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1. PRELIMINARIES

A mapping or transformation of a set X is a function which takes each
point of X to some other point of X . Here are two important points:

• Two transformations are the same if they have the same effects.
(Thus, it doesn’t matter how the transformation is performed, only
what the result of the transformation is.
• We will only consider transformations which are “invertible”. This

means that if T is a transformation, then there is another transforma-
tion S which “undoes” T . More about this later.

A transformation is a automorphism or symmetry of X if it preserves a
given “structure” of X . Right now this is a very vague statement but as we
see examples we will come to a clearer understanding of what this means.

Our first important example will concern symmetries of the plane that pre-
serve the distance between points and which take a square to itself. For
example, consider the rotation R180 of a square around its center by 180◦

counterclockwise. This is the same symmetry as “rotate 90◦ counterclock-
wise and then rotate another 90◦ counterclockwise. It is also the same as
“rotate by 180◦ clockwise”.

We’ll begin by listing all symmetries of the plane which take the square to
itself. In other words, points on the square can be moved about within the
square, but not outside the square.

2. GROUPS

2.1. Group Tables. Consider the square below. On the left is the plain old
square; on the right some axes of reflection are drawn. Reflecting the square
about one of these axes produces a square which is indistinguishable from
the first. We call the act of reflecting the square across one of these lines, a
reflection symmetry.

In addition to the reflection symmetries, we can also rotate the square by
multiples of 90◦ either clockwise or counter-clockwise. Denote a coun-
terclockwise rotation of θ degrees by Rθ . Figure 2 shows the effects of
repeatedly applying R90. For example, performing R90 once moves the pur-
ple vertex from the upper right to the upper left and cycles the other colored
vertices around ”one notch”.
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FIGURE 1. The symmetries of the square
.
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FIGURE 2. Applying R90 to the square. The vertices have
been colored to exhibit the effect of R90.

At this point, we should be a little more precise. A symmetry of an object
is a way of moving the object so that after the motion the object cannot be
distinguished from the the way it was before the motion. (Usually) when
we discuss shapes (like a square) lying on the plane we will insist that the
motion not change the distance between two arbitrary points. Sometimes,
for other objects, we will not insist that distance remain unchanged. It will
usually be clear from the context whether or not we assume distances are
unchanged.

Even though a symmetry is a motion or action, we will usually think of
it as an object of study in its own right. To be able to tell two different
symmetries apart we will often decorate the object (e.g. the square) and
look at what happens to the decorations. For example, the rotation R90
moves the colors of the vertices counter-clockwise. Two symmetries are
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”the same” if they have the same effect on our decorations. For example,
performing R90 and then performing R180 is the same as performing R270.
Similarly, performing R270 is the same as rotating the square by 90◦ in a
clockwise direction.

So far, we have listed 7 symmetries of the square:

R90,R180,R270,D,V,O,H.

In theory, we could produce new symmetries of the square by performing
one of these symmetries and then another. For example, performing R90
and then performing R90 again is the same as performing R180. There is
also the symmetry I, which consists of doing nothing at all. If S1 and S2 are
symmetries, if we first perform S1 and then perform S2 we call the resulting
symmetry S2 ◦S1. Notice that we should read this expression right to left.

Question: Is our list of symmetries: I, R90, R180, R270, D, V , O, H com-
plete?

Recall that D, V , O, and H are the reflections of the square about the lines
indicated in Figure 1. Let’s make a table:

S1

S2

S2 ◦S1 I R90 R180 R270 D V O H
I

R90
R180
R270

D
V
O
H

To fill in the table, notice that we must have S ◦ I = S no matter what sym-
metry S is, since I means do nothing. Similarly, I ◦ S = S no matter what
symmetry S is. For example, I ◦R90 = R90 since rotating by 90◦ and then
doing nothing is the same as rotating by 90◦. This allows us to fill in the
first row and the first column:
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S1

S2

S2 ◦S1 I R90 R180 R270 D V O H
I I R90 R180 R270 D V O H

R90 R90
R180 R180
R270 R270

D D
V V
O O
H H

Next, notice that if we perform R90 and then perform R90 we have simply
rotated the square 180◦. That is, we have performed R180. Using similar
lines of reasoning we can fill in the upper left quadrant of the table:

S1

S2

S2 ◦S1 I R90 R180 R270 D V O H
I I R90 R180 R270 D V O H

R90 R90 R180 R270 I
R180 R180 R270 I R90
R270 R270 I R90 R180

D D
V V
O O
H H

Now we can work on filling in the rest of the table. For example, to calculate
O◦R270 we remember that this means that we rotate the square by 270◦ and
then reflect over the off-diagonal axis. The left side of Figure 3 shows this
operation. By examining the dots we see that O◦R270 = V . The right side
of Figure 3 shows that R270 ◦O = H. Notice that this means that

O◦R270 6= R270 ◦O.

Similar calculations allow us to fill in the rest of the table. See Table 1.

Question: What patterns do you notice in the table?

Possible patterns include:
◦ every symmetry appears exactly once in each row and column.
◦ performing a reflection and then another reflection is the

same as performing a rotation.
◦ For each symmetry, there is another symmetry which “undoes it”.
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R270 ◦O = H

R270

O

O

R270

O◦R270 =V

FIGURE 3. Calculating O◦R270 and R270 ◦O

S1

S2

S2 ◦S1 I R90 R180 R270 D V O H
I I R90 R180 R270 D V O H

R90 R90 R180 R270 I H D V O
R180 R180 R270 I R90 O H D V
R270 R270 I R90 R180 V O H D

D D V O H I R90 R180 R270
V V O H D R270 I R90 R180
O O H D V R180 R270 I R90
H H D V O R90 R180 R270 I

TABLE 1. The group of symmetries of a square

The symmetries of the square are an example of what mathematicians call
a group.
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Definition 1. A group consists of a set G and an operation ◦ which com-
bines two elements of G such that the following properties to hold:

• (Closure) If a and b are in G, then b◦a is in G.
• (Associative) For any three elements a,b,c in G,

a◦ (b◦ c) = (a◦b)◦ c.

• (Identity) There exists an element I in G (called the identity ele-
ment) so that for every a in G,

a◦ I = I ◦a = a.

• (Inverses) For each a in G there exists some b in G so that

a◦b = b◦a = I.
The element b is called the inverse of a and is frequently written
a−1.

It need not be the case that for all a and b in X , a ◦ b = b ◦ a. That is, the
group is not necessarily commutative. Indeed, the symmetries of the square
are not commutative.

Here is a fundamental observation which allows us to apply mathematics to
the study of symmetry:

Theorem 1. For any object X , the set of symmetries of the object form a
group. We denote the group Sym(X). The operation is simply: first do one
symmetry and then do another symmetry.

Exercise 1. For the group of symmetries of the square do the following:

• Pick three elements a,b,c at random and show that

a◦ (b◦ c) = (a◦b)◦ c.

• Explain how the fact that an identity exists shows up in the table.
The first row and the first column are exactly the same as the
header column and the header row.

• Explain how the fact that each symmetry has an inverse symmetry
shows up in the table.

Every row and every column contains I.
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3. INTERLUDE: SYMMETRY IN MUSIC

Consider the “space” of Western Music. Symmetries of this space include
“reflection in time”, reflection about a pitch, translation in time, translation
in pitch (i.e. musical transposition). Composers have made use of all of
these symmetries (and more!). Here are a few simple examples.

Example 1 Below is the theme for the “Crab Canon” from Bach’s Musical
Offering. This is a canon where one player reads the music forwards and
the other reads the music backwards. The theme is, therefore, symmetric in
time about the midpoint of the composition. Notice that this does not mean
that the theme itself is symmetrical.

Example 2 The excerpt below is from Bartok’s Music for Strings, Percus-
sion and Celeste (mvt 1). What symmetry do you spot?1

Example 3: Below is an excerpt from the middle of Capriccio K395 by
Mozart. This passage is (approximately) symmetric under translation in
time and reflection in pitch. Notice how the symmetry is broken at the end
of the section.

1You can read more about symmetry in Bartok’s music at
http://www.solomonsmusic.net/diss7.htm
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Example 4 Below is a tone row from Webern’s Chamber Symphony. If we
read it backwards we have a transposed version of what we get if we read
it forwards. Thus, if we couldn’t tell that it had been transposed, the row
would be symmetric in time about its midpoint. Since it is transposed, it has
a symmetry which is a combination of time reversal and pitch transposition.

Example 5 Below is the tone row from Schoenberg’s Serenade (op 24, mvt
5). It is symmetric under the symmetry T ◦R◦ I, where I is inversion (turn-
ing it upside down), R is retrograde (playing it backwards), and T is a trans-
position.
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4. OTHER EXAMPLES OF GROUPS

We will occasionally make use of the following terminology:

• The integers are the positive and negative whole numbers and zero:

{. . . ,−2,−1,0,1,2, . . .}.
They are denoted by Z.
• The rational numbers are all the numbers which can be written as

fractions of two integers. 1
2 , 3.0000009, and −17 are examples of

rational numbers. The set of rational numbers is denoted Q.
• The set of real numbers is the set of all numbers on the number

line. It includes the integers and rational numbers as well as other
numbers like

√
2 and π . The set of real numbers is denoted R.

• The set of all real numbers except for zero is denoted R∗.

Exercise 2. Decide whether or not the following are groups.

(a) Z with the operation of +.
(b) Z with the operation of −.
(c) R with the operation of +.
(d) R with the operation of · (multiplication).
(e) R∗ with the operation of ·.

(a), (c), and (e) are groups. (b) is not a group because subtraction
is not associative. (d) is not a group because 0 does not have a
multiplicative inverse. (There is no number x so that 0 · x = 1.)

Notice that the groups in the previous exercise are not described as the sym-
metries of an object. A common philosophy in mathematics is: If you want
to study an object, study its group of symmetries; if you want to study a
group find an object for which the group is a group of symmetries.

Exercise 3. Show that the rotations of the square form a group. (Consider
I to be a rotation.)

Exercise 4. Explain why the Western tonal system has as symmetries the
rotations of a regular dodecagon. You may assume equal tempering so that
two adjacent notes differ by exactly one semitone (half step). (Hint: A 440
Hz sounds a lot like A 880 Hz.)

Here is another example. In this example the object will be three indis-
tinguishable points: . You should think of these as points (not dots
with thickness), which means that reflection about a horizontal line will not
count as one of our symmetries. Our group will be the group of symmetries
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of these points. We won’t insist that the symmetry preserve the distance
between the points. One example of an allowed symmetry is swapping the
first two points.

As with the square, to distinguish the effects of different symmetries, we’ll
add some colors to the points: . This will enable us to keep track of the
different behaviour of different symmetries.

To recap: our group is G = Sym( ). We need names for the different
symmetries of the points. Denote the action of swapping the first two points
by [1↔ 2]. In our notation:

[1↔ 2]( ) = .

We can also move the first point to the second position, the second point
to the third position, and the third point to the first position. Denote that
symmetry as [1→ 2→ 3→]. Notice how the colors change:

[1→ 2→ 3→]( ) = .

In the same vein, here is a list of more symmetries of the three points:

I
[1↔ 2]
[1↔ 3]
[2↔ 3]

[1→ 2→ 3→]
[1→ 3→ 2→]

Is this list complete? The answer is “yes”. Here’s how to tell. Applying
each symmetry to the colored points produces a new way of coloring
the points. If two symmetries produce the same coloring, they have the
same effect and so are considered to be the same symmetry. Given the
initial coloring of the points, no two of the symmetries in the list above
produce the same coloring. All those symmetries are, therefore, different.
But is the list complete? We still haven’t answered that question. To do so,
we’ll argue that there are at most 6 symmetries of . Since we have six
distinct symmetries in our list, our list must be complete.

Each symmetry produces a unique coloring of the points (given the initial
coloring: . There are three ways of coloring the first dot, two ways of
coloring the second, and one way of coloring the third. Thus there are six
total ways of coloring the points and, therefore, six total symmetries. Thus
our list is complete and no symmetry is listed more than once.
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We can now make up a group table for G. To do so, we go through a process
similar to what we did for the symmetries of the square. For example, to
compute

[1↔ 2]◦ [1→ 2→ 3→].

Look at what it does to the colors:

[1↔ 2]◦ [1→ 2→ 3→]( ) = [1↔ 2]( ) = .

Notice that this is the same coloring as the one given by [2↔ 3]:

[2↔ 3]( ) = .

Thus,
[1↔ 2]◦ [1→ 2→ 3→] = [2↔ 3].

Challenge! Find a more efficient way of computing the effect of combining
two symmetries of .

For the complete group table for G, see Table 2.

Some groups are so common that they deserve special names. Let Dn denote
the symmetry group of a regular n–gon. Thus, the symmetry group of the
square (which we studied previously) is denoted D4. The symmetry group
of n indistinguishable points is denoted Sn. Thus, the symmetry group of
three indistinguishable points (which we just studied) is denoted S3.

Exercise 5. (a) Show that every symmetry of 3 indistinguishable points
is also a symmetry of an equilateral triangle.

(b) Show that every symmetry of an equilateral triangle is also a sym-
metry of 3 indistinguishable points.

(c) Explain why the previous two exercises show that D3 is “the same
as” S3.

(d) Show that Dn contains 2n symmetries.
(e) Show that Sn contains n! = n(n−1)(n−2) . . .(3)(2)(1) symmetries.
(f) Explain why Dn is not the same as Sn for n≥ 4.

Exercise 6. Write down all elements of S4.

Exercise 7. In S4 there is a symmetry which interchanges the first two
points and which interchanges the last two points. Explain why this is the
same symmetry as the one where we first interchange the first two points
and then we interchange the last two points.

As we progress we will be writing down lots of permutations, so lets make
our notation more concise by dropping all the arrows. Thus, in S6, instead
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S 1

S 2

S 2
◦S

1
I

[1
↔

2]
[1
↔

3]
[2
↔

3]
[1
→

2
→

3
→

]
[1
→

3
→

2
→

]

I
I

[1
↔

2]
[1
↔

3]
[2
↔

3]
[1
→

2
→

3
→

]
[1
→

3
→

2
→

]
[1
↔

2]
[1
↔

2]
I

[1
→

3
→

2
→

]
[1
→

2
→

3
→

]
[2
↔

3]
[1
↔

3]
[1
↔

3]
[1
↔

3]
[1
→

2
→

3
→

]
I

[1
→

3
→

2
→

]
[1
↔

2]
[2
↔

3]
[2
↔

3]
[2
↔

3]
[1
→

3
→

2
→

]
[1
→

2
→

3
→

]
I

[1
↔

3]
[1
↔

2]
[1
→

2
→

3
→
]

[1
→

2
→

3
→
]

[1
↔

3]
[2
↔

3]
[1
↔

2]
[1
→

3
→

2
→

]
I

[1
→

3
→

2
→
]

[1
→

3
→

2
→
]

[2
↔

3]
[1
↔

2]
[1
↔

3]
I

[1
→

2
→

3
→

]

TABLE 2. The group table for S3.
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of writing [1→ 3→ 6→] we will write [136]. Also, we will frequently
leave out the ◦ when we combine symmetries. Thus, instead of writing
[136]◦ [243] we will write [136][243].
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5. INTERLUDE: CAMPANOLOGY

“To the ordinary man, in fact, the pealing of bells is a monotonous
jangle and a nuisance, tolerable only when mitigated by remote dis-
tance and sentimental association. [But the change-ringer’s] pas-
sion – and it is a passion – finds its satisfaction in mathematical
completeness and mechanical perfection, and as his bell weaves
her way rhythmically up from lead to hinder place and down again,
he is filled with the solemn intoxication that comes of intricate rit-
ual faultlessly performed. – Dorothy L. Sayers, The Nine Tailors,
1934.

Cathedral bells in England (and elsewhere) come in different pitches. They
are rung by pulling on ropes which swing the bells around. Typically, the
bells are rung sequentially. For example, if there are four bells S, A, T, and
B (in order of decreasing pitch), the bells might be rung in the order

S then A then T then B then S then A then T then B, etc.

The bells are very heavy and so it is not easy to radically alter the se-
quence (or “round”) in which they are rung. Usually, only two operations
on the sequence in which the bells are rung are permitted: plain changes
and cross changes. In a plain change, one pair of adjacent bells has their
order swapped. In a cross change, more than one pair of adjacent bells may
have their order swapped. For example:

One of the simplest changes is “the plain lead”. The “S” bell has been
colored red, to make it easier to track its position in the round.

S A T B
A S B T
A B S T
B A T S
B T A S
T B S A
T S B A
S T A B

Notice that we are alternately applying the symmetries g = [12][34] and
h = [23] to the round. Notice that the symmetries

{I, g, h◦g,g◦h◦g, (h◦g)2,g◦ (h◦g)2,(h◦g)3,g◦ (h◦g)3} =
{I, [12][34], [1342], [14], [14][23], [13][24], [1243], [23]}

form a group sitting inside S4.
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6. SUBGROUPS

Let G be a group with operation ◦. A subset H of G is a subgroup if H is a
group with operation ◦.
Exercise 8. Show that the set of rotations (including I) in Dn is a subgroup
of Dn. It is usually denoted Cn. Is the set of reflections a subgroup of Dn?

Exercise 9. Let G be the symmetries of a circle. Show that the set of rota-
tions in G is a subgroup of G.

One of the goals of this part of the course is to explain a particular relation-
ship between the subgroups of a group and the group itself. To understand
this relationship, it will be important to have at our disposal ways of cre-
ating subgroups of a given group. Here is a popular method, that will be
generalized in the next section of these notes.

We begin with a bit of notation. Let G be a group with operation ◦ and
suppose that g is a symmetry in G. We can obtain new group elements
by combining g with itself some number of times. For example, g ◦ g ◦ g.
Denote the result of combining g with itself n times by gn and denote the
result of combining g−1 with itself n times by g−n. For convenience, define
g0 = I.

Exercise 10. Show that the following rules hold for all numbers n,m ∈ Z.

(a) gn ◦gm = gn+m

(b) The inverse of gn is g−n.

The previous exercise shows that the set 〈g〉 defined by

〈g〉= {. . . ,g−3,g−2,g−1,I,g,g2,g3, . . .}
is a subgroup of G.

Exercise 11. Let g = [132][45] in S5. Write down all the elements of 〈g〉.
Exercise 12. Let g = [12][34] in S6. Write down all the elements of 〈g〉.

If G is a finite group and if g is a symmetry in G then 〈g〉 must also be a
finite group. The point of the next exercise is to show that if G is a finite
group, then, for some n ∈ N:

〈g〉= {I,g,g2,g3, . . . ,gn}
Exercise 13. Assume that G is a finite group and that g ∈ G. Let H =
{I,g,g2, . . .}. Recall that 〈g〉= {. . . ,g−3,g−2,g−1,I,g,g2,g3, . . .}. We wish
to show that H = 〈g〉. We will do this by showing that each symmetry in H
is also in 〈g〉 and that each symmetry of 〈g〉 is also in H.
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(a) Observe that each symmetry in H is also in 〈g〉.
(b) Explain why even though the set

H = {I,g,g2,g3, . . .}

looks like it has infinitely many symmetries in it, it can in fact have
only finitely many symmetries.

(c) Explain why the previous question implies that there are numbers
k, l ∈ N with k < l so that

gk = gl.

(d) Explain why the previous question implies that l−k > 0 and gl−k =
I.

(e) Define n = l − k. For m ∈ N, explain why the previous question
implies that g−m = gn−m.

(f) Explain why the previous parts show that H = 〈g〉.

Exercise 14. Give an example of a subgroup of D4 which is not equal to
〈g〉 for some g in D4.

6.1. Subgroups as adding decoration. If we are studying an object X (for
example the hexagon below). We can find subgroups of the object by adding
decorations and asking for all symmetries of X which preserve the decora-
tion.

Consider for example the symmetries of a regular hexagon:

D6 = {I,R60,R120,R180,R240,R300,a,b,c,d,e, f}

where {a,b,c,d,e, f} are the reflections indicated in the diagram:

b

d

e

f

c

a

Paint four of the corners of the hexagon red, as below:
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Then the symmetries of the hexagon which take red points to red points are:

H = {I,a,d,R180}.
H is a subgroup of D6.

Conversely, if we have a subgroup H of the symmetry group of X we can
(sometimes) decorate X so that H is the symmetry group of the decorated
X as follows.

(a) Find a point p in X such that every symmetry of X (other than I)
moves p to some new point.

(b) Add a decoration to p (say, color p red).
(c) List the symmetries in H as

H = {h1,h2,h3, . . .}.
(d) Decorate all of the points

{h1(p),h2(p), . . .}
the same way that p is decorated.

Theorem 2. If it is possible to perform all of these steps, then H is exactly
the symmetries of the decorated object X .

Proof. We must show that if g is a symmetry of the decorated object X , then
g is a symmetry in H and, conversely, if h is a symmetry in H then h is a
symmetry of the decorated object X . Let Dec be the set of all decorated
points of X .

Claim 1: If g is a symmetry of the decorated object X then g is a symmetry
in H.

The symmetry g takes all the points of Dec to other points of Dec. In par-
ticular, there exists h j in H so that

g(p) = h j(p).

This implies that
h−1

j ◦g(p) = p.
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In other words, the symmetry h−1
j ◦ g does not move p. However, p was

chosen so that every symmetry of X , other than I moves p to some other
point. Consequently,

h−1
j ◦g = I.

This implies that

g = h−1
j ,

and so g is a symmetry in H.

Claim 2: If hi is a symmetry in H then hi is a symmetry of the decorated
object X .

First of all, recall that H is a subgroup of the Sym(X) and so hi takes X to
itself. It remains to show that hi takes the set of decorated points Dec to
itself. Suppose that h j(p) is a point in Dec. Then:

hi(h j(p)) = (hi ◦h j)(p).

Since H is a group, there exists k so that hi ◦h j = hk. Thus,

hi(h j(p)) = hk(p).

By the definition of Dec, hk(p) is a decorated point. Thus, hi takes each
decorated point of X to another decorated point of X . �

Here is an example: recall that the symmetries of the hexagon are

D6 = {I,R60,R120,R180,R240,R300,a,b,c,d,e, f}

Let H be the subgroup
H = {I,c, f ,R180}

Pick a point p on the hexagon which is moved by every symmetry of D6
other than I.

P

Now decorate all the points Dec= {p,c(p), f (p),R180(p)}
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p

f (p)

c(p)

R180(p)

The subgroup H is exactly the symmetries of the decorated hexagon:

We are left with the question, “what keeps this method from working?”
There are two obstructions:

(a) There may not be a point p which is left unmoved by all the symme-
tries of X other than I.

(b) It may not be possible to “list” all the elements of H.

For an example where obstruction (a) arises, consider Sn (n≥ 3) as the sym-
metries of a set X of n points. For each point in X , there exists a symmetry
other than I which doesn’t move the point. For an example where obstruc-
tion (b) arises consider the set of symmetries G of a circle X and let H be
the set of rotations of the circle. At least abstractly there are ways around
both obstructions but we won’t go into them.

Exercise 15. Let G be the group of symmetries of a circle X and let H be
the rotations of X .

(a) Show that for each point p on X there exists a symmetry in G other
than I which doesn’t move p.

(b) Show that it is possible to add some decorations to the circle to create
an object Y such that the symmetries of Y are exactly the symmetries
in H. (Hint: Try adding arrows to the circle.)
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We’ve looked at some examples of symmetry in music. For the most part
those examples did not take rhythm or instrumentation into account. Taking
those into account frequently reduces the symmetry group of that section of
music to the trivial group {I}. Figure 4 below shows another example:

FIGURE 4. Notice that the copper lamp has both blue and
green jewels. We could study the symmetries of the lamp
where we ignore the color of the jewels. Call that symmetry
group G. If we only consider symmetries which preserve the
colors of the jewels (i.e. symmetries which take blue jewels
to blue jewels and green jewels to green jewels) we get a
symmetry group H. The symmetry group H is a subgroup
of the symmetry group G.
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7. GENERATORS

Although every (finite) group has a group table, for all but the smallest
groups writing down the group table is very inefficient. For most groups,
even writing down all the symmetries in the group is an arduous or im-
possible task. A more efficient method is to write down a collection S of
symmetries such that every other symmetry in the group is a combination
of symmetries in S and their inverses. That small number of elements from
which every other group element can be generated will be called a set of
generators for the group.

7.1. Generating the Dihedral Groups. To begin our discussion, we return
to consideration of the group D4, the symmetries of the square. We want
to find a list of elements S in D4 so that every element in D4 can be written
as a combination of those elements in our list. We say that S generates D4
and that S is a set of generators for D4. Of course it is possible to just put
every element of D4 into S, but this is not very useful. We want S to be as
small as possible.

First, notice, that there are two types of elements in D4: reflections and rota-
tions (count the identity as a rotation). Combining two reflections produces
a rotation, and examing Table 1 shows that every rotation can be written
as a combination of two reflections. Thus, the reflections generate D4. We
could, therefore, let S be the set of reflections: D, V , O, and H.

Question: What is the fewest number of reflections that will generate D4?

We need at least two reflections, since combining a reflection with itself
produces I. Consider the reflections D and H. H ◦D = R90 and so we can
definitely obtain

I,D,H,R90.

Once we have R90, we can obtain

R90,R180, and R270.

Exercise 16. Write R180 and R270 as combinations of D and H.

Question: Can we obtain all the reflections using just D and H?

Yes. We already have D and H, so we just need O and V . We also already
know that we can obtain all the rotations. Notice that R180 ◦D = O and
R270 ◦D =V . Thus the reflections D and H generate all of D4.

Exercise 17. (a) Show that D and V generate D4.
(b) Show that R90 and any reflection generate D4.
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(c) Show that H and V do not generate D4.
(d) Show that the rotations do not generate D4.

For the last question, it may be helpful to notice that if you put arrows on
the sides of the square so that they all point counter-clockwise around the
square then a rotation will never change the fact that the arrows point coun-
terclockwise. A reflection, however, does change the arrows from being
counterclockwise to being clockwise. Thus, no combination of rotations
can ever produce a reflection.

Exercise 18. Show that it is possible to generate Dn using only a reflection
and a rotation. How many degrees must the rotation rotate? Does it matter
what the reflection does?

Exercise 19. Consider the subgroup Cn of Dn. (Cn consists of all rotational
symmetries of a regular n–gon.) Explain how to find a symmetry S in Cn so
that Cn = 〈S〉.

Exercise 20. Consider the set H of all rotations of a circle by (2πk)/2n

degrees where k and n are integers. Show that H is a group and that there
does not exist a symmetry S so that H = 〈S〉.

Exercise 21. Let C be the group of rotations of a circle. Does there exist a
symmetry S in C so that C = 〈S〉?

7.2. Generating the Symmetric Groups.

Exercise 22. What is the fewest number of symmetries in S3 that will gener-
ate S3? List several possibilities for generating sets with the fewest possible
number of elements.

A cycle in Sn is a symmetry which moves a subset of the points in a way
analogous to a rotation in Dn. For example, [1→ 3→ 5→ 4→] is a cycle
in S5. We will sometimes use [5→] denote a cycle which doesn’t move the
5th point. (Of course, 5 can be replaced by any other number.) A transpo-
sition is a cycle that swaps the position of two points. (Note: This notion
of transposition is completely different from the notion of transposition in
music.) For example, [2↔ 5] is a cycle which swaps the second and fifth
points.

The next theorem shows that the cycles generate Sn.

Lemma 3. Given a permutation g in Sn, it possibly to write

g = cm ◦ cm−1 ◦ . . .c1
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where each ci is a cycle and each number of {1, . . . ,n} appears in exactly
one cycle. Moreover, (up to the order in which c1,c2, . . . ,cm is written) there
is a unique way of doing this.

Proof. To construct the list of cycles: Start with 1 and see where the first
point goes to. Say it goes to 6. Write [1→ 6. Then see where 6 goes to, say
it goes to 3. Write [1→ 6→ 3 continue this process until we return to 1.
Maybe we get [1→ 6→ 3→ 4→]. Now take the smallest number from the
list {1,2, . . . ,n} and repeat the process. Then perhaps we get [2→ 5→ 8→
]. Keep doing this until we’ve written down all the numbers in {1, . . . ,n}. If
the symmetry g doesn’t move a point, say it doesn’t move the 7th point, we
will have a cycle of the form [7→]. �

In fact, the transpositions themselves generate Sn. To see this, observe that
we only need to show that each cycle is a combination of transpositions.

Theorem 4. Suppose that g is a a cycle of m points. Then g is the combi-
nation of m−1 transpositions.

Proof. Suppose that
g = [a1a2a3 . . .am]

is a cycle where a1, . . . ,am are numbers in {1, . . . ,n} with no number re-
peated more than once. Then it is easy to see that:

g = [a1a2]◦ [a2a3]◦ [a3a4]◦ . . .◦ [am−1am].

�

Exercise 23. Verify that [13579] = [13][35][57][79].

Exercise 24. How many transpositions are there in Sn?
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8. INTERLUDE: PLAIN BOB MINIMUS

One of the basic changes in campanology is Plain Bob Minimus. Each
column of the following table shows the change Plain Bob Minimus for
four bells. In each column a different bell has been colored to make its
position in the round easier to track.

S A T B
A S B T
A B S T
B A T S
B T A S
T B S A
T S B A
S T A B
S T B A
T S A B
T A S B
A T B S
A B T S
B A S T
B S A T
S B T A
S B A T
B S T A
B T S A
T B A S
T A B S
A T S B
A S T B
S A B T

S A T B
A S B T
A B S T
B A T S
B T A S
T B S A
T S B A
S T A B
S T B A
T S A B
T A S B
A T B S
A B T S
B A S T
B S A T
S B T A
S B A T
B S T A
B T S A
T B A S
T A B S
A T S B
A S T B
S A B T

S A T B
A S B T
A B S T
B A T S
B T A S
T B S A
T S B A
S T A B
S T B A
T S A B
T A S B
A T B S
A B T S
B A S T
B S A T
S B T A
S B A T
B S T A
B T S A
T B A S
T A B S
A T S B
A S T B
S A B T

S A T B
A S B T
A B S T
B A T S
B T A S
T B S A
T S B A
S T A B
S T B A
T S A B
T A S B
A T B S
A B T S
B A S T
B S A T
S B T A
S B A T
B S T A
B T S A
T B A S
T A B S
A T S B
A S T B
S A B T

In a previous interlude we learned that the plain lead on four bells is the set
of all permutations effected by the symmetries in the subgroup

H = {I, [12][34], [1342], [14], [14][23], [13][24], [1243], [23]}

That subgroup is generated by {[12][34], [23]}. Notice that the first section
of Plain Bob Minimus is simply the plain lead. In fact, each section of Plain
Bob Minimus is the plain lead on four bells, just starting from a different
round each time. To get between sections, the symmetry [34] is used. All
24 permutations of 4 bells show up in Plain Bob Minimus. Thus,

S4 = 〈[12][34], [23], [34]〉.
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Given our initial round of “S A T B”, each subsequent round is determined
by a permutation that gets us from “S A T B” to the new round. For ex-
ample, the round “T B S A” corresponds to the permutation [13][24]. Here
is Plain Bob Minimus written with some permutation labels emphasizing a
certain pattern:

I
[12][34] = h1
[13][42] = h2

[14] = h3
[14][23] = h4
[13][24] = h5
[1243] = h6

[23] = h7
I◦ [243]

h1 ◦ [243]
h2 ◦ [243]
h3 ◦ [243]
h4 ◦ [243]
h5 ◦ [243]
h6 ◦ [243]
h7 ◦ [243]

I◦ [234]
h1 ◦ [234]
h2 ◦ [234]
h3 ◦ [234]
h4 ◦ [234]
h5 ◦ [234]
h6 ◦ [234]
h7 ◦ [234]

Notice that [234] is the inverse of [243]. Thus, we can see from this table
that

S4 = 〈h1,h7, [234]〉
Furthermore, we also can see the structure of the sections of Plain Bob
Minimus. The first section is just the effect of applying the symmetries in
H to the initial round “S A T B”. The second section is the effect of applying
symmetries which are a combination of [243] and the symmetries of H to
“S A T B”. The third section is the effect of applying symmetries which are
a combination of [234] and the symmetries of H to “S A T B”.
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9. EVEN AND ODD SYMMETRIES IN Sn

Recall from the previous section that every symmetry in Sn can be written
as the combination of transpositions in Sn. There are, however, lots of ways
of writing a single symmetry as a combination of transpositions.

For example, consider [12345] in S5. Then

[12345] = [12][23][34][45]
= [34][25][15][24]
= [34][13][25][13][15][24]

We see from the example that there may be lots of different ways of writing
a symmetry as a combination of transpositions. However, the following is a
useful fact:

Theorem 5. A symmetry in Sn can be written as a combination of either
an even number of transpositions or as a combination of an odd number of
transpositions, but not both.

The proof relies on the concept of “cycle number”, which we now define.
Suppose that g is a symmetry in Sn. Then g can be written as a combi-
nation of cycles. This can be done in such a way that each number from
{1,2, . . . ,n} appears in one of the cycles and no number appears more than
once. The cycle number of g is equal to the number of cycles.

For example if [125] is in S5 we can write

[125] = [125][3][4]

so the cycle number of [125] in S5 is 3. The cycle number of [125] in S8 is
6.

An observation which will be useful later is that, in Sn, the cycle number of
I is n since

I = [1][2][3] . . . [n].

The next lemma (or “helper theorem”) is the key to proving that each sym-
metry can be written as a combination of an odd number of transpositions
or as a combination of an even number of transpositions, but not both.

Lemma 6. Suppose that g is a symmetry in Sn and that t is a transposition
in Sn. Then the cycle number of g◦ t is exactly one more or exactly one less
than the cycle number of g.

Proof of Lemma. We simply sketch the idea behind the proof. Assume that
the transposition t swaps the point in position i and the point in position j.
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Write g as the combination of cycles, so that each number from {1,2, . . . ,n}
appears in exactly one cycle. Remember that the cycle number of g is equal
to the number of cycles.

Case 1: Points i and j are not in the same cycle of g.

Contemplate this picture:

i

j

g:

j

g◦ t:

i

The cycles not containing points i and j are unaffected by the transposition
t. We see that the cycle number of g◦ t is one less than the cycle number of
g.

Case 2: Points i and j are on the same cycle.

Contemplate this picture:
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j

i

g:

i

g◦ t:
j

The cycles not containing i and j are unaffected by the transposition t. We
see that the cycle number of g ◦ t is one more than the cycle number of
g. �

We can now prove the theorem that a symmetry g in Sn can be written as
a combination of an odd number of cycles or as a combination of an even
number of cycles, but not both.

Proof of Theorem. Suppose that

g = t1 ◦ t2 ◦ . . . tk
where each ti is a transposition. Then,

I = g◦ tk ◦ tk−1 ◦ . . .◦ t2 ◦ t1.

Each time we apply a transposition to g the cycle number increases by one
or decreases by one. The cycle number of I is n. If you like you may think
about a light switch. If the cycle number of g is odd, the light starts off. If
the cycle number of g is even, the light starts on. If n (the cycle number
of I) is odd the light ends off. If n is even, the light ends on. For each
transposition you see, flick the light switch once.

Thus the following are true:
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• If the cycle number of g is odd and if n is odd, then there are an even
number of transpositions.
• If the cycle number of g is odd and if n is even, then there are an odd

number of transpositions.
• If the cycle number of g is even and if n is odd, then there are an odd

number of transpositions.
• If the cycle number of g is even and if n is even, then there are an

even number of transpositions.

We have written g as a combination of transpositions. We have shown that
whether or not the number of transpositions is even or odd depends only on
whether n is even or odd and on whether the cycle number of g is even or
odd. �

If a symmetry in Sn can be written as a combination of an even number
of transpositions, then we call it an even permutation. Otherwise it is
an odd permutation. The set of all even permutations in Sn is called the
alternating group of n points. It is denoted An. It turns out that An is a
subgroup of Sn and that exactly half the symmetries of Sn are in An.
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10. INTERLUDE: 15-PUZZLE

“People became infatuated with the puzzle and ludicrous tales are
told of shopkeepers who neglected to open their stores; of a dis-
tinguished clergyman who stood under a street lamp all through
a wintry night trying to recall the way he had performed the feat.
The mysterious feature of the puzzle is that no one seems able to re-
call the sequence of moves whereby they feel sure they succeeded
in solving the puzzle. Pilots are said to have wrecked their ships,
engineers rush their trains past stations and business generally be-
came demoralized. ... Farmers are known to have deserted their
plows and I have taken one of such instances an an illustration of
the above sketch”. – Sam Loyd

The 14-15 puzzle was marketed in the late 19th century by Sam Loyd, prob-
ably America’s greatest puzzle master of all time. It consisted of 15 squares
in a 4×4 grid. There was one empty space (which we will think of as being
square 16). A square adjacent to the empty square could be slid into it. The
goal was to slide the squares around, so that the numbers appeared in order,
like so:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

.

The version marketed by Loyd was called the 14–15 puzzle. It had an initial
configuration of:

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

.
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Loyd offered a $1000 prize for the solution of the 14-15 puzzle. The prize
was never collected, for the simple reason that it is impossible to solve!

Let’s see why Loyd’s puzzle is unsolvable. Let’s say that a configuration
of the puzzle is valid if there is a sequence of legal moves which converts
that configuration into the solved configuration. If there is no such sequence
of moves, the configuration is invalid. We will show that Loyd’s starting
position is invalid.

Each possible initial configuration of the puzzle is determined by a symme-
try in S16 which converts the solved configuration into the initial configura-
tion. If g is a symmetry in S16 producing a certain configuration, then if we
perform a legal move on the configuration, there is a transposition t in S16
so that t ◦g is the symmetry corresponding to the new configuration.

To show that Loyd’s puzzle cannot be solved, we complete the following
four steps:

(a) Create a function F which takes in a symmetry in S16 and spits out
either +1 or −1.

(b) Show that if a legal move is applied to a configuration, the value of
F is unchanged.

(c) Show that F applied to the solved configuration is +1
(d) Show that F applied to Loyd’s initial configuration is −1.

Step 1: Create the function F .

F will be made up of two pieces: ε and δ .

Suppose that g is the symmetry in S16 which produces the given config-
uration from the solved configuration. Define ε(g) = +1 if g is an even
permutation, and define ε(g) =−1 if g is an odd permutation.

Suppose that in the initial position, square 16 is x(g) squares to the left, and
y(g) squares up from square 16 in the solved position. Define δ (g) to be
+1 if x+ y is even and define it to be −1 if x+ y is odd.

Define F(g) = ε(g)δ (g).

Exercise 25. For this inital position g, find F(g).

1 4 2 3
8 5 6 7
9 11 12

13 15 14 10
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Step 2: Show that F is unchanged under legal moves.

Suppose that a symmetry g in S16 produces the initial configuration and that
we apply a legal move to produce a new configuration. Then there is a trans-
position t in S16 so that the symmetry t ◦g produces the new configuration
from the solved configuration. We wish to show that F(g) = F(t ◦g).

If g is an even permutation, then t ◦g is an odd permutation. If g is an odd
permutation, then t ◦g is an even permutation. Thus, ε(g) has the opposite
sign as ε(t ◦g). That is, ε(t ◦g) =−ε(g).

In a legal move, square 16 is moved up, down, left, or right one square.
That is, either x or y (but not both) is increased or decreased by 1. Thus, if
x(g)+y(g) is even, then x(t ◦g)+y(t ◦g) is odd. If x(g)+y(g) is odd, then
x(t ◦g)+ y(t ◦g) is even. That is, δ (t ◦g) =−δ (g).

We conclude that

F(t ◦g) = (−ε(g))(−δ (g)) = F(g).

Step 3: Show that F applied to the solved configuration is 1.

In this case, we have ε(I) = 1 and δ (I) =+1, since x(I)+y(I) = 0+0 = 0.

Step 4: Show that F applied to Loyd’s configuration is −1.

Loyd’s configuration is produced from the solved configuration by the sym-
metry g = [14 15]. This symmetry has ε(g) = −1 and δ (g) = 1 since
x(g)+ y(g) = 0.

Exercise 26. Suppose that the initial configuration of the puzzle is produced
from the solved configuration by an odd permutation of the 15 tiles (leaving
the empty spot in the lower right corner). Show that this initial configuration
is invalid.

It turns out that any configuration g of the puzzle for which F(g) = 1 is
a configuration which can be converted into the solved configuration by
legal moves. That is, the function F can tell us precisely whether or not
a given configuration of the puzzle can be solved. We have shown that if
F(g) = −1, then the puzzle cannot be solved. The proof that if F(g) = 1
then the puzzle can be solved is not much more difficult. It centers on
showing that all 3–cycles of S15 are contained in the subgroup of S16 which
leaves square 16 in the lower right corner and which consists of symmetries
which are combinations of legal moves. The fact that 3–cycles generate A15
is then used to show that any configuration which is an even permutation of
squares 1 - 15 can be obtained by legal moves.
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11. THE ALTERNATING GROUPS

The set of all even permutations in Sn is denoted by An.

Theorem 7. An is a subgroup of Sn and it has half the number of symmetries
as Sn. (That is, it contains n!/2 symmetries.)

Proof. Notice that I = [12][12], so that I is a symmetry in An. Suppose that
g is a symmetry in An so that

g = t1 ◦ t2 ◦ . . .◦ tm

where each ti is a transposition and m is an even number. Then,

g−1 = t−1
m ◦ . . .◦ t−1

2 ◦ t−1
1 = tm ◦ . . .◦ t2 ◦ t1.

This implies that g−1 is in An. Finally suppose that

g = t1 ◦ t2 ◦ . . .◦ tm
h = s1 ◦ s2 ◦ . . .◦ sk

are in An with each ti and s j a transposition and m and k even. Then,

g◦h = t1 ◦ t2 ◦ . . .◦ tm ◦ s1 ◦ s2 ◦ . . .◦ sk.

Notice that we have written g◦h as a combination of m+ k transpositions.
Since m and k are both even, m+k is even. Consequently, g◦h is in An. We
conclude that An is a subgroup of Sn.

To see that An has half the symmetries of Sn, consider the function f : Sn→
Sn given by:

f (g) = [12]◦g.
Notice that f takes even permutations to odd permutations and odd permu-
tations to even permutations. Suppose that g and h are permutations in Sn
such that

f (g) = f (h).
Then,

f (g) = f (h)
([12]◦g) = [12]◦h

([12]◦ ([12]◦g)) = ([12]◦ ([12]◦h))
([12]◦ [12])◦g = ([12]◦ [12])◦h

g = h.
We conclude that f takes different symmetries to different symmetries.
Since after applying f every even permutation becomes an odd permuta-
tion, the number of even permutations is less than or equal to the number
of odd permutations. Also, since after applying f every odd permutation
becomes an even permutation, the number of odd permutations is less than
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or equal to the number of even permutations. Hence, the number of even
permutations is the same as the number of odd permutations. Since every
symmetry in Sn is either an even permutation or an odd permutation and
since there are the same number of each, the number of symmetries in An
is half the number of symmetries of Sn. �

Exercise 27. (a) Show that [123] is an even permutation in S4 and that
[1234] is an odd permutation.

(b) Consider the subgroup H = 〈[123], [12][56]〉 in S8. Explain why
[1234] is not a symmetry in H. (That is, explain why [1234] cannot
be written as a combination of [123] and [12][56] and their inverses.)

(c) Show that the symmetries [12][34] and [123] generate A4.
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12. LAGRANGE’S THEOREM

We now come to the most important theorem in (finite) group theory.

Theorem 8 (Preliminary version of LaGrange’s Theorem). Suppose that H
is a subgroup of a finite group G. Then the number of symmetries in G is a
multiple of the number of symmetries in H.

12.1. Examples of LaGrange’s Theorem in Practice. You might wish to
verify the following examples of the relationship indicated by LaGrange’s
theorem.

(a) The number of symmetries in Dn is twice the number of symmetries
in Cn.

(b) The number of symmetries in Sn is twice the number of symmetries
in An.

(c) The number of symmetries in S4 is three times the number of per-
mutations in the plain lead on four bells.

(d) The number of symmetries in D4 is four times the number of sym-
metries in the subgroup {I,H}.

(e) The number of symmetries in D6 is three times the number of sym-
metries in the subgroup {I,a,d,R180} where a and d are the reflec-
tions of the hexagon about vertical and horizontal lines respectively.

Here are some consequences of LaGrange’s theorem:

Exercise 28. (a) Suppose that H is a subgroup of D8. How many sym-
metries might H contain?

(b) Suppose that H is a subgroup of S4. How many symmetries might
H contain?

(c) Suppose that H is a subgroup of a cyclic group Dp where p is a prime
number. How many symmetries might H contain?

(d) Use the previous problem to show that every possible way of deco-
rating the object below will result in an object with either no non-
trivial symmetries or with 5 rotational symmetries (including the
trivial symmetry I).



38

(e) Show that S5 has no subgroups containing exactly 7, 9, or 17 sym-
metries.

The remainder of this section will be taken up with the proof of LaGrange’s
Theorem. Throughout, let G be finite group and let H be a subgroup of G.
We wish to show that there is a number k so that

# of symmetries in G = k · ( # of symmetries in H).

The first step is to figure out what the number k could be.

12.2. Cosets. For an element g in G, denote by gH the set:

gH = {g◦h : h is in H}.

That is, gH is the set of all symmetries in G which can be obtained by first
performing a symmetry in H and then performing the symmetry g. The set
gH is called the left coset of H in G containing g.

As you might guess, there are also right cosets of H in G. For g a symmetry
in G, the right coset of H in G containing g is

Hg = {h◦g : h is in H}.

Exercise 29. Explain why the three sections of the change Plain Bob Minor
for 4 bells are exactly the three right cosets of the plain lead in S4.

In general, gH is not the same as Hg. If I don’t specify whether I am talking
about left cosets or right cosets, I will mean left cosets.

Example 1. In this example, let G = D4 and let H = C4 the subgroup of
rotations.

(a) Find the coset of C4 in D4 containing R90.
We do this by listing the symmetries in C4 on the right and then

combining each of them with our chosen symmetry R90.
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| C4 | R90C4
R90 ◦ I = R90
R90 ◦ R90 = R180
R90 ◦ R180 = R270
R90 ◦ R270 = I

Thus the coset of C4 in D4 containing R90 is

R90C4 = {R90,R180,R270,I}.
What matters is the symmetries in the list, not the order in which
they are listed. Notice that the coset we just found is exactly C4.

Exercise 30. Show that if g is any rotation in D4, then gC4 =C4.

(b) Find the coset of C4 in D4 containing the symmetry V .
We do this by listing the symmetries in C4 on the right and then

combining each of them with our chosen symmetry V .

| C4 | VC4
V ◦ I = V
V ◦ R90 = O
V ◦ R180 = H
V ◦ R270 = D

Thus, the coset of C4 in D4 containing V is

VC4 = {V,O,H,D}.

Exercise 31. Show that if g is any reflection in D4, then the coset
gC4 is exactly the same as VC4.

We conclude that C4 has two distinct cosets inside D4. One of the cosets is
equal to C4 itself (i.e. consists of the rotations.) and the other coset consists
of all the reflections.

The next lemma simplifies the process of finding all the distinct cosets.

Lemma 9. Let G be a finite group and let H be a subgroup. Then any two
left cosets of H in G either contain all the same symmetries (i.e. they are
equal) or they have all different symmetries.

Proof. Let a and b be symmetries in G and suppose that aH and bH have a
symmetry in common. This means that there exist symmetries h1 and h2 in
H such that

a◦h1 = b◦h2.

Notice that this means that a = b◦ (h2 ◦h−1
1 ) and b = a◦ (h1 ◦h−1

2 ).



40

We need to show that they have all their symmetries in common. We do
this by showing that every symmetry in aH is also in bH and that every
symmetry in bH is also in aH.

Step 1: Show that every symmetry in aH is also in bH.

Suppose that g is a symmetry in aH. This means that there exists a symme-
try h3 in H so that g = a◦h3. Since a = b◦ (h2 ◦h−1

1 ), we have

g = b◦ (h2 ◦h−1
1 )◦h3.

By the associative property:

g = b◦ (h2 ◦h−1
1 ◦h3)

Since H is a group, h2 ◦h−1
1 ◦h3 is a symmetry in H. Since bH consists of

all symmetries which are created by combining a symmetry in H with b, g
is in bH. Since g was an arbitrary symmetry in aH, we have shown that
every symmetry in aH is also a symmetry in bH.

Step 2: Show that every symmetry in bH is also a symmetry in aH.

This step is left as an exercise. �

Exercise 32. Complete Step 2 in the proof above.

Example 2. Here are the symmetries of a regular hexagon:

D6 = {I,R60,R120,R180,R240,R300,a,b,c,d,e, f}
where {a,b,c,d,e, f} are the reflections indicated in the diagram:

b

d

e

f

c

a

Let H be the subgroup {I,a,d,R180}. Find all the (distinct) left cosets of H
in D6.

Our strategy is to pick a symmetry in g, calculate the coset gH. Then pick
a symmetry not in gH, calculate the coset containing that symmetry and
repeat. Once we write down a symmetry in G, as part of a coset calcula-
tion we never need to calculate the coset containing that symmetry. This is
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because by the lemma above, its coset will just be one of the cosets we’ve
already written down.

We begin by calculating the coset containing I:

| H | IH
I ◦ I = I
I ◦ a = a
I ◦ d = d
I ◦ R180 = R180

So one of the cosets of H in D6 is just H itself.

Now pick a symmetry not in H, say the reflection b:

| H | bH
b ◦ I = b
b ◦ a = R60
b ◦ d = R240
b ◦ R180 = e

So one of the cosets of H in D4 is {b,R60,R240,e}.

Now pick a symmetry in D6 that we haven’t yet seen. Say, the reflection c:

| H | cH
c ◦ I = c
c ◦ a = R120
c ◦ d = R300
c ◦ R180 = f

So another coset of H in D6 is {c,R120,R300, f}.

Since every symmetry in D6 appears in one of the cosets we have written
down, we can stop. We conclude that H has three distinct left cosets in D6.
They are:

{I,a,d,R180}
{b,R60,R240,e}
{c,R120,R300, f}

Lemma 10. Suppose that G is a finite group and that H is a subgroup of G.
Then one of the cosets of H in G is H itself.

Proof. The coset of H in G containing I must be H. �
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I [12] [13] [14] [23] [24]
[34] [12][23] [13][32] [12][24] [14][42] [13][34]

[14][43] [23][34] [24][43] [12][34] [13][24] [14][23]
[12][24][43] [12][23][34] [13][32][24] [13][34][42] [14][42][23] [14][43][32]

TABLE 3. The even symmetries inside S4.

I [12] [13] [14] [23] [24]
[34] [12][23] [13][32] [12][24] [14][42] [13][34]

[14][43] [23][34] [24][43] [12][34] [13][24] [14][23]
[12][24][43] [12][23][34] [13][32][24] [13][34][42] [14][42][23] [14][43][32]

TABLE 4. The two cosets of A4 inside S4 are colored differently.

Example 3. Find all the (left) cosets of A4 in S4.

We begin by listing the elements of S4 in Table 3. We write each element
as the combination of transpositions, to make it easy to tell if an element is
in A4 or not. The symmetries in A4 have been shaded red. They also form
one of our cosets.

Let’s pick a symmetry in S4 which is not in A4. Let’s pick [12]. Now
calculate [12]A4 by combining each symmetry in A4 with [12]:

[12]◦ I = [12]
[12]◦ [12][23] = [23]
[12]◦ [13][32] = [13]
[12]◦ [12][24] = [24]
[12]◦ [14][42] = [14]
[12]◦ [13][34] = [1342]
[12]◦ [14][43] = [1432]
[12]◦ [23][34] = [1234]
[12]◦ [24][43] = [1243]
[12]◦ [12][34] = [34]
[12]◦ [13][24] = [1324]
[12]◦ [14][23] = [1423]

Notice, that between A4 and [12]A4 we have gotten all the symmetries in
S4. Thus, there are two cosets of A4 in S4. Notice that both cosets contain
exactly the same number of symmetries. If we color the symmetries of S4
corresponding to the cosets of A4 we have Table 4.
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The previous examples suggest the following theorem.

Theorem 11 (LaGrange’s Theorem for real). Let G be a finite group of
symmetries and suppose that H is a subgroup. Then:

# of symmetries in G=( # of left cosets of H in G)·( # of symmetries in H).

The proof of LaGrange’s theorem. LaGrange’s theorem follows from the
following three claims. The first two were proven earlier as lemmas.

(1) If two left cosets have any symmetry in common, they are the same
coset. (Left cosets partition G.)

(2) H is the coset of H in G containing I.

(3) All left cosets have the same number of elements as H.

Claim (1) means that we can sort the symmetries in G into boxes corre-
sponding to the left cosets of H in G.

g12H

g6H g7H g8H

g9H g10H g11H

g1H g2H g3H g4H

g5H

In this example, there are 12 (different) left cosets of H in G. Each
symmetry in H is in one of the boxes representing one of the cosets.
No symmetry is in more than one coset.

Claim (2) means that one of the left cosets of H in G is exactly H.

g12H

g6H g7H g8H

g9H g10H g11H

H g2H g3H g4H

g5H

In this example, there are 12 (different) left cosets of H in G. Each
symmetry in H is in one of the boxes representing one of the cosets.
No symmetry is in more than one coset. H is one of the cosets.



44

Claim (3) means that all the cosets contain the same number of symmetries.
This means that all the cosets contain the same number of symmetries as H.

symmetries

symmetries

symmetries

symmetries

symmetries

symmetries

symmetries

symmetries

symmetries

symmetries

symmetries

symmetries
#H #H #H #H

#H#H#H#H

#H #H #H#H

In this example, there are 12 cosets of H in G. Each coset has the
same number of symmetries as H. Since every symmetry in G is
in a coset and since no two different cosets have a symmetry in
common, this means that G has 12 times as many symmetries as
does H.

Here is a proof of Claim 3:

Proof of Claim 3. Let gH be a coset of H in G. We match every symmetry
in gH with a symmetry in H and every symmetry in H with a symmetry in
gH so that different symmetries are matched to different symmetries. Here
is the matching: Let g◦h be a symmetry in gH where h is some symmetry
in H. Match g◦h with h. �

In addition to proving LaGrange’s theorem, cosets are useful when we are
looking for ways to generate a group. Here is an updated proof that Dn is
generated by a rotation and a reflection.

Theorem 12. Dn can be generated by a rotation and a reflection.

Proof. The subgroup Cn consists of all the rotations in Dn. It is generated
by the smallest rotation, call it Rθ . By LaGrange’s theorem, Cn has two
cosets in Dn. One of the cosets is Cn. Everything in Cn can be obtained
by combining Rθ with itself. The other coset contains all the reflections in
Dn. Let a be one of the reflections, the coset is then aC6. By definition, aC6
consists of combinations of a with symmetries in Cn. Each symmetry in Cn
is a combination of Rθ , so every symmetry in Dn is a combination of a with
Rθ (some number of times). �

Exercise 33. (a) Show that Sn can be generated by the set of all even
permutations plus any odd permutation.

(b) Suppose that G is a finite group and that H is a subgroup of G with k
left cosets. Let h1, . . . ,hn be a generating set for H and let x2, . . . ,xk
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be a choice of symmetry from each coset of H in G other than H.
Show that G = 〈h1, . . . ,hn,x1, . . . ,xn〉.

We have seen various ways of describing the groups Dn and Sn using differ-
ent generating sets. In general, it is a difficult problem to explicitly describe
a given group, whether or not it is a group of symmetries. Using an exten-
sion of LaGrange’s theorem, though, we can learn somethings.
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13. THE ORBIT-STABILIZER THEOREM

Definition 2. Suppose that G is a group of symmetries of an object X . Let
x be a point of X . Define the orbit of x to be the set of all points y in X .
such that there is a symmetry in G which takes x to y. Denote this set by
orbG(x).

Let x be a vertex of the square. The group D4 is the group of all symmetries
of the square. A symmetry in D4 takes x to another vertex, and we can send
x to any vertex we want to by choosing an appropriate symmetry in D4.
Thus, orbD4(x) is the set of vertices of the square.

The group G = {I,R180} is a subgroup of D8. The set orbG(x) consists of
the vertex x and the vertex directly opposite it on the square.

Definition 3. Suppose that G is a group of symmetries of an object X . Let
x be a point of X . The set of group elements g which don’t move x is called
the stabilizer of x in G. It is denoted stabG(x).

Let x be the upper left vertex of the square, then stabD4(x) = {I,D} since
every element of D4 except the identity and the diagonal reflection moves x
to some other vertex. If x is the center of the square, then stabD4(x) = D4,
since no element of D4 moves the center of the square.

Exercise 34. Prove that stabG(x) is a subgroup of G for any given point x.

Theorem 13. (Orbit-Stabilizer) Suppose that G is a group of symmetries of
an object X . For any point x in X ,

# of symmetries in G =
(# of points in orbG(x)) · ( # of symmetries in stabG(x))

Proof. We simply need to show that (# of points in orbG(x)) is equal to the
number of left cosets of stabG(x) in G. Let gH be a coset of H = stabG(x)
in G. Match the coset gH with the point g(x) in orbG(x). Notice that if g
and g′ are both in gH then we have g′ = g◦h for some h in stabG(x). Then
g′(x) = g ◦ h(x). Since h(x) = x, g′(x) = g(x) and so this matching is well
defined. Notice also that every point in the orbit of x is matched with some
coset and that if g(x) = g′(x) then g−1 ◦g′(x) = x. This implies that g−1 ◦g
is in stabG(x). It turns out that this implies that gH = g′H.

Thus, each coset of H is matched with one point in orbG(x) and different
cosets are matched with different points. Since each point of the orbit of x
is matched with some coset, the size of orbG(x) is equal to the number of
cosets. �
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14. THE SYMMETRIES OF Rn FOR n≤ 3.

So far we have mostly studied finite groups of symmetries. In this section
we study the “isometries” of 1, 2, and 3–dimensional Euclidean space. An
isometry is a symmetry of R, R2, and R3 which preserves the notion of
distance. In other words, if S is an isometry and if P and Q are points, then
the distance between P and Q is equal to the distance between S(P) and
S(Q).

Exercise 35. Verify that the isometries of R, R2, and R3 all form groups.

In each case we begin by classifying the possible symmetries. We will
then look at connections between subgroups of these symmetry groups and
certain decorative patterns.

14.1. Classifying Isometries. There are two easily spotted isometries of
R:

• (Translation) For a fixed number k ∈ R, define Tk(x) = x+ k.
• (Reflection/Rotation) For a fixed number a∈R, define Ra(x) = 2a−

x.

** Diagrams **

Notice that T−1
k = T−k and that (Ra)−1 = Ra.

Theorem 14. An isometry of R is either a translation or a reflection/rotation.

Proof. Let S be an isometry of R. Our approach is to study the “fixed
points” of S: A point a is a fixed point of S if S(a) = a.

Claim 1: If S has two distinct fixed points, then S = I = T0.

Let a and b be distinct fixed points of S. Let x be any point in R. We will
show that S(x) = x. Since this will be true for all x in R, we will have shown
that S = I = T0.

Since S is an isometry, the distance between S(x) and a = S(a) is the same
as the distance between x and a. Call that distance d. Assume that d > 0. (If
not x = a and we are done.) Also, the distance between S(x) and b = S(b)
is the same as the distance between x and b. This means (proof?) that the
S(x) is on the same side of a as x. Since there are exactly two points at a
distance of d away from a and since those two points are on opposite sides
of a, we can conclude that S(x) = x as desired.

Claim 2: If S has exactly one fixed point a, then S = Ra.
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Consider a point x 6= a in R. Let d be the distance between x and a. There
are exactly two points which are distance d from a. One of those points is x.
Since S has exactly one fixed point (which is a) and since x 6= a, S(x) must
be the point which is distance d from a but on the opposite side of a from
x. Thus, S(x) = Ra(x).

Claim 3: If S has no fixed points, then there exists a number k so that S= Tk.

Let a be a point in R and let l be equal to a−T (a). Then, S moves a to a− l
and Tl moves a− l to a. That is,

Tl ◦S(a) = a.

If Tl ◦ S has at least two distinct fixed points, then (by Claim 1) Tl ◦ S = I.
Let k =−l. Then

S = T−1
l = Tk.

If Tl ◦S has exactly one fixed point a, then (by Claim 2),

Tl ◦S = Ra.

Thus,
S = T−l ◦Ra.

Now we use our formulas. For each x in R
S(x) = T−l ◦Ra(x) = (2a− x)− l = 2(a− l/2)− x.

In particular, x = a− l/2 is a fixed point of S. But in this Claim we are
assuming that S has no fixed points, so this cannot happen. �

The next corollary also follows from the formulas for reflections and trans-
lations.

Corollary 15. Combining two reflections produces a translation and com-
bining a translation and a reflection produces a reflection.

Proof. Put arrows on the real number line, all facing in the same direction.
A reflection/rotation of R reverses the direction of the arrows and a rotation
preserves the direction of the arrows. Thus two reflections preserves the
direction of the arrows and so must be a translation by the theorem. A
translation combined with a reflection reverses the direction of the arrows
and so must be a reflection. �

Notice that if Tk is a translation with k > 0, then Tk = R3k/4 ◦Rk/4. This
shows that the isometry group of R is generated by reflections.

We now study what happens if we increase our dimension to 2.
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Here is a list of isometries of R2:

• Translation: A symmetry S is a translation if it moves all points in
the same direction by the same amount.
• Rotation: A symmetry S is a rotation if there exists a point C in R2

and an angle θ so that S is a rotation θ degrees of R2 around C.
We write S = RotC

θ
. There is a formula for RotC

θ
, but it is somewhat

complicated.
• Reflection: A symmetry S is a reflection if there is a line L so that

for each x in R2, the S(x) is on the opposite side of the line L from
x, but the same distance away. We write S = ReflL.
• Glide Reflection: A symmetry S is a glide reflection if it is the com-

bination of a translation T(k.l) (with (k, l) 6= (0,0)) and a reflection.

The classification theorem for isometries of R2 says that these are the only
isometries of R2:

Theorem 16. Every isometry of R2 is a translation, a rotation, a reflection,
or a glide reflection.

Proof. We will not give a complete proof of this result, but here are the main
ideas. Notice how they are similar to the main ideas of the 1–dimensional
case. Throughout let S be an arbitrary isometry of R2.

Step 1: Show that if two lines in R2 intersect at a point a, then combining
reflections over those lines produces a rotation centered at a.

Step 2: Show that if a and b are distinct fixed points of S, then every point
on the line joining a and b is a fixed point of S.

Step 3: Show that if S has three non-collinear fixed points then S = I.

The triangle with corners the given fixed points has the property that every
point on the triangle is a fixed point by Step 2. Then by Step 2, every point
in the interior of the triangle is a fixed point of S. Let O be a point in the
interior of the triangle, then by Step 2 every point on every line through O
is a fixed point of S. This shows that all points of R2 are fixed points of S.

Step 4: Show that if S has two distinct fixed points, then either S = I or S is
a reflection.

Let L be the line between the two fixed points. It is a fact that every point
on L is a fixed point of S. If a point x is not on L, then either S(x) is on the
same side of L as x or is on the opposite of L from x. In the former case, S
has three non-collinear fixed points and so, by Step 3, is I. In the latter case,
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the isometry ReflL ◦S has three non-collinear fixed points and so is I. This
implies that S = ReflL.

Step 3: Show that if S has exactly one fixed point, then S is a rotation.

Let a be the the fixed point of S. Since S preserves distances, each circle
centered at a is taken by S to itself. Let x 6= a be a point and let C be the
circle centered at a containing x. The point x is not fixed by S, and so S(x)
is a point on C not equal to x. Let L be the line segment between x and S(x).
The points x, S(x), and a form an isosceles triangle, so the line M through a
perpendicular to L, bisects L. Let R be the reflection across M. Notice that
R interchanges x and S(x). Thus, x is a fixed point of R◦S.

By Step 2, R◦S is either a reflection or I. If R◦S = I, then S = R−1 = R. In
this case, S would have more than one fixed point, a contradiction.

Thus, R◦S is a reflection U . The line of reflection for U contains a, since a
is a fixed point of R◦S. Then S =R◦U is the combination of two reflections
about lines intersecting at a. By Step 1, S is a rotation. �

Corollary 17. If G is a finite subgroup of the isometries of R2, then G is
either I, Cn, or Dn for some n.

14.2. Frieze Groups and Wallpaper Groups.


