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ABSTRACT. A theorem concerning the effects of attaching a 2–handle
to a suture on the boundary of a sutured manifold is used to compare the
effects of two 2-handle attachments to a genus 2 boundary component
of a compact, orientable 3–manifold. We obtain a collection of results
relating the euler characteristic of a surface in one of the resulting 3–
manifolds to the intersection number of the two curves, assuming that
the other 3-manifold is reducible, boundary-reducible, or has Thurston
norm that decreases after the 2-handle attachment. As consequences, we
obtain the following:
• Partial verification of a conjecture of Scharlemann and Wu con-

cerning comparing 2-handle attachments to a genus 2 component
of a simple 3–manifold
• A near complete solution of a conjecture of Scharlemann regarding

“refilling meridians” of a genus two handlebody
• New proofs that unknotting number one knots are prime and that

genus is superadditive under band connected sum.
• A proof that no surgery on a non-trivial knot in S3 formed by at-

taching a band to a split link produces a reducible 3–manifold.

1. INTRODUCTION

Sutured manifold theory, since its creation, has been used for comparing
the results of two Dehn surgeries on a knot in a 3-manifold. Probably the
best known result along these lines is Gabai’s theorem [G2, Corollary 2.4]
that at most one Dehn filling on a torus boundary component of a compact,
orientable 3-manifold, can decrease Thurston norm. In this paper we use a
new theorem from [T3] concerning 2-handle addition to a sutured manifold
to compare the results of two 2-handle additions to a genus two boundary
component of a compact, orientable 3-manifold. We begin by stating our
results, none of the statements of which involve sutured manifolds. In Sec-
tion 2 we review the definition of “sutured manifold” and state the theorem
(Theorem 2.1) from [T3] that is fundamental to the present work.
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Throughout the paper we adopt the following conventions and notation. An
essential surface in a 3–manifold is one that is incompressible, not a 2-
sphere bounding a ball, and not boundary parallel. The regular neighbor-
hood of a space X is denoted η(X) and the interior of X is denoted X̊ . N
is a compact, orientable 3–manifold with a boundary component F con-
taining an essential simple closed curve b. Let N[b] denote the result of
attaching a 2–handle to N along a regular neighborhood of b in F and let
β ⊂ N[b] denote the properly embedded arc that is the cocore of the 2–
handle attached to b. Let ∂1N = ∂1N[b] be the union of the components of
∂N−F having genus at least two. Let ∂0N[b] = ∂N[b]− (∂N−F). Thus
∂N− (∂0N ∪∂1N ∪F) and ∂N[b]− (∂0N[b]∪∂1N[b]) are empty or consist
of tori.

1.1. Non-simple 2-handle additions. A 3-manifold is simple if it contains
no essential, sphere, disc, annulus or torus.

If ∂N is compressible but ∂N− b is incompressible, Jaco [J] showed that
∂N[b] is incompressible. Eudave-Muñoz [EM2] gave upper bounds on
the minimal number of times that an essential annulus or torus intersects
β . Scharlemann [S2] showed that for any non-zero homology class y ∈
H2(N[b],∂N[b]) there is a Thurston-norm minimizing surface representing
y in N[b] disjoint from β . Since adding a 2-handle to ∂N along the bound-
ary of an essential disc creates a reducible 3–manifold, each of these results
can be viewed as a comparision theorem between reducible 2-handle ad-
dition and either non-simple 2-handle addition or Thurston-norm reducing
2-handle addition. Of course, a priori there may be reducible 2-handle ad-
ditions that do not arise from attaching a 2-handle along the boundary of the
disc. Also note that the aforementioned results concern 2-handle attachment
to a non-simple 3-manifold.

Some work has been done comparing non-simple 2-handle attachments to
the boundary of a simple 3-manifold. The curve along which such a 2-
handle is attached is called a degenerating curve. Here is what was known,
prior to this paper, concerning 2–handle attachments along degenerating
curves a and b. None of these results use sutured manifold theory. We let
|a∩b| denote the minimal intersection number between a and b.

Theorem. Suppose that N is a simple 3–manifold and that F ⊂ ∂N is a
component of genus at least 2 containing essential simple closed curves a
and b. Then

• If N[b] is reducible and N[a] is boundary-reducible then either |a∩
b|= 0 or a and b can be isotoped to lie in a common once-punctured
torus in ∂N [SW, Theorem 4.2].
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• If N[a] and N[b] are both reducible, then |a∩b| ≤ 4 [ZQL].
• If genus(F) = 2, if a and b are both separating, and if N[a] and N[b]

are both boundary-reducible, then |a∩b|= 0 [LQZ].

A degenerating curve a ⊂ ∂N is called basic if a is separating or if there
is no degenerating separating curve a∗ bounding in ∂N a once-punctured
torus containing b. Scharlemann and Wu conjecture:

Conjecture ([SW, Conjecture 2]). If N is simple and if a and b are basic
degenerating curves on ∂N then |a∩b| ≤ 5.

The next theorem gives some additional evidence for their conjecture. Its
proof is logically independent from the prior results on 2-handle addition.

Corollary 5.4. Suppose that N is a compact orientable simple 3-manifold
and that F ⊂ ∂N is a genus two boundary component. Let a,b⊂F be essen-
tial simple closed curves with |a∩b| ≥ 1. Assume that b is separating and
that N[b] is reducible. Then N[a] is irreducible and boundary-irreducible
and if a is a degenerating curve, then a is non-separating and |a∩ b| = 2.
Furthermore, if N[a] contains an essential annulus, then it contains one
with boundary disjoint from b∩∂N[a].

1.2. Refilling Meridians and Boring. If N can be embedded in a 3–manifold
M so that the genus 2 component F ⊂ ∂N bounds a handlebody W in M−N
and if the curves a and b bound discs A and B in W we say that the 3–
manifolds N[a] and N[b] are obtained by refilling the meridians A and B
respectively. We denote the core or cores of the solid torus or tori obtained
from boundary reducing W using A by La and similarly define the knot or
link Lb. If A and B cannot be isotoped to be disjoint we say that La and Lb
are related by boring and that La is obtained by boring Lb (and vice versa).
The arcs α and β that are the cocores of η(A) and η(B) in N[a] and N[b]
are called boring arcs.

The paper [T1] proves several theorems about knots and links obtained by
boring a split link. In most ways, the results of this paper supercede that pa-
per; however, the methods of that paper are of interest in their own right and
are reasonably effective at studying homology classes y ∈ H2(N[b],∂N[b])
such that the projection of ∂y to ∂0N[b] is zero. The techniques of this paper
are not very useful for drawing conclusions about such classes when b⊂ F
is separating.

Scharlemann [S4] conjectured that if M, N, and W satisfy certain rather
mild hypotheses than at least one of N[a] or N[b] is irreducible or boundary-
irreducible. In [T1], considerable progress was made on the conjecture (ac-
tually a minor variation of it). The only significant case remaining was to
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prove that if M, N, and W satisfy certain mild conditions then it is impos-
sible for both N[a] and N[b] to be solid tori. One corollary of Theorem 6.1
is:

Corollary 6.2. Assume that W is a genus 2 handlebody embedded in a
compact, orientable 3–manifold M such that M contains no lens space con-
nected summands, any pair of curves in ∂M that compress in M are isotopic
in M, and N = M−W̊ is irreducible and boundary-irreducible. If a and b
are essential closed curves on ∂W bounding discs in W that cannot be iso-
toped to be disjoint then one of the following occurs:

(1) One of N[a] and N[b] is irreducible and boundary-irreducible
(2) There exists an essential annulus A⊂N such that one component of

∂A lies on a component of ∂M and the other lies on ∂W, is disjoint
from a or b and bounds a disc in W.

Thus, the only case of Scharlemann’s conjecture that remains unanswered
is when there exists an essential annulus in N with one boundary component
on ∂M and the other on either a or b.

1.3. Rational Tangle Replacement. A special case of the operation of
boring is rational tangle replacement. Consider a 2-tangle (D,τ) embedded
in S3 and consider rational tangles (D′,ra) and (D′,rb) such that D′= S3−D̊
and La = ra∪ τ and Lb = rb∪ τ are each knots or 2-component links. We
say that La and Lb are obtained from each other by rational tangle replace-
ment. The genus two handlebody W = D′ ∪η(τ) contains discs A and B
such that reducing W along A creates a regular neighborhood of La and re-
ducing W along B creates a regular neighborhood of Lb. (The discs A and B
are the discs in D′ separating the strands of ra and rb.) Assume that A and B
have been properly isotoped in D′−∂τ to minimize d = |A∩B|. The num-
ber d is called the distance of the rational tangle replacement. It coincides
with the usual notion of distance between the rational tangles (D′,ra) and
(D′,rb). Letting a = ∂A and b = ∂B, we also have d = |a∩b|/2. As usual,
let α and β be the cocores of the 2-handles with cores A and B respectively.

Performing a crossing change on a knot or 2-component link is a rational
tangle replacement of distance 2 and attaching a (possibly twisted) band to
a knot or 2-component link is a rational tangle replacement of distance 1. If
a crossing change on a non-trivial knot K converts it into the unknot then K
has unknotting number one and if K is a knot formed by attaching a band
to the components of a split link then K is the band sum of the components
of the split link.
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For somewhat technical reasons, rational tangle replacement is particularly
amenable to study by the techniques of this paper. We give three examples.
The first is a new proof of an old theorem [S1] of Scharlemann. A different
sutured manifold theory proof of this result was given in [ST].

Theorem 7.2. Unknotting number one knots are prime.

The second example is a new proof of a result of Gabai and Scharlemann
(proved in both cases using sutured manifold theory):

Theorem 7.3. If a knot K is the band sum of knots K1 and K2, then the
genus of K is at least the sum of the genera of K1 and K2.

The advantage of our proofs is that the sutured manifold theory developed in
[T2] and here has a number of other applications and can give more-or-less
unified proofs of these results. The previous proofs were all idiosyncratic,
particulary in the combinatorics. The basis of each of sutured manifold the-
ory proofs of these results centers on showing that one of the arcs defining
the rational tangle replacement can be made disjoint from a minimal genus
Seifert surface. The technology of this paper allows a fairly streamlined
approach to proving such a result.

Our final application to rational tangle replacment shows that band sums
satisfy the cabling conjecture of González-Acuña and Short [GS]. In fact,
no surgery on a band sum produces a reducible 3-manifold. In addition to
relying on the work of [T3] its proof also relies on Scharlemann’s work in
[S3].

Corollary 8.3. If a knot K is formed by attaching a band to both compo-
nents of a split link, then K is not a cable knot and no Dehn surgery on K
produces a reducible 3–manifold.

The proof is given in Section 8.

1.4. Acknowledgements. Versions of the results of sections 5, 6, and 7 ap-
pear in [T1]. I am grateful to Qilong Guo who pointed out an error in [T1].
Correcting that error lead to the paper [T3], upon which this work rests. I
am grateful to Marty Scharlemann for helpful conversations. Portions of
the work in this paper were supported by a grant from the National Science
Foundation.
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2. SUTURED MANIFOLDS

A sutured manifold (N,γ) consists of a compact, orientable 3-manifold N
and a collection of oriented simple closed curves (called sutures) γ ⊂ ∂N,
such that:

• ∂N− η̊(γ) consists of two (possibly disconnected) surfaces R− =
R−(γ) and R+ = R+(γ) such that each component of γ is adjacent
to both R− and R+. Let R(γ) = R−(γ)∪R+(γ).
• R−(γ) has an inward normal orientation and R+(γ) has an outward

normal orientation.
• Each component of ∂R(γ) has orientation induced from that of R(γ)

that coincides with the orientation of the adjacent component of γ .

The Thurston norm of a connected surface S is

x(S) = max(−χ(S),0).

The Thurston norm of a disconnected surface is the sum of the Thurston
norms of its components. An oriented surface S is taut if S is incompress-
ible and if out of all surfaces with the same boundary as S and homologous
to S in H2(M,∂S), the Thurston norm of S is minimal.

A sutured manifold (M,γ) is taut if M is irreducible and if R− and R+ are
taut.

If b ⊂ ∂N is an simple closed curve, and if Q ⊂ N is a properly embedded
surface, then a b-boundary compressing disc is a disc D in N with interior
disjoint from Q such that ∂D is the endpoint union of an arc embedded in b
and an arc embedded in Q.

This paper gives a number of varied applications of the following theorem1

that was proven in [T3].

Theorem 2.1. Suppose that (N,γ) is a taut sutured manifold with a genus
two boundary component F. Assume that γ ∩F consists either of one sepa-
rating curve or three non-separating curves. Let b be a component of γ ∩F
and let Q be a compact, orientable surface in N such that:

• |Q∩b| ≥ 1
• ∂Q intersects γ ∩F minimally
• No component of Q is a sphere or a disc disjoint from γ .

1In the statement below we have modified the statement of the theorem by specializing
to the case when F has genus 2 and |γ| ∈ {1,3}.
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Let β be the cocore in N[b] of a 2-handle attached along b. Then one of the
following is true:

(1) Q has a compressing or b-boundary compressing disc.
(2) (N[b],β ) = (M′0,β

′
0)#(M

′
1,β
′
1) where M′1 is a lens space and β ′1 is a

core of a genus one Heegaard splitting of M′1.
(3) (N[b],γ − b) is taut. The arc β can be properly isotoped to be em-

bedded on a branched surface B(H ) associated to a taut sutured
manifold hierarchy H for N[b]. There is also a proper isotopy of β

in N[b] to an arc disjoint from the first decomposing surface in H .
That first decomposing surface can be taken to represent±y for any
given non-zero y ∈ H2(N[b],∂N[b]).

(4)
−2χ(Q)+ |Q∩ γ| ≥ 2|Q∩b|.

Remark. The taut sutured manifold hierarchy H constructed in conclu-
sion (3) is constructed so that the first surface (which represents y) is “con-
ditioned”. A compact, orientable surface S in a sutured manifold (N,γ) is
conditioned if all components of S∩η(γ) in each component of η(γ) are
coherently oriented arcs or circles intersecting γ minimally and if no col-
lection of components of ∂S∩R(γ) is trivial in H1(R(γ),∂R(γ)). Thus, if
N[b]⊂M is formed by refilling a meridian of a genus 2 handlebody W with
∂W = F , and if Lb is null-homologous in M, then y can be chosen so that
the first surface of H is a minimal genus Seifert surface for Lb. This is
discussed in greater detail in Section 10 of [T3].

To apply Theorem 2.1 effectively, we need to find surfaces Q having no
compressing or b-boundary compressing discs in N. That is the topic of the
next section.

3. SUITABLY EMBEDDED SURFACES

Let N be a compact, orientable 3-manifold with a genus 2 boundary com-
ponent F . Suppose that a,b⊂ F are essential simple closed curves. In this
section, we show how to use a given essential surface R in N[a] to produce
an incompressible and b-boundary incompressible surface Q⊂ N.

First, we analyze ways in which an essential surface R⊂ N[a] intersects N.
If a is non-separating, there are multiple ways to obtain a manifold home-
omorphic to N[a]. Certainly attaching a 2–handle to a is one such way, but
there are other ways. If a∗ ⊂ F is a simple closed curve disjoint from a and
bounding a once-punctured torus containing a, then attaching 2–handles to
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both a∗ and a creates a manifold with a spherical boundary component. Fill-
ing in that sphere with a 3–ball creates a manifold homeomorphic to N[a].
We will often think of N[a] as obtained in this fashion. If a is separating,
define a∗ =∅.

Let Q⊂ N[a] be an embedded surface and let Q = Q∩N. The surface Q is
suitably embedded if each component of ∂Q−∂Q is a curve on F parallel
to a or to some a∗. We denote the number of components of ∂Q− ∂Q
parallel to a by q = q(Q) and the number parallel to a∗ by q∗ = q∗(Q). Let
q̂ = q+q∗.

The next theorem is a particular case of [T2, Theorem 5.1], however for
completeness and clarity we sketch the proof.

Theorem 3.1. Suppose that N is a 3–manifold with a genus two boundary
component F containing essential simple closed curves a and b that cannot
be isotoped to be disjoint. Let R ⊂ N[a] be a suitably embedded essential
surface and suppose that R = R∩N has a compressing disc or b–boundary
compressing disc D and that q̂(R) > 0. Then there exists an essential sur-
face Q⊂ N[a] such that the following hold:

(1) If D is a b–boundary compressing disc, Q is obtained from R by a b-
boundary compression and possibly capping off inessential bound-
ary components.

(2) If D is a compressing disc and if N[a] is reducible, then Q is ob-
tained by a trivial 2–surgery of R and the discarding of a sphere
component. If D is a compressing disc and if N[a] is irreducible,
then Q is obtained by a proper isotopy of R.

(3) −χ(Q)≤−χ(Q)
(4) The sum of the genera of the components of Q is no more than the

sum of the genera of the components of R.
(5) q̂(Q)< q̂(R).
(6) If D is a b–boundary compressing disc, unless ∂D∩N is an arc

joining a component of ∂R to itself, Q is properly isotopic to R in
N[a].

Proof. If D is a compressing disc for R then, since R is essential, there is a
disc D′ ⊂ R with ∂D′ = ∂D. If N[a] is irreducible, D∪D′ bounds a 3–ball
in N[a] and isotoping R across the 3–ball reduces q̂. If N[a] is reducible, use
D to perform a trivial 2–surgery on Q; discard the 2–sphere component of
the resulting surface that contains D′.
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Let D be a b-boundary compressing disc for R and let δ = ∂D∩∂N. Since
q̂(R)> 0, if δ joins two components of ∂R, then D is a boundary compress-
ing disc for R in N[a]. In this case, since δ would lie on ∂0N[a], R would
be either compressible or a boundary-parallel annulus. Either possibility
contradicts the assumption that R is essential in N[a].

If δ joins a component c of ∂R to a component d of ∂R that is parallel to a∗

or a, there is a proper isotopy of R across D that moves c across a copy of d
in ∂0N[a]. This reduces q̂.

Assume that δ joins distinct components of ∂R−∂R. If δ joins components
both parallel to a and lies in an annulus component of F−∂R, then there is
an isotopy of α across D through R reducing q̂. Reversing the isotopy gives
an isotopy of R reducing q̂. Similarly, if δ joins two components parallel
to a∗, there is an isotopy of R̂ reducing q̂. If δ joins two components of
∂R, both parallel to a, but does not lie in an annulus component of F −
∂R, then isotoping Q across D removes those two components of ∂R and
introduces a third parallel to some a∗. If δ joins a component parallel to
a∗ to a component parallel to a, then there is an isotopy of R that removes
those two components of ∂R and introduces a third parallel to either a or
a∗. Thus, q̂ is reduced by an isotopy of R in all cases where δ joins distinct
components of ∂R−∂R.

Assume that δ joins a component c of ∂R−∂R to itself. Let C ⊂ η(α) be
the disc bounded by c. Boundary compress R− C̊ using D. Let Q be the
resulting surface. Clearly, conclusions (1) - (4) hold. We need only show
that Q is essential. Any compressing disc for Q could be isotoped to be
disjoint from η(D) and so would be a compressing disc for R, contrary to
hypothesis. If R−C̊ can be obtained from Q by tubing Q to itself using an
arc ζ lying on ∂N[a] with endpoints on ∂Q. If Q is boundary-parallel with
region of parallelism P, then if ζ is outside P, R would also be boundary
parallel and if ζ is interior to P, R would be compressible. Both contradict
the hypothesis that R is essential in N[a]. �

Suppose that R and Q are suitably embedded essential surfaces in N[a] and
that Q is a non-empty surface obtained from R by applying Theorem 3.1
to R and possibly discarding one or more components. Then we say that
Q < R. If for a given R, either q̂(R) = 0 or there does not exist an essential
surface in N[a] such that Q < R, then we say that R is minimal with respect
to b-boundary compressions. Extend the relation < so that it is transitive.

The next lemma records some easy facts.

Lemma 3.2. The following are true:
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(1) If R ⊂ N[a] is an essential properly embedded surface, then there
exists an essential suitably embedded surface Q ⊂ N[a], minimal
with respect to b-boundary compressions, such that Q≤ R.

(2) Suppose that Q⊂ N[a] is minimal with respect to b-boundary com-
pressions but is not b-boundary incompressible. Then q̂(Q) = 0 and
either there is a proper isotopy of Q in N[a] that reduces |∂Q∩b| or
every b-boundary compressing disc for Q has boundary intersecting
a.

Proof. To prove (1), simply notice that each application of Theorem 3.1
reduces q̂ and that the theorem cannot be applied if q̂ = 0.

To prove (2), suppose that Q⊂ N[a] is minimal with respect to b-boundary
compressions, but has a b-boundary compression. Since we cannot apply
Theorem 3.1 we must have q̂(Q) = 0. If there were a b-boundary compress-
ing disc disjoint from a, then Q would be b-boundary compressible in N[a].
A b-boundary compressing disc for Q adjacent to ∂0N[a] and disjoint from
a either gives a method for reducing |∂Q∩b| or shows that Q is inessential.
The latter is impossible. �

It will occasionally be useful to double N along boundary components other
than F . We make the following definitions. Let DaN denote the result of
gluing a copy of N2 = N[a] to N1 = N using the identity map on ∂1N1. Let
F1, a1, and b1 denote the copies of F , a, and b in N2. Suppose that Q⊂N[a]
is a suitably embedded surface. Let Q′ denote the result of isotoping Q in
N[a] to be properly embedded. Let Q1 be the copy of Q in N1 and let Q′2
be the copy of Q′ in N2. Let DaQ = Q1∪Q′2 ⊂ DaN. Notice that DaQ is a
suitably embedded surface in DaN[a1]. Let DaQ = DaQ∩DaN.

Lemma 3.3. Suppose that N[a] is irreducible and boundary-irreducible.
Suppose that Q ⊂ N[a] is a suitably embedded surface such that Q has
no compressing or b-boundary compressing disc in N. Assume also that
there is no boundary compressing disc for Q adjacent to ∂1N. Then DaN is
irreducible and there is no compressing or b1-boundary compressing disc
for DaQ in DaN.

Proof. Since N[a] and N are irreducible and since ∂N[a] is incompressible,
any reducing sphere for DaN could be isotoped to lie in N or N[a], a contra-
diction.
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Suppose that E is a b-boundary compressing disc for DaQ, chosen so that
out of all such, |E ∩ ∂1N| is minimal. Since Q is b-boundary incompress-
ible, E ∩∂1N is non-empty. An innermost disc argument, using the incom-
pressibility of ∂1N, shows that E ∩ ∂1N consists of arcs. There is an arc
bounding a disc E ′ ⊂ E with interior disjoint from ∂1N and with boundary
disjoint from F . Then E ′ is a boundary compressing disc for Q in DaN. �

4. ADDING SUTURES TO ∂N

To use Theorem 2.1 to prove statements that don’t use the language of su-
tured manifolds requires methods of placing a sutured manifold structure
on 3-manifolds with boundary. We explain how to do that in this section.
Let F ⊂ ∂N be a genus two component. Let b ⊂ F be an essential simple
closed curve. We begin by discussing sutures γ̂ ∪b on F .

If b is separating, define γ̂ = ∅. If b is non-separating, define γ̂ to be any
pair of essential disjoint simple closed curves on ∂0N[b] that are disjoint
from and separate the components of ∂η(b). Thus, F − (γ̂ ∪ b) is either
the union of two once punctured tori or the union of two thrice-punctured
spheres.

Lemma 4.1. Suppose that ∂N−F is empty or consists of tori. Let γ̂ and b
be simple closed curves on F as above. If N is irreducible and if F−(γ̂∪b)
is incompressible in N then (N, γ̂ ∪b) is a taut sutured manifold.

Proof. Since N is irreducible, any torus component of ∂N is incompress-
ible. Since R±∩F is either a thrice-punctured sphere or a once-punctured
torus, x(R±) = 1. If S is a norm-minimizing, properly embedded surface
in N with ∂S = ∂R± and homologous to R±, then x(S) ≤ 1. Without loss
of generality, we may assume that S has no 2–sphere or inessential disc
components. If x(S) = 0, then each component of S is either a disc or an
annulus. Since |∂R±| is odd, at least one component of S is a disc, contra-
dicting the assumption that F− (γ̂ ∪b) is incompressible. Thus, R± and N
are taut. �

If b is non-separating, we will often want to be more precise about which
curves γ̂ we choose. Usually our choice will be determined by particular
curves in F as follows.

Let T = ∂0N[b]−∂β ; note that T is a twice-punctured torus. Let ζ ⊂ F be
the union of one or more simple closed curves on F such that no component
of ζ ∩T is an inessential arc or circle. If an arc component of ζ ∩T has
both endpoints at the same endpoint of β , then there are such arcs based at
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b

b

ζ
γ̂

γ̂

FIGURE 1. An example of sutures γ̂ ⊂ F respecting a 1–
manifold ζ on the twice punctured torus F− η̊(b).

both endpoints of β and the essential circles formed by any two such arc
components are isotopic on ∂0N[b]. If such arcs exist, choose γ̂ so that each
component is isotopic to these essential circles. If no such arc component
of ζ ∩ T exists, choose the components of γ̂ so that each arc component
of ζ ∩T intersects γ̂ exactly once. (To see that this is possible, consider a
homeomorphism of T that takes the arcs of ζ ∩T to “standard arcs” joining
the punctures, choose curves intersecting the standard arcs exactly once
each, and let γ̂ be the inverse image of those curves.) Subject to these
constraints, isotope γ̂ so that it intersects ζ minimally. If γ̂ = ∅ or if γ̂

is chosen as described, we say that γ̂ respects ζ . If a ⊂ F is an essential
simple closed curve intersecting b minimally and not disjoint from b, and if
Q ⊂ N[a] is a suitably embedded surface with Q = Q∩N, then γ̂ respects
Q if it respects ∂Q∪a. See Figure 1.

Let Mb(ζ ) denote the number of arcs of ζ ∩T that have both endpoints on
the same component of ∂β .

Lemma 4.2. Suppose that ζ is an embedded 1–manifold on F intersecting
b minimally and let ζ0 be a component of ζ . Then for each component ζ0
of ζ we have the following:

(1) If b and ζ0 are given orientations then Mb(ζ0) is the number of
changes of sign of b∩ζ0 as ζ0 is traversed.

(2) Mb(ζ ) is even
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(3) If Mb(ζ0)= 0 and |b∩ζ0|> 0, then both ζ0 and b are non-separating
and all points of intersection have the same sign.

(4) If γ̂ respects ζ then

Mb(ζ0) = |ζ0∩b|− |ζ0∩ γ̂|.

Proof. Let b1 and b2 be the two endpoints of β on ∂0N[b]. Let T = ∂0N[b]−
∂β . If an arc of ζ0 ∩ T has both endpoints on either b1 or b2, then the
corresponding points of intersection of ζ0 ∩ b have opposite sign and are
adjacent on ζ0. Conversely, any change of sign on ζ0 must correspond to an
arc of ζ0∩T with both endpoints at either b1 or b2, since each component
of T is a once or twice-punctured torus. Since ζ0 is a circle, there must
be an even number of changes of sign. Hence, (1). This is true for each
component of ζ , so Mb(ζ ) is even. Hence, (2).

If Mb(ζ0) = 0 and |b∩ ζ0| > 0 then b and ζ0 intersect and all points of
intersection have the same sign by (1). Consequently, both must be non-
separating. Hence, (3).

If b is separating, (4) follows immediately, so assume b is non-separating.
There are the same number of endpoints of ζ0∩T at b1 as at b2. Each arc
either has both endpoints at one of b1 or b2 or has one endpoint at b1 and
the other b2. Thus, there are the same number of arcs of ζ0∩T with both
endpoints at b1 as there are arcs of ζ0∩T with both endpoints at b2. This
is true for each component of ζ . If Mb(ζ )> 0, there exists at least one arc
ζ ′ of ζ ∩T with both endpoints at b1 and at least one arc ζ ′′ of ζ ∩T with
both endpoints at b2 and all other arcs of ζ ∩T are disjoint from these arcs.
Since, ζ intersects b minimally, in ∂0N[b], ζ ′ and ζ ′′ are disjoint essential
loops and are, therefore, parallel. Assume that γ̂ respects ζ . The curves γ̂

are parallel to these loops and intersect the other arcs of ζ ∩T minimally.
Since ∂0N[b]−(ζ ′∪ζ ′′) is a pair of annuli and since there is one component
of γ̂ in each annulus, we have

Mb(ζ0) = |ζ0∩b|− |ζ0∩ γ̂|,

if Mb(ζ )> 0.

If Mb(ζ ) = 0, then by the construction of ζ ,

Mb(ζ0) = |ζ0∩b|− |ζ0∩ γ̂|= 0.

�

The next lemma shows how to usefully define sutures γ̃ on non-torus com-
ponents of ∂N−F . Let γ = γ̂ ∪ γ̃ ∪b.
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Lemma 4.3 ([T1, Lemma 4.1]). Assume2 that ∂N− (γ̂ ∪b) is incompress-
ible in N. Suppose also that N is irreducible and that if ∂N−F contains
a non-torus component then there is no essential annulus in N with bound-
ary on γ̂ ∪ b. Then γ̃ can be chosen so that (N,γ) is taut. Furthermore, if
c⊂ ∂N−F is a collection of disjoint, non-parallel curves such that:

• |c| ≤ 2
• All components of c are on the same component of ∂N−F
• No component of c cobounds an essential annulus in N with a curve

of γ̂ ∪b
• If |c|= 2 then there is no essential annulus in N with boundary c
• If |c|= 2 and b is separating, there is no essential thrice-punctured

sphere in N with boundary c∪b.

then γ̃ can be chosen to be disjoint from c.

If γ̂ respects a suitably embedded surface Q⊂ N[a], then we also say that γ

respects Q.

The following lemma records a handy bit of accounting that we will use
repeatedly.

Lemma 4.4. Suppose that γ respects a suitably embedded surface Q⊂N[a]
and that Mb(a)> 0. Then the inequality

−2χ(Q)+ |∂Q∩ γ| ≥ 2|∂Q∩b|

implies the inequality:

−2χ(Q)+ |∂Q∩ γ̃| ≥ q(Mb(a)−2)+q∗(Mb(a∗)−2)+Mb(∂Q).

Proof. This is easily proven by piecing together Lemma 4.2 and the follow-
ing two facts:

• χ(Q) = χ(Q)− q̂(Q)
• For any simple closed curve ζ on ∂N,

|ζ ∩ γ|= |ζ ∩ γ̂|+ |ζ ∩ γ̃|+ |ζ ∩b|.

�

2This hypothesis was left out of the statement of the lemma in [T1]. It is used in the
proof when [S3, Lemma 5.6] is applied.
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5. DEGENERATING HANDLE ADDITIONS

In this section, we assume that N is simple and that attaching a 2–handle to
N along b creates some sort of degeneration (usually either an essential disc
or sphere). We use this to, in many instances, deduce an inequality relating
the intersection number of a and b to the euler characteristic of an essential
surface in N[a].

Proposition 5.1. Suppose that N is a compact orientable simple 3-manifold
with F ⊂ ∂N a genus 2 component. Let a,b be two essential simple closed
curves on ∂N that cannot be isotoped to be disjoint.

Let Q⊂N[a] be a suitably embedded essential surface and assume that Q=
Q∩N is incompressible and b-boundary incompressible. Assume also that
∂Q∩ ∂1N, if non-empty, consists of curves all parallel to a simple closed
curve c1 ⊂ ∂1N.

Assume that one of the following holds:

(a) N[b] is reducible
(b) N[b] is a solid torus
(c) A simple closed curve cb disjoint from c1 and on the same compo-

nent of ∂1N compresses in N[b].
(d) There is a non-zero class y ∈ H2(N[b],∂N[b]) such that no norm-

minimizing conditioned surface representing ±y is disjoint from β .
If b is separating, we also require that the projection of ∂y to the
first homology of each component of ∂0N[b] is nontrivial.

Then, one of the following occurs:

(1) a and b are both non-separating and all intersection points of a∩b
have the same sign.

(2) Q⊂ N and Q is disjoint from b.
(3)

−2χ(Q)≥ q(Mb(a)−2)+q∗(Mb(a∗)−2)+Mb(∂Q).

Proof. Since N is simple, notice that hypothesis (b) implies hypothesis (d).
If hypothesis (a), (b), or (d) is satisfied, let c2 = ∅. If none of those are
satisfied, but the curve c1 compresses in N[b], let c2 = c1. If none of (a),
(b), or (d) is satisfied and if c1 does not compress in N[b], let c2 = cb. Define
c = c1∪ c2 and notice that c has two components if and only if c1 does not
compress in N[b] and c1 and c2 are non-empty, disjoint, non-parallel loops
on the same component of ∂1N.
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We claim that c satisfies the hypotheses of Lemma 4.3. Since N contains
no essential disc or annulus, we need only check that if |c|= 2 and b is sep-
arating then there is no essential thrice-punctured sphere in N with bound-
ary c∪ b. Since cb compresses in N[b], the existence of a thrice-punctured
sphere in N with boundary on c∪b would imply that c1 compresses in N[b].
But, by our choice of c2, this contradicts the hypothesis that |c|= 2. Thus,
the hypotheses of Lemma 4.3 are satisfied. Let γ = γ̃ ∪ γ̂ ∪ b be sutures
respecting Q and disjoint from c. The sutured manifold (N,γ) is taut.

If |∂Q∩ b| = 0, then q̂(Q) = 0 and |∂Q∩ b| = 0. This implies conclusion
(2). Assume that neither conclusion (1) nor conclusion (2) holds. Since γ

respects Q, and since N is simple, no component of Q is a sphere or disc
disjoint from γ . Thus, the hypotheses of Theorem 2.1 are satisfied. By
hypothesis, Q has no compressing or b-boundary compressing disc. Since
N is simple, β cannot intersect a reducing sphere in N[b] exactly twice. By
hypothesis and the construction of γ̃ to be disjoint from cb, either (N[b],γ−
b) is not ∅-taut or no first surface in a taut sutured manifold hierarchy for
(N[b],γ−b) representing y is disjoint from β . Thus, by Theorem 2.1,

−2χ(Q)+ |Q∩ γ| ≥ 2|Q∩b|.

By Lemma 4.4, this implies that

−2χ(Q)≥ q(Mb(a)−2)+q∗(Mb(a∗)−2)+Mb(∂Q).

�

Corollary 5.2. Suppose that N is a compact, orientable simple 3-manifold
with a genus two boundary component F. Let a,b ⊂ F be two essential
curves that cannot be isotoped to be disjoint. Assume that N[a] contains an
essential sphere or disc R.

Assume also that one of the following holds:

• N[b] is reducible
• N[b] is a solid torus
• A simple closed curve cb disjoint from, and on the same component

of ∂1N[b] as ∂R, compresses in N[b].

Then a and b are both non-separating, and all points of intersection between
them have the same sign.

Proof. Assume that not all points of intersection between a and b have the
same sign. This implies that Mb(a)≥ 2.

If N[a] is reducible, let R be an essential sphere in N[a] and if N[a] is irre-
ducible, let R be an essential disc in N[a]. Choose Q≤ R to be minimal with
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respect to b-boundary compressions. Notice that if Q is a disc, then R is as
well and if ∂Q⊂ ∂1N[b] then ∂Q = ∂R.

Since N is irreducible and boundary-irreducible, q̂(Q) 6= 0. If a∗ is non-
empty and is disjoint from b, then a and b lie in a common once-punctured
torus. In which case, a and b are both non-separating and intersect always
with the same sign. This contradicts our assumption. Hence, if q∗ 6= 0, then
Mb(a∗)≥ 2 since a∗ is separating.

If q > 0, by Theorem 5.1, we have:

−2χ(Q)≥ q(Mb(a)−2)≥ 0.

But Q is a sphere or a disc, so this is a contradiction.

If q∗ > 0, then by Theorem 5.1, we have

−2χ(Q)≥ q∗(Mb(a∗)−2)≥ 0.

This is also a contradiction. Thus, all points of intersection between a and
b have the same sign. �

Here is a version of Proposition 5.1 allowing for ∂Q to have non-isotopic
components on ∂1N.

Proposition 5.3. Suppose that N is a compact, orientable, simple 3-manifold
and that F ⊂ ∂N has genus 2. Let a,b⊂ F be two essential curves that can-
not be isotoped to be disjoint. Suppose that Q ⊂ N[a] is a suitably embed-
ded essential surface and that Q = Q∩N is incompressible, b-boundary-
incompressible, and has no boundary compressing disc adjacent to ∂1N. If
N[b] is reducible, then one of the following holds:

(1) a and b are non-separating and all points of a∩ b have the same
sign.

(2) Q⊂ N and ∂Q is disjoint from b.
(3)

−4χ(Q)≥ q(Mb(a)−2)+q∗(Mb(a∗)−2)+Mb(∂Q).

Proof. Assume neither (1) nor (2) holds. By Corollary 5.2, we may assume
that N[a] is irreducible and boundary-irreducible. Form the doubled man-
ifold DaN. Notice that ∂DaN consists of a single genus two surface and
some tori. By Lemma 3.3, DaQ has no compressing or b1-boundary com-
pressing disc. Choose γ̂ ⊂ F to respect DaQ. By Lemma 4.1 (DaN, γ̂ ∪b1)
is taut. Apply Theorem 2.1 to DaN. One of the following must hold:

(i) (DaN[b1],β ) has a (lens space, core) connected summand
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(ii)

−2χ(DaQ)≥ q(Mb(a)−2)+q∗(Mb(a∗)−2)+Mb(∂Q).

The second conclusion together with the fact that χ(DaQ) = 2χ(Q) gives
us our result immediately.

Assume, therefore, that there is a reducing sphere P for DaN[b] intersected
twice by β . Out of all such spheres choose P to intersect ∂1N minimally.
Since N is simple, and β is disjoint from ∂1N, and N[a] is boundary-irreducible,
an innermost disc argument shows that any circle of P∩∂1N innermost on
P bounds a disc intersecting β . Hence, P∩∂1N has exactly two circles in-
nermost on P. Let D be one of them. The disc D is punctured exactly once
by β . Thus D∩N1 is an essential annulus in N, contrary to the hypothesis
that N is simple. �

We can apply this to prove a special case of a conjecture of Scharlemann
and Wu (as described in the introduction).

Corollary 5.4. Suppose that N is a compact orientable simple 3-manifold
and that F ⊂ ∂N is a genus two boundary component. Let a,b ⊂ F be es-
sential simple closed curves that cannot be isotoped to be disjoint. Assume
that b is separating and that N[b] is reducible or a solid torus. Then N[a] is
irreducible and boundary-irreducible and if a is a degenerating curve, then
a is non-separating and |a∩ b| = 2. Furthermore, if N[a] contains an es-
sential annulus, then it contains one with boundary disjoint from b∩∂N[a].

Proof. By Corollary 5.2, N[a] is irreducible and boundary-irreducible.

Let R be an annulus or torus in N[a]. Let Q ≤ R be minimal. If Q had a
boundary-compressing disc adjacent to ∂1N, it must be an annulus. Boundary-
compressing it creates an essential disc, contrary to our initial observation.
Thus, we may assume that Q does not have an boundary compressing disc
adjacent to ∂1N[b].

Since b is separating and since N is simple, by Propositions 5.1 and 5.3, we
have

0 =−εχ(Q)≥ q(|a∩b|−2)+q∗(|a∗∩b|−2)+ |∂Q∩b| ≥ 0,

for some ε ∈ {2,4}. This implies that |∂Q∩b|= 0.

Recall that any two minimally intersecting, non-disjoint simple closed sep-
arating curves on a genus two surface must intersect at least four times.
Since a∗ is empty or separating, we must have q∗ = 0. Since N is simple,
we must have q > 0. Consequently, |a∩ b| = 2. Since b is separating, this
implies that a is non-separating. �
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6. REFILLING MERIDIANS

We recall (from the introduction) the notion of “refilling meridians”. Let
M be a compact orientable 3–manifold, and let W ⊂ M be an embedded
genus 2 handlebody. Let A and B be essential discs in W that cannot be
isotoped to be disjoint. Assume that A and B intersect minimally. Define
a = ∂A, b = ∂B, F = ∂W , and N = M−W̊ . We say that the 3–manifolds
N[a] and N[b] are obtained by refilling the meridians A and B respectively
of W in M. Notice that an outermost arc of intersection between A and
B on A cuts off a subdisc of A that is a meridian of one of the solid tori
obtained by boundary-reducing W using B. In particular, this means that
Mb(a)≥ 2. Recall that La and Lb denote the core or cores of the solid torus
or tori W − η̊(A) and W − η̊(B) respectively. If a is non-separating and if
a∗ ⊂ F bounds a once-punctured torus in F containing a, let A∗ be a disc in
W bounded by a∗.

In [S4], Scharlemann considered refilling meridians of a genus two han-
dlebody W in a wide variety of compact, orientable 3–manifolds M. He
showed in a number of situations that if both N[a] and N[b] are reducible or
boundary-irreducible (with minor assumptions on the embedding of W in
M) then either M = S3 and W is unknotted or α and β are “aligned” in W .
He conjectured that this is always the case (given his hypotheses on the pair
(M,W )). In [T1], under slightly different hypotheses, significant progress
was made on the conjecture. One case not covered by [T1], was the case
when both N[a] and N[b] are solid tori. Corollary 6.2, a corollary to the next
proposition, shows that if |a∩b|> 0, it is impossible for both N[a] and N[b]
to be solid tori. In fact, Corollary 6.2 gives a stronger result with weaker
hypotheses than [T1, Theorem 6.1].

Proposition 6.1. Suppose that W is a genus 2 handlebody embedded in a
compact, orientable manifold M. Let A and B be essential discs in W which
cannot be isotoped to be disjoint. Suppose that Q is a suitably embedded
essential surface in N[a] such that Q = Q∩N is incompressible and b-
boundary-incompressible and not disjoint from b. Furthermore, assume
that all components of ∂Q∩ ∂1N[b] are parallel to a single simple closed
curve ca.

Assume the following:

(H1) If a curve cb ⊂ ∂M compresses in N[b] then ca and cb are on the
same component of ∂M.

(H2) If P ⊂ M is a sphere such that either P is non-separating, or P
bounds a lens space summand of M, or P is embedded and essential
in N[b] but inessential in M, then |P∩ (Lb∪β )| ≥ 3.
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(H3) If P is an essential disc in M then |P∩ (La∪α)| ≥ 2 and |P∩ (Lb∪
β )| ≥ 2.

(H4) N = M−W̊ is irreducible.

Suppose one of the following:

(1) N[b] is reducible
(2) N[b] is boundary-reducible
(3) There is a non-zero class y ∈ H2(N[b],∂N[b]) such that no condi-

tioned norm-minimizing representative is disjoint from β . If b is
separating, also assume that the projection of ∂y to the first homol-
ogy of each component of ∂0N[b] is non-zero.

Then either ca and cb cannot be isotoped to be disjoint or

−2χ(Q)≥ q(Mb(a)−2)+q∗(Mb(a∗)−2)+Mb(∂Q).

The proof is similar to that of Corollary 5.2.

Proof. Choose sutures γ̂ on ∂0N so that γ̂ ∪ b respects Q. Since Q is not
disjoint from α , any outermost disc of A−B or A∗−B is a meridian of
η(Lb). Thus, if γ̂ 6= ∅, both components are meridians of Lb. If a compo-
nent of F− γ̂ ∪b were compressible, we would violate (H2), so F− γ̂ ∪b is
incompressible in N.

Let c1 = ca. If c1 compresses in N[b], or if N[b] is reducible, let c2 = c1.
Otherwise, let c2 = cb. Thus, |c|= 2 if and only if c1 are non-empty and c2
compresses in N[b] but c1 does not.

Hypothesis (H3) implies that ∂1N is incompressible in N. If there were
an essential annulus in N with boundary on γ̂ ∪ b, it could be capped off
in M to be a non-separating sphere intersecting Lb twice. This contradicts
Hypothesis (H2).

If a curve of c bounded an essential annulus with a curve of γ̂ ∪b, it could
be capped off in M to be an essential disc intersecting Lb∪β exactly once.
This contradicts Hypothesis (H3).

If |c|= 2 and there were an essential annulus in N with boundary c, then c1
would compress in N[b], contradicting our construction of c.

If |c|= 2 and there were a thrice-punctured sphere with boundary c∪b, then,
once again c1 would compress in N[b]. This contradicts our construction of
c.
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We can, therefore, apply Lemma 4.3 to obtain sutures γ ⊂ ∂N respecting Q
and disjoint from c. Notice that either (N[b],γ−b) is not taut or that there
is no conditioned taut representative of y disjoint from β .

Since Q is essential in N[a], since Q is incompressible and b-boundary in-
comrpessible, and since (N,γ) is taut, no component of Q is a sphere or disc
disjoint from γ .

Thus, by Theorem 2.1 and Lemma 4.4 one of the following occurs:

(i) (N[b],β ) has a (lens space, core) summand.
(ii) (N[b],γ−b) is taut and there is a conditioned norm-minimizing sur-

face disjoint from β and representing y.
(iii)

−2χ(Q)≥ q(Mb(a)−2)+q∗(Mb(a∗)−2)+Mb(∂Q).

The first of these is ruled out by Hypothesis (H2). If N[b] is reducible or if
cb 6= ∅, then the second is also ruled out. If N[b] is a solid torus, then an
unknotting disc for Lb represents some non-zero class y ∈ H2(N[b],∂N[b]).
Such a disc is clearly norm-minimizing. We assume that no such norm-
minimizing surface disjoint from β exists and so (ii) cannot hold with any
of our hypotheses. Consequently (iii) holds, as desired. �

The following corollary is phrased to make the connection to [S4, Conjec-
ture 2] explicit.

Corollary 6.2. Assume that W is a genus 2 handlebody embedded in a
compact, orientable 3–manifold M such that every S2 in M separates, M
contains no lens space connected summands, any pair of curves in ∂M
that compress in M are isotopic in ∂M, and N = M − W̊ is irreducible
and boundary-irreducible. If a and b are essential closed curves on ∂W
bounding discs in W that cannot be isotoped to be disjoint then one of the
following occurs:

(1) One of N[a] and N[b] is irreducible and boundary-irreducible
(2) There exists an essential annulus A⊂N such that one component of

∂A lies on a component of ∂M and the other lies on ∂W, is disjoint
from a or b and bounds a disc in W.

Proof. Assume that N[b] is reducible or boundary-reducible. If N is boundary-
reducible, but not reducible then either N[b] is a solid torus or there is a
unique simple closed curve c ⊂ ∂1N that compresses in M (and in N[b]).
This implies (H1).
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Since M contains no lens space summands and no non-separating 2–spheres
and since N is boundary-irreducible, (H2) is satisfied. Any essential disc in
M must have boundary parallel to c. Suppose that P is such a disc with
either |P∩ (La∪α)|= 1 or |P∩ (Lb∪β )|= 1. Then (possibly after a small
isotopy) the intersection of P with N is an annulus in N with one boundary
component on ∂W disjoint from a or b and bounding a disc in W . This
is conclusion (2). Hence, we may assume that (H3) is satisfied. (H4) is
satisfied by hypothesis.

If N[a] is reducible, let R be an essential sphere. If N[b] is irreducible, but
boundary-reducible, let R be an essential disc. Let Q ≤ R be minimal with
respect to b-boundary compressions. Since N is irreducible and boundary-
irreducible, q̂(Q) > 0. Thus, Q is b-boundary incompressible and not dis-
joint from b. Since Q is either a disc or a sphere, either Q is a sphere or ∂Q
is parallel to c. Thus, by Proposition 6.1,

−2≥ q(Mb(a)−2)+q∗(Mb(a∗)−2)+Mb(∂Q+2).

Each term of the right hand side of the inequality is non-negative. We have,
therefore, encounted a contradiction. �

If M = S3 we define a boring arc β to be complicated if one of the following
holds:

• Lb is a split link and β does not intersect a splitting sphere exactly
once.
• Lb is not a split link and β is not disjoint from any minimal genus

Seifert surface for Lb.

It turns out that the exterior of a knot or link and complicated boring arc is
boundary-irreducible. (See also [J], [S2], and [T3, Theorem 10.1].)

Lemma 6.3. Suppose that Lb ⊂ S3 is a knot or 2-component link and that
β is a complicated boring arc. Let N be the exterior of Lb∪β . Then N is
boundary-irreducible.

Proof. Let W = η(Lb ∪ β ) and let F = ∂W = ∂N. Suppose that D is a
compressing disc for F in N, chosen so that out of all such discs, |∂D∩ b|
is minimal.

Case 1: ∂D∩b =∅.

If ∂D bounds a disc in W , then either ∂D is parallel to b or b is non-
separating and ∂D bounds a once-punctured torus in F containing b. In
the former case, Lb is a split link and β intersects a splitting sphere exactly
once. In the latter case, it is not difficult to see that there is a minimal genus
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Seifert surface for Lb disjoint from β . Thus, ∂D does not bound a disc in
W . This implies that one component of Lb is an unknot and that D is an un-
knotting disc for that component disjoint from β . If b is non-separating this
obviously contradicts the definition of complicated boring arc. If b is sepa-
rating, boundary compressing a component of ∂η(Lb) using D produces a
splitting sphere for Lb intersecting β exactly once. This also contradicts the
definition of complicated boring arc. Consequently, this case cannot occur.

Case 2: ∂D∩b 6=∅.

Let Q = ∂D. Notice that by minimality of |D∩b|, Q is b-boundary incom-
pressible. It is obviously incompressible. Let γ̂ ⊂ F be sutures disjoint from
b and respecting Q. Let γ = γ̂ ∪b. It is argued in the proof of [T3, Theorem
10.1] that |∂Q∩ γ̂| ≤ |∂Q∩b|. Thus, since Q is a disc

−2χ(Q)+ |Q∩ γ| ≤ 2|Q∩b|.
Thus, by Theorem 2.1, (N[b],γ − b) is ∅-taut and a proper isotopy of β

makes it disjoint from a minimal genus Seifert surface for Lb. This contra-
dicts the definition of complicated boring arc, and so this case cannot occur
either. �

The next corollary shows that many knots obtained by boring using a com-
plicated boring arc are simple (i.e. have simple exteriors).

Corollary 6.4. Suppose that La is a non-simple knot or 2–component link
in S3 obtained by boring a knot or 2–component link Lb ⊂ S3 using a com-
plicated boring arc. Then La is not a split link or unknot and one of the
following occurs:

(1) The exterior of La has an essential torus or annulus disjoint from α .
(2) La or Lb is a knot and Mb(a) = 2. If Lb is a 2–component link, this

implies |a∩b|= 2.
(3) La and Lb are both knots, there exists a 2–component link La∗ con-

taining La as a component, La∗ is non-simple, and a∗ is an essential
separating meridional curve on ∂η(La ∪α) disjoint from a such
that Mb(a∗) = 2.

Furthermore, if La is a knot and Lb is a link, then if there is an essential
annulus in the exterior of La, there is one with meridional boundary.

Remark. It may be worth remarking that the conclusion that Mb(a) = 2
implies that if A and B are the discs in η(La∪α) bounded by a and b then
all arcs of intersection of A∩B are parallel in A. This follows from the first
conclusion of Lemma 4.2. If b is separating, then also by that lemma we
have Mb(a) = |a∩b|.
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Proof. Let W be the genus two handlebody that is a regular neighborhood
of Lb ∪ β . Notice that N = S3−W̊ is irreducible. By Lemma 6.3, ∂N is
incompressible. By Proposition 6.2, La is not a split link or unknot. Let
R be an essential annulus or torus in N[a] and let Q ≤ R be minimal with
respect to b-boundary compressions. Notice that if R was an annulus, then
Q is as well.

Suppose that La is a knot and that Q is an annulus. Then, if ∂Q∩ b = ∅,
∂Q must be meridional on La since it is disjoint from the boundaries of
outermost discs of B−A lying in a neighborhood of La.

If Q∩b =∅, then Q⊂N and ∂Q∩b =∅. This implies conclusion (1). As-
sume, therefore, that Q∩ b 6= ∅. If Q is compressible or b-boundary com-
pressible, then Q = Q and it is b-boundary compressible since Q is minimal
with respect to b-boundary compressions. Performing the b-boundary com-
pression creates an essential disc in N, contradicting Lemma 6.3. Thus, Q
is incompressible and b-boundary incompressible and Q∩b 6=∅.

By Proposition 6.1, we have

0 =−2χ(Q)≥ q(Mb(a)−2)+q∗(Mb(a∗)−2)+Mb(∂Q).

Each term of the right hand side is non-negative. Hence, each term is 0. If
b is separating, this implies that

Mb(∂Q) = |b∩∂Q|= 0

and so Q is a torus or meridional annulus.

If q > 0, then Mb(a) = 2 and we are done, since this is conclusion (2).

If q = 0 we must have q∗ > 0 and so Mb(a∗) = 2. If b were separating,
we would have |b∩ a∗| = 2. Two essential separating curves on a genus
two surface that intersect twice are actually parallel, hence |a∩ b| = 0, a
contradiction. Thus, Lb is a knot. Since all components of ∂Q− ∂Q are
parallel to a∗, the 2–component link La∗ is not simple. This is conclusion
(3). �

Knots and links obtained by boring split links and unknots using compli-
cated boring arcs are even more special: the dual boring is not complicated.

Theorem 6.5. Suppose that Lb ⊂ S3 is a knot or 2-component link obtained
from a split link or unknot La using a complicated boring arc α . Then Lb is
not a split link or unknot and Lb has a minimal genus Seifert surface disjoint
from the dual boring arc β .
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Proof. By Corollary 6.2, Lb is not a split link or unknot. Let N be the
exterior of La ∪α . By Lemma 6.3, N is boundary-irreducible. Let R be a
splitting sphere or unknotting disc for La and let Q ≤ R be minimal with
respect to b-boundary compressions and assume Q is connected. Since Q is
a sphere or disc,

−2χ(Q)< q(Mb(a)−2)+q∗(Mb(a∗)−2)+Mb(Q).

Thus, by Proposition 6.1, for all non-zero classes y ∈H2(N[b],∂N[b]), with
the property that if b is separating then the projection of ∂y to the first
homology of each component of ∂N[b] is non-zero, there is a conditioned
norm-minimizing representative of ±y disjoint from β . Choosing y to be a
class representable by Seifert surfaces of Lb, we see that Lb has a minimal
genus Seifert surface disjoint from β . (Note that reversing the orientation of
a Seifert surface of minimal genus in its homology class still gives a Seifert
surface of minimal genus in its homology class, so the distinction between
±y does not matter if, as we do, consider unoriented knots and links.) �

Remark. The proof of the theorem (stemming from the application of The-
orem 2.1) actually gives the stronger result that β can be isotoped to lie on
the branched surface associated to a certain taut sutured manifold hierarchy
for the exterior of Lb.

7. RATIONAL TANGLE REPLACEMENT

Rational tangle replacement is a particularly tractable boring operation. If
La and Lb are related by rational tangle replacement, then Mb(a) = |a∩b|=
Ma(b). Furthermore, all the arcs of b− a join a component of ∂η(a) to
itself and, together with an arc in η(∂α) ⊂ ∂0N[a] form a meridian of La.
Thus, if Q ≤ R and if R has empty or meridional boundary, then Q does as
well. In fact, a closer examination of Lemma 3.1gives the following result
whose proof we leave as an exercise.

Lemma 7.1. Suppose that R is an essential surface in N[a] with R = Q and
∂R isotoped to intersect b minimally. Suppose that Q≤ R. Then one of the
following is true:

(1) Q = R and Q is incompressible and b-boundary incompressible.
(2) Q = Q = R and α is isotopic into Q
(3) Q < R and Q has meridional boundary on some component of La.

We can now give the promised new proofs that unknotting number one
knots are prime and that genus is superadditive under band connect sum.
The proof of the first of these relies on Theorem 6.4, and the proof of the
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second follows almost immediately from Theorem 6.5. Both of those theo-
rems were consequences of Proposition 6.1, so we do have a unified sutured
manifold theory framework for answering questions about rational tangle
replacement.

Theorem 7.2 ([S1]). Unknotting number one knots are prime.

Proof. Suppose that La is a composite unknotting number one knot. Let Lb
be the unknot obtained by changing a crossing of La.

Case 1: α is disjoint from an essential meridional annulus for La.

In this case, the crossing change occurs on a single summand of La. Such a
crossing change can never unknot La.

Case 2: Lb has an unknotting disc with interior disjoint from β .

Let D be the 3–ball complementary to the site where the rational tangle
replacement occurs so that (D,La∩B) = (D,Lb∩B) is a 2–tangle. Isotope
the unknotting disc so that it intersects ∂D minimally. It is not difficult to
see that this implies that the strands of La∩D are parallel. It is then easy to
construct a genus 1 Seifert surface for La. Since La is non-trivial, this is a
minimal genus Seifert surface. Since La is composite, it must have genus at
least 2. Thus, every unknotting disc for Lb has its interior intersected by β .

Case 3: The interior of every unknotting disc for Lb is intersected by β .

In this case β is a complicated boring arc. By Case 1, we may assume that
α is not disjoint from any essential meridional annulus. By Corollary 6.4,
Mb(a) = 2. Since b is separating, we have |a∩b|= 2. This contradicts the
fact that d = |a∩b|/2 = 2. �

Theorem 7.3 ([S3, Theorem 8.4] and [G4]). If K is the band sum of knots
K1 and K2 using a band β , then the genus of K is at least the sum of the
genera of K1 and K2. Equality holds if and only if the interior of β is disjoint
from minimal genus Seifert surfaces for K1 and K2.

Proof. If the band sum is actually a connect sum, the result follows from
the additivity of genus under connect sum. Otherwise, the band β is com-
plicated. Since (by the definition of “band sum”) K1∪K2 is a split link, by
Theorem 6.5, K has a minimal genus Seifert surface disjoint from cocore of
the band. Easy cut and paste arguments, as in [S3, Theorem 8.4], finish the
proof of the theorem. �
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8. BAND SUMS SATISFY THE CABLING CONJECTURE

If K ⊂ S3 is a knot such that the manifold MK(m/n) obtained by m/n Dehn
surgery on K has an essential surface Q̂ not disjoint from the core of the
surgery solid torus, then in the exterior of K in S3, then K can be isotoped
so that the surface Q̂− η̊(K) is an essential surface with boundary having
slope m/n on K. We use this observation to prove that band sums satisfy
the cabling conjecture. The heart of the matter is contained in the following
theorem:

Theorem 8.1. Suppose that a knot La is obtained from a 2–component link
Lb by attaching a band with complicated core. Then La is not a cable knot
and no non-trivial surgery on La produces a reducible 3-manifold.

We define α , β , W , and N as usual. Let L be the result of pushing b slightly
into N. Before embarking on the proof we need a preliminary result.

Lemma 8.2. Suppose that Q⊂N[a] is a properly embedded incompressible
surface and that Q′ ⊂ N is obtained by maximally b-boundary compressing
Q. If Q′ is disjoint from b then Q can be isotoped to be disjoint from L.

Proof. Each b-boundary compression can be achieved by an isotopy of Q
that makes it “dip into” W without making it intersect La∪α . Thus, Q′ is
obtained from Q in S3− (La∪α) by an isotopy of Q. Hence, if Q′∩L =∅,
then Q can be isotoped to be disjoint from L. �

Proof of Theorem 8.1. Suppose that a surgery on La of slope m/n with (m,n)=
1 produces a reducible manifold. By [GL], we know that n = 1. Then there
is an essential connected planar surface Q in the exterior of La with bound-
ary of slope m/1 on La. By Lemma 7.1, there is an isotopy of Q so that one
of the following occurs:

(1) Q = Q∩N is incompressible and b-incompressible
(2) Q = Q and there is a b-boundary compressing disc for Q giving rise

to an isotopy of α into Q.

Case 1: Q is an annulus and α is isotopic into Q.

Let D be the b-boundary compression giving rise to the isotopy of α into
Q. Performing the b-boundary compression creates an essential disc in N,
contradicting the fact that β is complicated. (Lemma 6.3). �(Case 1).

Let γ = b and recall that (N,γ) is a taut sutured manifold and that γ respects
Q. If Q is incompressible and b-boundary incompressible, Proposition 6.1
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implies that
−2χ(Q)≥ 2|∂Q|

since each component of ∂Q intersects b twice and γ̂ =∅. But Q is a planar
surface and so we would have

−2+ |∂Q| ≥ |∂Q

an obvious contradiction. Hence, Q is not incompressible and b-boundary
incompressible. In fact, it must be incompressible but b-boundary com-
pressible. Consequently, Q = Q and α is isotopic into Q. Thus, in light of
Case 1, we will be done if we can prove that it is possible to take Q to be an
annulus.

Let Q0 = Q. Each component of ∂Q intersects b exactly twice. Since Q is
incompressible in N[a], any b-boundary compressing disc must join a com-
ponent of ∂Q to itself (and cross a ⊂ ∂N). Assume that we have defined
Qi and let Qi+1 be obtained from Qi by a b-boundary compression. We
obtain a sequence Q0,Q1, . . . ,Qp so that Qp is b-boundary incompressible.
(Possibly Qp is disjoint from b.) Each b-boundary compression must join
a component of ∂Q to itself and must cross a, since otherwise we would
have a b-boundary compression for Q in N[a]. Thus, each b-boundary com-
pression removes a component of ∂Q and replaces it with two components
disjoint from b. In particular, the boundary of each Qi intersects b mini-
mally up to isotopy.

Case 2: Qp is not disjoint from b.

Since Qp is incompressible and b-boundary incompressible in N and inter-
sects b minimally, we may apply Theorem 2.1 to deduce that

−2χ(Qp)≥ |∂Qp∩b|

Since Qp was obtained from Q = Q by b-boundary compressing p times,
we have

−2χ(Qp) =−2(χ(Q)+ p) =−2χ(Q)−2p.

Each boundary compression converted a component of ∂Q that intersected
b twice into two components of ∂Qp that are disjoint from b. Thus, |∂Qp∩
b|= 2(|∂Q|− p). Consequently,

−2χ(Q)−2p≥ 2|∂Q|−2p

Hence,
−χ(Q)≥ |∂Q|.

which, as before, is a contradiction to the fact that Q is a planar surface.
Hence, this case cannot occur.
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Case 3: Qp is disjoint from b.

By Lemma 8.2, Q = Q can be isotoped (relative to its boundary) to be dis-
joint from L. Since L is the unknot in S3, Q lies in a solid torus V . Perform-
ing m/n surgery on La in V produces a reducible manifold V (m/n). Since
β is a complicated boring arc, La cannot lie in a 3–ball in V . (I.e. the band
sum is not a connected sum.) By [S3, Corollary 4.4], La is cabled and m/n
is the slope of the cabling annulus. Hence, it is possible to take Q to be an
annulus, and we are done. �

We conclude with a simple corollary that also draws on work of Scharle-
mann.

Corollary 8.3. Suppose that K is the band sum of two knots K1 and K2.
Then K satisfies the cabling conjecture and is not a cable knot.

Proof. If the core of the band is not complicated then it intersects a splitting
sphere for K1 ∪K2 exactly once. If it intersects a splitting sphere exactly
once, the band sum is a connected sum. By Theorem 8.1, we may assume
that the band sum is a connect sum. By [S3, Corollary 4.5], K satisfies the
cabling conjecture. It is well-known that cable knots are prime and so we
are done. �
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