement operation. Since we
are assuming the theorem is true for n×n matrices, det(A′kc) = det(Akc). Hence,

det(A′) =
n+1∑
c=1

a′kc det(A′kc) =
n+1∑
c=1

akc det(Akc) = det(A).

�
This result has an important corollary:

Corollary 2. If A is an n × n matrix and if E is an elementary matrix, then
det(EA) = det(E) det(A).
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Proof. Notice, first, that det(In) = 1. Thus, if E is obtained from In by a row
swap, det(E) = −1. If E is obtained from In by scaling a row of In by k 6= 0,
det(E) = k. And if E is obtained from In by a row replacement operation,
det(E) = 1. The matrix EA is obtained by performing the row operation cor-
responding to E on A, thus, if the row operation is a row swap, det(EA) =
−det(A); if the row operation scales a row of A by k 6= 0, then det(EA) =
k det(A); and if the row operation is a row replacement operation, det(EA) =
det(A). The result follows immediately. �

We can now prove the most important theorem about determinants:

Theorem 3. If A and B are n× n matrices, det(AB) = det(A) det(B).

Proof. Let E1, . . . , Ep be the elementary matrices so that EpEp−1 . . . E1A =
rref(A).
Case 1: A is invertible.
In this case rref(A) = In and Ep . . . E1A = In. That is, A = E−1

1 . . . E−1
p . Then

taking the determinant of AB = E−1
1 . . . E−1

p B gives us:

det(AB) = det(E−1
1 . . . E−1

p B).

By Corollary 2, since the inverse of an elementary matrix is an elementary matrix:

det(AB) = det(E−1
1 ) . . . det(E−1

p ) det(B).

Applying Corollary 2 again,

det(AB) = det(E−1
1 . . . E−1

1 ) det(B).

And this is just,
det(AB) = det(A) det(B)

as desired.
Case 2: A is not invertible.
In this case, rref(A) is not In and so must have a row of all zeroes. Performing
LaPlace expansion across this row shows that det(rref(A)) = 0. We have, (using
Corollary 2),

(∗) 0 = det(rref(A)) = det(Ep . . . E1A) = det(Ep) . . . det(E1) det(A).

If E is an elementary matrix, then E is invertible. Hence, by Corollary 2

1 = det(In) = det(E) det(E−1).

This implies that the determinant of an elementary matrix is not zero. Hence,
Equation (*) shows us that det(A) = 0. In other words, the determinant of a
non-invertible matrix is zero.
If A is not invertible, neither is AB by Exercise 34 of Section 2.4. Hence, det(AB) =
0. Thus, det(AB) = det(A) det(B) = 0. �


