BAND TAUT SUTURED MANIFOLDS

SCOTT A TAYLOR

Abstract

Attaching a 2-handle to a genus two or greater boundary component of a 3 -manifold is a natural generalization of Dehn filling a torus boundary component. We prove that there is an interesting relationship between an essential surface in a sutured 3-manifold, the number of intersections between the boundary of the surface and one of the sutures, and the cocore of the 2 -handle in the manifold after attaching a 2-handle along the suture. We use this result to show that tunnels for tunnel number one knots or links in any 3-manifold can be isotoped to lie on a branched surface corresponding to a certain taut sutured manifold hierarchy of the knot or link exterior. In a subsequent paper, we use the theorem to prove that band sums satisfy the cabling conjecture, and to give new proofs that unknotting number one knots are prime and that genus is superadditive under band sum. To prove the theorem, we introduce band taut sutured manifolds and prove the existence of band taut sutured manifold hierarchies.

1. Introduction

Gabai's sutured manifold theory [G1, G2, G3] is central to a number of stunning results concerning Dehn surgery on knots in 3-manifolds. Many of these insights make use of a famous theorem of Gabai [G2, Corollary 2.4]: with certain mild hypotheses, there is at most one way to fill a torus boundary component of a 3-manifold so that Thurston norm decreases. Lackenby [L1], building on this work, proved a theorem relating Dehn surgery properties of a knot to the intersection between the knot and essential surfaces in the 3-manifold. Lackenby used his results to study the effect of twisting the unknot along a knot having linking number zero with the unknot, and to study [L2] the uniqueness properties of Dehn surgery on certain knots in certain 3-manifolds. Lackenby [L3] and Kalfagianni [K] also used Lackenby's theorem to study the unknotting properties of certain knots.

In this paper, we prove a version of Lackenby's theorem for attaching a 2-handle to a sutured 3-manifold along a suture. Like Lackenby, we use

Scharlemann's combinatorial version of sutured manifold theory [S1]. Although our method is inspired by the proofs of Gabai's and Lackenby's theorems, the proof is very different.

For the statement of the main result, let (N, γ) be a sutured manifold and let $F \subset \partial N$ be a component of genus at least 2 . Let $b \subset \gamma \cap F$ be a component. Let $N[b]$ be the 3 -manifold obtained by attaching a 2 -handle to N along b and let $\beta \subset N[b]$ be the cocore of the 2 -handle. For a 3-manifold M with T the union of two torus boundary components, we say that a non-zero homology class $y \in H_{2}(M, \partial M)$ is Seifert-like for T if the projection of y to the first homology of each component of T is non-zero. The main result of this paper is:

Theorem 10.7 (rephrased). Suppose that (N, γ) is taut and that the components of $\partial N-A(\gamma)$ adjacent to b are both thrice punctured spheres or are both once-punctured tori. Let $Q \subset N$ be a surface having no component a sphere or disc disjoint from γ. Assume that ∂Q intersects γ minimally and that $|\partial Q \cap b| \geq 1$. Then one of the following is true:
(1) Q has a compressing or b-boundary compressing disc.
(2) $(N[b], \beta)=\left(M_{0}^{\prime}, \beta_{0}^{\prime}\right) \#\left(M_{1}^{\prime}, \beta_{1}^{\prime}\right)$ where M_{1}^{\prime} is a lens space and β_{1}^{\prime} is a core of a genus one Heegaard splitting of M_{1}^{\prime}.
(3) The sutured manifold $(N[b], \gamma-b)$ is taut. The arc β can be properly isotoped to be embedded on a branched surface $B(\mathscr{H})$ associated to a taut sutured manifold hierarchy \mathscr{H} for $N[b]$. There is also a proper isotopy of β in $N[b]$ to an arc disjoint from the first decomposing surface in \mathscr{H}. If b is adjacent to thrice-punctured spheres, that first decomposing surface can be taken to represent $\pm y$ for any given non-zero $y \in H_{2}(N[b], \partial N[b])$. If b is adjacent to once-punctured tori, the first decomposing surface can be taken to represent any Seifert-like homology class for the corresponding unpunctured torus components of $\partial N[b]$.
(4)

$$
-2 \chi(Q)+|\partial Q \cap \gamma| \geq 2|\partial Q \cap b| .
$$

A b-boundary compressing disc for a properly embedded surface $Q \subset N$ transverse to b is a disc with boundary consisting of an arc on Q and a subarc of b and with interior disjoint from $Q \cup \partial N$. See Figure 1.
In [L2], Lackenby shows how to add sutures to the (non-empty) boundary of a compact, orientable, irreducible and boundary-irreducible manifold (other than a 3-ball) to create a taut sutured manifold. In his construction all components of $R(\gamma)$ are thrice-punctured spheres or tori, so the hypothesis

Figure 1. D is an b-boundary compressing disc for the surface Q outlined in green.
in Theorem 10.7 that b be adjacent to thrice-punctured sphere components of $R(\gamma)$ is reasonable.
The fourth conclusion is useful, since the inequality can be rearranged to be:

$$
-2 \chi(Q)+|\partial Q \cap(\gamma-b)| \geq|\partial Q \cap b|
$$

Thus, for example, if ∂Q happens to be disjoint from $\gamma-b$, then twice the negative euler characteristic of the surface is an upper bound for the number of times the boundary of the surface intersects b.

The third conclusion of the theorem is of particular interest in that it is related to several well-known and very useful facts:

- If K is an unknotting number one knot in S^{3} and if β is an arc in the knot complement defining a crossing change converting K into the unknot then β is isotopic into a minimal genus Seifert surface for K.
- If K is a tunnel number one knot in S^{3} and if β is a tunnel then, if the Scharlemann-Thompson invariant [ST] is not $1, \beta$ can be isotoped into a minimal genus Seifert surface for K.

Any minimal genus Seifert surface can be used as the first surface in a taut sutured manifold hierarchy of the knot exterior, and so any minimal genus Seifert surface can be thought of as part of a branched surface associated to a taut sutured manifold hierarchy of the knot exterior. Since these facts have proven to be very useful, the third conclusion of the main theorem of this paper also has the potential to be useful and perhaps points to a connection between the various ad hoc methods used to push certain arcs onto minimal genus Seifert surfaces.

Applications of Theorem 10.7 include a proof that knots that are band sums satisfy the cabling conjecture [T2, Theorem 8.1], a partial solution to a
conjecture of Scharlemann and Wu [T2, Corollary 5.4], a near complete solution of a conjecture of Scharlemann [T2, Corollary 6.2], and new proofs of three classical facts:

- Knot genus is superadditive under band connect sum [T2, Theorem 7.3].
- Unknotting number one knots are prime [T2, Theorem 7.2].
- Tunnel number one knots in S^{3} have minimal genus Seifert surfaces disjoint from a given tunnel (Theorem 11.2 below).

These three facts previously all had proofs which use sutured manifold theory, but the methods were different. The advantage of the new proofs is that they are all nearly identical. Since some effort is required to rephrase the theorems in a way in which the main theorem of this paper can be usefully applied, we defer proofs for all but the last fact to [T2]; the new proof of the last fact is given in this paper. Indeed, we prove the following stronger theorem for tunnel number one knots and 2-component links in any 3-manifold admitting such a knot or link (see Section 11 for the definitions):

Theorem 11.1. Suppose that L_{b} is a knot or 2-component link in a closed, orientable 3-manifold M such that L_{b} has tunnel number one. Let β be a tunnel for L_{b}. Assume also that $\left(M-L_{b}, \beta\right)$ does not have a (lens space, core) summand. Then there exist (possibly empty) curves $\widehat{\gamma}$ on $\partial(M-$ $\left.\dot{\eta}\left(L_{b}\right)\right)$ such that $\left(M-\dot{\eta}\left(L_{b}\right), \widehat{\gamma}\right)$ is a taut sutured manifold and the arc β can be properly isotoped to lie on the branched surface associated to a taut sutured manifold hierarchy of $\left(M-\stackrel{\circ}{\eta}\left(L_{b}\right), \widehat{\gamma}\right)$. In particular, if L_{b} has a (generalized) Seifert surface, then there exists a minimal genus (generalized) Seifert surface for L_{b} that is disjoint from β.

2. Motivation and Outline

As motivation for our proof of Theorem 10.7, we briefly review the proofs of Gabai's and Lackenby's theorems. For reference, here are (simplified and weakened) statements of Gabai's and Lackenby's theorems. The sutured manifold terminology will be explained in the next section.

Theorem (Gabai). Let N be an atoroidal Haken 3-manifold whose boundary is the non-empty union of tori. Let S be a Thurston norm minimizing surface representing an element of $H_{2}(N, \partial N)$ and let P be a component of ∂M such that $P \cap S=\varnothing$. Then, with at most one exception, S remains norm minimizing in each manifold obtained by Dehn filling N along a slope in P.

Theorem ([L1, Theorem 1.4]). Suppose that (N, γ) is a taut atoroidal sutured manifold. Let $P \subset \partial N$ be a torus component disjoint from γ.

Suppose that b is a slope on P such that Dehn filling N with slope b creates a sutured manifold $(N(b), \gamma)$ that is not taut. Let $Q \subset N$ be an essential surface such that ∂Q intersects b minimally and $|\partial Q \cap b| \geq 1$. Then

$$
-2 \chi(Q)+|\partial Q \cap \gamma| \geq 2|\partial Q \cap b|
$$

Gabai's theorem is proved by taking a taut sutured manifold hierarchy for N such that each decomposing surface in the hierarchy is disjoint from P. The first decomposing surface is the given surface S. The hierarchy ends at a taut sutured manifold $\left(N_{n}, \gamma_{n}\right)$ such that $H_{2}\left(N_{n}, \partial N_{n}-P\right)=0$. Our additional assumption that N is atoroidal implies that N_{n} consists of 3-balls and one additional component that is homeomorphic to $P \times[0,1]$. Dehn filling N_{n} along a slope $b \subset P$ creates another sutured manifold which we call $\left(N_{n}(b), \gamma_{n}\right)$. An examination of the sutures $\gamma_{n} \cap \partial N_{n}$ shows that for all but at most one choice of $b,\left(N_{n}(b), \gamma_{n}\right)$ remains taut. One of the fundamental theorems of sutured manifold theory [S1, Corollary 3.9] (see Theorem 7.2 below) implies that, except for the exceptional slope, $(N(b), \gamma)$ and S are taut.

Equivalently, we can begin with the Dehn-filled β-taut sutured manifold $(N(b), \gamma, \beta)$ where β is the core of the surgery solid torus. The hierarchy for N is then a β-taut sutured manifold hierarchy for $(N(b), \gamma, \beta)$ where each decomposing surface is disjoint from β. We conclude that for all but at most one choice of b, the sutured manifold $(N(b), \gamma, \varnothing)$ and the surface S are not only β-taut, but also \varnothing-taut. There are two advantages to this viewpoint. One is that it is possible to see that if the hierarchy is taut then β has infinite order in the fundamental group of $N(b)$ [L2, Theorem A.6]. The other advantage is that, if the hierarchy of the filled manifold is taut, it is not difficult to see that β can be isotoped to lie on the branched surface corresponding to the hierarchy. The analogous statment in Theorem 10.7 is much harder to prove.

That was a sketch of the proof of Gabai's theorem. We now turn to Lackenby's theorem. The surface Q in the statement of Lackenby's theorem is an example of what is called a "parameterizing surface" in (N, γ). (Parameterizing surfaces are defined in Section 5.) Associated to each parameterizing surface is a number called the index (or "sutured manifold norm" [CC]). In the case of Lackenby's theorem, the index of Q is defined to be:

$$
I(Q)=|\partial Q \cap \gamma|-2 \chi(Q)
$$

Suppose now that $b \subset P$ is the exceptional slope, so that $(N(b), \gamma-b)$ is not taut. Let $Q \subset N$ be a parameterizing surface so that ∂Q intersects γ minimally and $|\partial Q \cap b|>0$.

In the sutured manifold $\left(N_{n}, \gamma_{n}\right)$, the surface Q has decomposed into a parameterizing surface Q_{n} with $I(Q) \geq I\left(Q_{n}\right)$. The component N_{n}^{\prime} of N_{n} containing P is homeomorphic to $P \times[0,1]$. Some components of Q_{n} lie in N_{n}^{\prime}. Since Q is essential, $Q_{n} \cap N_{n}^{\prime}$ is the union of discs with boundary on $\partial N_{n}^{\prime}-P$ and annuli with at least one boundary component on $\partial N_{n}^{\prime}-P$. These boundary components must cross the sutures on $\partial N_{n}^{\prime}-P$. Analyzing these intersections gives a lower bound on $I\left(Q_{n}\right)$ which is, therefore, a lower bound on $I(Q)$. This lower bound implies the inequality in Lackenby's theorem. As in Gabai's theorem, Lackenby's theorem can be rewritten as a theorem about a sutured manifold (M, γ, β) with β a knot in M. (The knot β is the core of the surgery solid torus with slope b.)

The point of this paper is to develop a theory whereby we can replace the knot β in the the proof of Gabai's and Lackenby's theorems with an arc β. In Theorem 9.5, this arc is the cocore of a 2-handle added to $b \subset \partial N$.

The proof of Theorem 10.7 is inspired by the proof of Lackenby's theorem. For the time being, let $\left(M, \gamma^{\prime}\right)=(N[b], \gamma-b)$ and consider the arc $\beta \subset$ M which is the cocore of the attached 2 -handle. If we could construct a useful hierarchy of (M, γ, β) disjoint from β, we could adapt Lackenby's combinatorics to obtain a result similar to Theorem 10.7. However, it seems unlikely that such a hierarchy can exist, since although a sequence

$$
\left(M, \gamma^{\prime}, \beta\right) \xrightarrow{S_{1}}\left(M_{1}, \gamma_{1}, \beta_{1}\right) \xrightarrow{S_{2}} \ldots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}, \beta_{n}\right)
$$

can be constructed so that each decomposing surface represents a given homology class, and although it is possible to find such surfaces representing the homology class that are disjoint from β, it may not be possible to find such surfaces giving a β-taut decomposition which are (in the terminology of [S1]) "conditioned". Instead we develop the theory of "band-taut sutured manifolds" to give the necessary control over intersections between β and the decomposing surfaces. Sections 4 and 7 are almost entirely devoted to proving that if $(M, \gamma, \boldsymbol{\beta})$ is a band-taut sutured manifold then there is a socalled "band-taut" sutured manifold hierarchy of M. Section 8 studies the combinatorics of parameterizing surfaces at the end of a band-taut hierarchy and proves a version of Theorem 10.7 for band-taut sutured manifolds. Section 6 reviews Gabai's construction of the branched surface associated to a sequence of sutured manifold decompositions and sets up the technology to prove that the arc β can sometimes be isotoped into the branched surface associated to a taut hierarchy.

In classical combinatorial sutured manifold theory, sutured manifold decompositions are usually constructed so that they "respect" a given parameterizing surface. The framework of "band taut sutured manifolds" requires
that we have sutured manifold decompositions that respect each of two, not necessarily disjoint, parameterizing surfaces. Section 5 is devoted to explaining this mild generalization of the classical theory.

Sections 9 and 10 convert the main theorem for the theory of band taut sutured manifolds into theorems for arc-taut and nil-taut sutured manifolds. Section 11 gives the application to tunnel number one knots and links.

Acknowledgements. This paper has its roots in my Ph.D. dissertation [T1], although none of the present work appears there. I am grateful to Qilong Guo who found a gap in [T1], which lead to the development of the concept of "band taut sutured manifold". I am grateful to Marty Scharlemann for his encouragement and helpful comments. Thanks also to the referees for their careful reading and suggestions.

3. Sutured Manifolds

A sutured manifold (M, γ, β) consists of a compact orientable 3-manifold M, a collection of annuli $A(\gamma) \subset \partial M$ whose cores are oriented simple closed curves γ, a collection of torus components $T(\gamma) \subset \partial M$, and a 1-complex β properly embedded in M. Furthermore, the closure of $\partial M-(A(\gamma) \cup T(\gamma))$ is the disjoint union of two surfaces $R_{-}=R_{-}(\gamma)$ and $R_{+}=R_{+}(\gamma)$. Each component of $A(\gamma)$ is adjacent to both R_{-}and R_{+}. The surfaces R_{-}and R_{+} are oriented so that if A is a component of $A(\gamma)$, then the curves $R_{-} \cap A$, $R_{+} \cap A$ and $\gamma \cap A$ are all non-empty and are mutually parallel as oriented curves. We denote the union of components of $A(\gamma)-\gamma$ adjacent to $R_{ \pm}$by $A_{ \pm}$. We let $R(\gamma)=R_{-} \cup R_{+}$. We use $R_{ \pm}$to denote R_{-}or R_{+}.

The orientation on ∂R_{+}gives an outward normal orientation to R_{+}and the orientation on ∂R_{-}gives an inward normal orientation to R_{-}. We assign each edge of β an orientation with the stipulation that if an edge has an endpoint in $R_{-} \cup A_{-}$then it is the initial endpoint of the edge and if an edge has an endpoint in $R_{+} \cup A_{+}$then it is the terminal endpoint of the edge. We will only be considering 1 -complexes β where this stipulation on the orientation of edges can be attained. (That is, no edge of β will have both endpoints in $R_{ \pm} \cup A_{ \pm}$.)

If (M, γ, β) is a sutured manifold and if $S \subset M$ is a connected surface in general position with respect to β, the β-norm of S is

$$
x_{\beta}(S)=\max \{0,-\chi(S)+|S \cap \beta|\} .
$$

If S is a disconnected surface in general position with respect to β, the β norm is defined to be the sum of the β-norms of its components. The norm x_{\varnothing} is called the Thurston norm.

The surface S is β-minimizing if, out of all embedded surfaces with the same boundary as S and representing $[S, \partial S]$ in $H_{2}(M, \partial S)$, the surface S has minimal β-norm. S is β-taut if it is β-incompressible (i.e. $S-\beta$ is incompressible in $M-\beta$), β-minimizing, and any given edge of β always intersects S with the same sign.

A sutured manifold is β-taut if:
(T0) β is disjoint from $A(\gamma) \cup T(\gamma)$.
(T1) M is β-irreducible
(T2) $R(\gamma)$ (equivalently R_{-}and R_{+}) and $T(\gamma)$ are β-taut.

If a 3-manifold or surface is \varnothing-taut, we say it is taut in the Thurston norm or sometimes, simply, taut.

The sutured manifold terminology up until now has been standard (see [S1]). Here is the central new idea of this paper. We say that a sutured manifold (M, γ, β) is banded if
(B1) there exists at most one edge $c_{\beta} \subset \beta$, having an endpoint in $A(\gamma)$. If $c_{\beta} \neq \varnothing$, one endpoint lies in A_{-}and the other lies in A_{+}. The edge c_{β} is called the core.
(B2) If $c_{\beta} \neq \varnothing$, then there exits a disc D_{β}, which we think of as an octagon, having its boundary divided into eight arcs, $c_{1}, c_{2}, \ldots, c_{8}$ (in cyclic order), called the edges of D_{β}. The arc c_{β} is contained in D_{β} and the interior of D_{β} is otherwise disjoint from β. We require that:

- c_{1} and c_{5} are properly embedded in $R_{-}-\partial \beta$,
- c_{2} and c_{6} each are properly embedded in $A(\gamma)$, intersect γ exactly once each, and each contains an endpoint of c_{β},
- c_{3} and c_{7} are properly embedded in $R_{+}-\partial \beta$,
- c_{4} and c_{8} each either traverse an edge of $\beta-c_{\beta}$ or are properly embedded in $A(\gamma)$ and intersect γ exactly once.
Define e_{β} to be the union of edges of $\beta-c_{\beta}$ that are traversed by $\partial D_{\beta} \cap\left(\beta-c_{\beta}\right)$. We have that $\left|e_{\beta}\right| \leq 2$. The disc D_{β} is called the band and the components of e_{β} are called the sides of the band. The sides of a band may lie on zero, one, or two edges of β. The $\operatorname{arc} c_{1} \cup c_{2} \cup c_{3}$ is called the top of the band and the $\operatorname{arc} c_{5} \cup c_{6} \cup c_{7}$ is called the bottom of the band. See Figure 2.

Figure 2. The red disc is a band with $e_{\beta}=\varnothing$. The green surfaces are subsurfaces of $R(\gamma)$ and the blue surfaces are subsurfaces of $A(\gamma)$. The edges of the band are labelled clockwise c_{1} through c_{8} with c_{2} containing the top endpoint of the red arc c_{β}.

A banded sutured manifold (M, γ, β) is band-taut if $\left(M, \gamma, \beta-c_{\beta}\right)$ is $(\beta-$ c_{β})-taut.

Remark. The core of the band c_{β} is the arc we try to isotope onto the branched surface coming from a sutured manifold hierarchy. When building the hierarchy we will attempt to make each decomposing surface disjoint from c_{β}. The disc D_{β} helps to guide the isotopy of (parts of) c_{β} into the branched surface coming from a sutured manifold hierarchy. That the endpoints of c_{β} lie in $A(\gamma)$ allow us to use the surface $R(\gamma)$ to modify decomposing surfaces so as to give them algebraic intersection number zero with c_{β}. Because we want to appeal to as much of the sutured manifold theory developed in [S1] and [S2] as possible, we need ways of appealing to results about taut sutured manifolds. The sides of the band allow us to make use of these results.

4. DECOMPOSITIONS

In classical combinatorial sutured manifold theory, sutured manifolds are decomposed using so-called "conditioned" surfaces and a variety of "product surfaces". We review and expand the classical definitions and then discuss how the surfaces can give decompositions of band-taut sutured manifolds.

4.1. Sutured manifold decompositions.

4.1.1. Decomposing surfaces. If (M, γ, β) is a sutured manifold, a decomposing surface (cf. [S1, Definition 2.3]) is a properly embedded surface $S \subset M$ transverse to β such that:
(D1) ∂S intersects each component of $T(\gamma)$ in a (possibly empty) collection of coherently oriented circles.
(D2) ∂S intersects each component of $A(\gamma)$ in circles parallel to γ (and oriented in the same direction as γ), in essential arcs, or not at all.
(D3) Each circle component of $\partial S \cap A(\gamma)$ is disjoint from γ and no arc component of $\partial S \cap A(\gamma)$ intersects γ more than once.

If S is a decomposing surface, there is a standard way of placing a sutured manifold structure on $M^{\prime}=M-\frac{\eta}{\eta}(S)$. The curves γ^{\prime} are the oriented double curve sum of γ with ∂S. Let $\beta^{\prime}=\beta \cap M^{\prime}$. The sutured manifold $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is obtained by decomposing (M, γ, β) using S. We write $(M, \gamma, \beta) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$. If (M, γ, β) is β-taut and if $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is β^{\prime}-taut, then we say the decomposition is β-taut.
If the annuli and tori $A(\gamma) \cup T(\gamma)$ are not disjoint from β, we need to be more precise about the formation of the annuli $A\left(\gamma^{\prime}\right)$ in $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$. We form annuli $A\left(\gamma^{\prime}\right)=\eta\left(\gamma^{\prime}\right)$ by demanding that $(A(\gamma) \cup T(\gamma)) \cap M^{\prime}$ is a subset of $A\left(\gamma^{\prime}\right) \cup T\left(\gamma^{\prime}\right)$. This requirement ensures that any endpoint of β that lies in $A(\gamma) \cup T(\gamma)$ continues to lie in $A\left(\gamma^{\prime}\right) \cup T\left(\gamma^{\prime}\right)$. See Figure 3 .
4.1.2. Product Surfaces. If $e \subset \beta$ is an edge with both endpoints in $R(\gamma)$, a cancelling disc for e is a disc properly embedded in $M-\eta(\beta)$ having boundary running once across e and once across $A(\gamma)$. See Figure 4. A product disc in a sutured manifold (M, γ, β) is a rectangle P properly embedded in M such that $P \cap \beta=\varnothing$ and $\partial P \cap A(\gamma)$ consists of two opposite edges of the rectangle each intersecting γ once transversally. Notice that the frontier of a regular neighborhood of a cancelling disc is a product disc. A product disc P is allowable if no component of $\partial P \cap R(\gamma)$ is β-inessential.

An amalgamating disc D in (M, γ, β) is a rectangle with two opposite edges lying on components of β that are edges joining R_{-}to R_{+}, one edge in R_{+}and one edge in R_{-}. If ∂D traverses a single edge of β twice, it is a self amalgamating disc, otherwise it is a nonself amalgamating disc. A self amalgamating disc is allowable if both of the $\operatorname{arcs} \partial D \cap \partial M$ are β essential in $R(\gamma)$.

If in (M, γ, β) there is a cancelling disc D for e, we say that the sutured manifold ($M, \gamma, \beta-e$) is obtained from (M, γ, β) by cancelling the arc e. If

Figure 3. Creating sutures in $M-\check{\eta}(S)$.

Figure 4. A cancelling disc D for an edge e
in (M, γ, β) there is a nonself amalgamating disc with boundary on components β_{1} and β_{2} of β, we say that the sutured manifolds $\left(M, \gamma, \beta-\beta_{1}\right)$ and $\left(M, \gamma, \beta-\beta_{2}\right)$ are obtained by amalgamating the arcs β_{1} and β_{2}.

Lemma 4.3 of [S1] shows that if (M, γ, β) is β-taut, then after cancelling arc e, the sutured manifold is still $(\beta-e)$-taut. The converse is also easily proven. By [S1, Lemma 4.2], if (M, γ, β) is taut, then so is the sutured manifold obtained by decomposing along a product disc in (M, γ, β). By [S 1 , Lemma 4.3 and Lemma 4.4], if $\left(M, \gamma, \beta-\beta_{1}\right)$ is obtained by amalgamating $\operatorname{arcs} \beta_{1}$ and β_{2} in the β-taut sutured manifold (M, γ, β), then $\left(M, \gamma, \beta-\beta_{1}\right)$ is $\left(\beta-\beta_{1}\right)$-taut. Later we will review a method for eliminating self amalgamating discs so that tautness is preserved.

A product annulus P is an annulus properly embedded in M that is disjoint from β and that has one boundary component in R_{-}and the other in R_{+}.
(See [S1, Definition 4.1].) A product annulus is allowable if P is not the frontier of a regular neighborhood of an arc in M (this is the same as being "non-trivial" in the sense of [S1, Definition 4.1]). Notice that attaching the two edges of a self-amalgamating disc lying on β produces a product annulus.
4.1.3. Conditioned and rinsed surfaces. In addition to decomposing sutured manifolds along product surfaces, we will also need to decompose along more complicated surfaces. We require such surfaces to be "conditioned" [S1, Definition 2.4]. A conditioned 1-manifold $C \subset \partial M$ is an embedded oriented 1 -manifold satisfying:
(C0) All circle components of C lying in the same component of $A(\gamma) \cup$ $T(\gamma)$ are oriented in the same direction, and if they lie in $A(\gamma)$, they are oriented in the same direction as the adjacent component of γ.
(C1) All arcs of $C \cap A(\gamma)$ in any annulus component of $A(\gamma)$ are oriented in the same direction.
(C2) No collection of simple closed curves of $C \cap R(\gamma)$ is trivial in $H_{1}(R(\gamma), \partial R(\gamma))$.

Notice that if $z \in H_{1}(\partial M)$ is non-trivial, then there is a conditioned 1manifold in M representing z. Furthermore, if C is a conditioned 1 -manifold then the oriented double curve sum of C with $\partial R(\gamma)$ is also conditioned.
A decomposing surface $S \subset M$ is conditioned if ∂S is conditioned and if, additionally,
(C3) Each edge of β intersects $S \cup R(\gamma)$ always with the same sign.
A surface S in a banded 3-manifold (M, γ, β) is rinsed if S is conditioned in $\left(M, \gamma, \beta-c_{\beta}\right)$, if S has zero algebraic intersection with c_{β}, and if every separating closed component of S bounds with a closed component of $R(\gamma)$ a product region intersecting β in vertical arcs.
4.2. Band-taut decompositions. An arbitrary decomposition of a banded sutured manifold may not create a banded sutured manifold. In this section, we show how certain surfaces can be used to usefully decompose band-taut sutured manifolds.

The easiest instance of such a decomposition is if (M, γ, β) is a banded sutured manifold and if E is a cancelling disc with interior disjoint from D_{β} for a component β_{1} of e_{β}. Let E^{\prime} be the product disc in M that is the frontier of a regular neighborhood of E. The disc E^{\prime} intersects D_{β} in either one or two arcs. Those arcs join the top of D_{β} the bottom of D_{β}. If there
are two arcs (which happens if c_{4} and c_{8} run along the same edge of β), one arc joins c_{1} to c_{7} and the other joins c_{3} to c_{5}. If there is a single arc, it either joins c_{1} to c_{7} or joins c_{3} to c_{5}. Let $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ be the result of decomposing (M, γ, β) using E^{\prime}. The disc D_{β} is decomposed into 2 or 3 discs, one of which D_{β}^{\prime} contains $c_{\beta}=c_{\beta^{\prime}}$. The disc D_{β}^{\prime} is clearly a band and $\left|e_{\beta}^{\prime}\right|<\left|e_{\beta}\right|$. In effect, we have cancelled an edge of e_{β} and the new band runs along a suture instead of along the edge. We call E^{\prime} a band-decomposing product disc. Since cancelling an edge and decomposing along a product disc disjoint from D_{β} preserve tautness, decomposing a band-taut sutured manifold along either a band-decomposing disc or a product disc disjoint from D_{β} preserves band-tautness.
We also need ways of decomposing along other product surfaces or conditioned surfaces in ways that preserve band-tautness. To that end, suppose that a decomposing surface S in a banded sutured manifold (M, γ, β) is transverse to D_{β}. We say that S is a band-decomposing surface if it is either a band-decomposing product disc, a product disc disjoint from D_{β} or if it satisfies:
(BD) Either $e_{\beta}=\varnothing$ and c_{β} is isotopic in D_{β} relative to its endpoints into ∂M or all of the following are true:
(1) there exists a properly embedded $\operatorname{arc} c$ in D_{β} joining the top of D_{β} to the bottom of D_{β} that is disjoint from S
(2) each point of the intersection between ∂S and the top of D_{β} has the same sign as the sign of intersection between γ and c_{2}.
(3) each point of the intersection between ∂S and the bottom of D_{β} has the same sign as the sign of intersection between γ and c_{6}.
(4) each point of the intersection between ∂S and c_{4} has the same sign.
(5) each point of the intersection between ∂S and c_{8} has the same sign.

Suppose that $(M, \gamma, \beta) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is a $\left(\beta-c_{\beta}\right)$-taut sutured manifold decomposition where (M, γ, β) is a banded sutured manifold and S is a band-decomposing surface. We say that the decomposition is band-taut if (M, γ, β) and $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ are each band-taut and one of the following holds:
(BT1) $e_{\beta}=\varnothing, c_{\beta}$ is isotopic (relative to its endpoints) in D_{β} into ∂M and $D_{\beta^{\prime}}=c_{\beta^{\prime}}=\varnothing$, or
(BT2) $c_{\beta^{\prime}}$ is a properly embedded arc in $D_{\beta}-S$, such that the initial endpoint of $c_{\beta^{\prime}}$ lies in $A_{-}\left(\gamma^{\prime}\right) \cap \partial D_{\beta}$ and the terminal endpoint of $c_{\beta^{\prime}}$
lies in $A_{+}\left(\gamma^{\prime}\right) \cap \partial D_{\beta}$ and $D_{\beta^{\prime}}$ is the component of $D_{\beta} \cap M^{\prime}$ containing $c_{\beta^{\prime}}$.

Lemma 4.1. Suppose that (M, γ, β) is band-taut with $D_{\beta} \neq \varnothing$. If a banddecomposing surface S satisfying (BD) has been isotoped relative to ∂S so as to minimize $\left|S \cap D_{\beta}\right|$ then every component of $S \cap D_{\beta}$ is an arc joining either the top or bottom of D_{β} to c_{4} or c_{8}.

Proof. That no component of $S \cap D_{\beta}$ is a circle follows from an innermost disc argument. By condition (1) of (BD), no arc component joins c_{4} to c_{8}. By conditions (4) and (5) of (BD), no arc component joins c_{4} to itself or joins c_{8} to itself. Since $\left|S \cap D_{\beta}\right|$ is minimized and since S is a decomposing surface, no arc of $S \cap D_{\beta}$ has both endpoints on the same edge of D_{β}. By conditions (2) and (3), no arc joins the top of D_{β} to itself and no arc joins the bottom of D_{β} to itself. We need only show, therefore, that each arc joins the top or bottom of D_{β} to c_{4} or c_{8}.
Due to the orientations of R_{-}and R_{+}, the orientations of γ at $\gamma \cap c_{2}$ and $\gamma \cap c_{6}$ point in the same direction. Suppose that ζ is an arc of $S \cap D_{\beta}$ joining the top of D_{β} to the bottom of D_{β}. The orientation of S induces a normal orientation of ζ in D_{β}. The normal orientation of S induces orientations of the endpoints of ζ that are normal to D_{β} and point in opposite directions. This violates either condition (2) or (3) of (BD). Hence, no arc of $S \cap D_{\beta}$ joins the top of D_{β} to the bottom of D_{β}.

Lemma 4.2. Suppose that (M, γ, β) is a band-taut sutured manifold and that S is a band decomposing surface satisfying (BD) and defining a taut decomposition $\left(M, \gamma, \beta-c_{\beta}\right) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}-c_{\beta}\right)$. Then after an isotopy of $S($ rel $\partial S)$ to minimize $\left|S \cap D_{\beta}\right|$, there are $D_{\beta^{\prime}} \subset D_{\beta}$ and $c_{\beta^{\prime}} \subset D_{\beta^{\prime}}$ so that the decomposition is band-taut. Furthermore, if (BT1) does not hold, each component of $\left(D_{\beta} \cap M^{\prime}\right)-D_{\beta^{\prime}}$ is a product disc or cancelling disc.

Proof. If $e_{\beta}=\varnothing$ and if c_{β} is isotopic into ∂M in D_{β}, define $D_{\beta^{\prime}}=c_{\beta^{\prime}}=\varnothing$. Assume, therefore, that (BT1) does not hold.

Let d_{T} and d_{B} be the top and bottom of D_{β} respectively. Since all points of intersection of S with d_{T} have the same sign as the intersection of γ with c_{2}, each component of $d_{T}-S$ contains exactly one point of $\gamma^{\prime} \cap D_{\beta}$. Similarly, each component of $d_{B}-S$ contains exactly one point of $\gamma^{\prime} \cap D_{\beta}$. By Lemma 4.1, every component of $S \cap D_{\beta}$ joins the top or bottom of D_{β} to c_{4} or c_{8}. This implies both that each component of $e_{\beta}-S$ has an endpoint in both $R_{-}\left(\gamma^{\prime}\right)$ and $R_{+}\left(\gamma^{\prime}\right)$ and that there is exactly one component $D_{\beta^{\prime}}$ of $D_{\beta} \cap M^{\prime}$ containing both a point of d_{T} and a point of d_{B}. It is not hard to see that $D_{\beta^{\prime}}$
is a band containing an arc c_{β}^{\prime} satisfying the definition of core. See Figures 5 and 6.

Similarly, each component of $D_{\beta}-S$ other than $D_{\beta^{\prime}}$ intersects $c_{4} \cup c_{8}$ in at most one arc. If such a component does intersect $\left(c_{4} \cup c_{8}\right)$ it is a product disc or cancelling disc (depending on whether or not c_{4} or c_{8} lies in e_{β}). If such a component does not intersect $\left(c_{4} \cup c_{8}\right)$ then it is adjacent to exactly two arcs of $S \cap D_{\beta}$ and so is a product disc in M^{\prime}.

Figure 5. The left image shows the core c_{β} and the right image shows the core $c_{\beta^{\prime}}$. The core c_{β} can be isotoped to an arc $c_{\beta^{\prime}}$ disjoint from S and with endpoints in $A\left(\gamma^{\prime}\right)$. The sutures γ^{\prime} are marked on $\partial D_{\beta}^{\prime}$ in the rightmost figure. The endpoint of c_{β} lying in $A_{ \pm}$is isotoped to an endpoint of $c_{\beta^{\prime}}$ lying in $A_{ \pm}\left(\gamma^{\prime}\right)$. In the rightmost figure, the intersection of the annuli $A_{ \pm}\left(\gamma^{\prime}\right)$ with ∂D_{β} are highlighted in blue.

We note the following:
Lemma 4.3. Suppose that $(M, \gamma, \beta) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is a band-taut decomposition. Then there is an isotopy of c_{β} relative to its endpoints to an arc c such that the closure of $c \cap \grave{M}^{\prime}$ is $c_{\beta^{\prime}}$. Furthermore, $c_{\beta^{\prime}}$ joins the components of $c_{\beta} \cap \partial D_{\beta^{\prime}}$.

Proof. By the definition of band-taut decomposition, S is a band-decomposing surface. If the decomposition satisfies (BT1), then by definition, there is an

Figure 6. The band $D_{\beta^{\prime}}$ is the component of $D_{\beta} \cap M^{\prime}$ containing $c_{\beta^{\prime}}$.
isotopy of c_{β} into ∂M and we have our conclusion. Suppose, therefore, that the decomposition satisfies (BT2).

If the decomposition is by a band decomposing disc or a product disc disjoint from the band then no isotopy of c_{β} is necessary as $c_{\beta^{\prime}}=c_{\beta}$. If the decomposition is by a surface satisfying (BD), this follows immediately from the observation that c_{β} is isotopic to $c_{\beta^{\prime}}$ by a proper isotopy in D_{β} that does not move the endpoints of c_{β} along edges c_{4} or c_{8} of D_{β}. See Figure 7.

4.3. Cancelling discs, amalgamating dises, product discs and product

 annuli. The previous section provided a some criteria for creating decompositions of banded sutured manifolds using surfaces that satisfy (BD). Product surfaces, however, may not satisfy (BD). This section shows how to create a band-taut decomposition if there is a cancelling disc, amalgamating disc, product disc, or product annulus in a band-taut sutured manifold.4.3.1. Finding disjoint product surfaces. We begin by showing that if there is a cancelling disc, amalgamating disc, product disc, or product annulus in a band-taut sutured manifold, then there is one disjoint from the band.

Lemma 4.4. Suppose that (M, γ, β) is band-taut. If $\beta-c_{\beta}$ has a
(1) cancelling disc or allowable product disc;
(2) nonself amalgamating disc; or

Figure 7. The isotopy of c_{β} to $c_{\beta^{\prime}}$ can be slightly modified to an isotopy of c_{β} relative to its endpoints such that after the isotopy $c_{\beta}-c_{\beta^{\prime}}$ lies in $\partial D_{\beta} \cap \partial M$. The solid arc is the union of two subarcs in ∂D_{β} and the arc $c_{\beta^{\prime}}$.
(3) allowable self amalgamating disc
then one of the following occurs:

- there is, respectively, a
(1) cancelling disc or allowable product disc;
(2) cancelling disc, allowable product disc, or nonself amalgamating disc; or
(3) cancelling disc, allowable product disc, nonself amalgamating disc, or allowable self-amalgamating disc
that is disjoint from D_{β}, or
- $e_{\beta}=\varnothing$, the boundary of D_{β} is a $\left(\beta-c_{\beta}\right)$-inessential circle in ∂M, and c_{β} is isotopic in D_{β} into $\partial M\left(\mathrm{rel} \partial c_{\beta}\right)$.

Proof. The proofs with each of the three hypotheses are nearly identical, so we prove it only under hypothesis (3). Let E be a cancelling disc, allowable product disc, nonself amalgamating disc, or allowable self amalgamating disc chosen so that out of all such discs, D_{β} and E intersect minimally. By an isotopy of E, we can assume that all intersections between ∂D_{β} and ∂E occur in $R(\gamma)$. An innermost circle argument shows that there are no circles of intersection between D_{β} and E. Similarly, we may assume that if a component of $D_{\beta} \cap E$ intersects c_{β} then it is an arc in D_{β} joining distinct edges of D_{β}.
Claim 1: No component of $D_{\beta} \cap E$ joins an edge of D_{β} to itself.

Suppose that there is such a component, and let ξ be an outermost such arc in D_{β} with Δ the disc it cobounds with a subarc of $D_{\beta} \cap R(\gamma)$. Boundary compress E using Δ to obtain two discs E_{1} and E_{2}. Since E was a cancelling disc, product disc, or amalgamating disc, one of E_{1} or E_{2} is a cancelling disc, product disc, or amalgamating disc and the other one is a disc with boundary completely contained in $R(\gamma)$. Suppose that E_{2} is this latter disc. Since E_{2} is disjoint from $\left(\beta-c_{\beta}\right)$ and since $R(\gamma)$ is $\left(\beta-c_{\beta}\right)$ incompressible, the boundary of E_{2} is β-inessential in $R(\gamma)$. Thus, E can be isotoped in the complement of β to E_{1}. This isotopy reduces $\left|D_{\beta} \cap E\right|$ and so we have contradicted our choice of E.

Claim 2: No arc component of $D_{\beta} \cap E$ joins edge c_{1} to edge c_{3} or edge c_{5} to edge c_{7}.

Suppose that there is such an arc. Without loss of generality, we may assume that the arc joins side c_{1} to c_{3}. Let ξ be an arc that, out of all such arcs, is closest to c_{2}. Let Δ be the disc in D_{β} that it cobounds with c_{2}. Boundary-compress E using Δ to obtain the union E^{\prime} of two discs. In E, the arc ξ joins $\partial E \cap R_{-}$to $\partial E \cap R_{+}$. If E is a cancelling disc, one component of E^{\prime} is a cancelling disc and the other is a product disc. If E is a product disc, both components of E^{\prime} are product discs. If E is an amalgamating disc, both components of E^{\prime} are cancelling discs. Each component of E^{\prime} intersects D_{β} fewer times than does E, so we need only show that if E is an allowable product disc, then at least one component of E^{\prime} is an allowable product disc.
Assume that E is an allowable product disc. This implies that it is a ($\beta-$ c_{β})-boundary compressing disc for M. Since E^{\prime} is obtained by boundary compressing E, at least one component E_{1} of E^{\prime} is a $\left(\beta-c_{\beta}\right)$-boundary compressing disc for ∂M. If it were not allowable, it could be isotoped in the complement of $\left(\beta-c_{\beta}\right)$ to have boundary lying entirely in $R(\gamma)$, this would contradict the fact that $R(\gamma)$ is $\left(\beta-c_{\beta}\right)$-incompressible. Thus, E_{1} is an allowable product disc.

Claim 3: No arc component of $D_{\beta} \cap E$ joins edge c_{1} to edge c_{7} or edge c_{3} to edge c_{5}.

Suppose that there is such an arc. Without loss of generality, we may assume that it joins edges c_{1} and c_{7}. Out of all such arcs, choose one ξ that is as close as possible to edge c_{8}. Boundary compress E using the subdisc of D_{β} cobounded by c_{8} and ξ to obtain E^{\prime}.

If E is a cancelling disc, let E_{2} be the component of E^{\prime} containing c_{8} and let E_{1} be the other component. If c_{8} is an edge of β, then E_{2} is an amalgamating
disc and E_{1} is a cancelling disc. In this case, note that E_{1} (after a small isotopy to be transverse to D_{β}) intersects D_{β} fewer times than does E. This contradicts our choice of E. If c_{8} is not an edge of β, then E_{2} is a cancelling disc and E_{1} is a product disc. If E_{1} is not allowable, it can be isotoped in the complement of $\left(\beta-c_{\beta}\right)$ to have boundary contained entirely in $R(\gamma)$. Since $R(\gamma)$ is $\left(\beta-c_{\beta}\right)$-incompressible, the boundary of this disc must be ($\beta-c_{\beta}$)-inessential in $R(\gamma)$. It is then easy to see that there is an isotopy reducing the number of intersections between E and D_{β}, a contradiction.

If E is an allowable product disc, then each component of E^{\prime} is either a cancelling disc or a product disc. As before, if a component of E^{\prime} is a product disc, it must be allowable.
If E is an amalgamating disc, then each component of E^{\prime} is either an amalgamating disc or a cancelling disc. Let E_{1} and E_{2} be the components of E^{\prime}. Suppose that each of E_{1} or E_{2} is a self amalgamating disc. We must show that at least one of them is allowable. Since Δ runs along c_{8}, each component of E^{\prime} runs along c_{8} at least once. Since each component of E^{\prime} is a self amalgamating disc, this implies that E is a self-amalgamating disc for c_{8}. By hypothesis, E is allowable. Thus, at least one loop of $E^{\prime} \cap R_{-}$ is $\left(\beta-c_{\beta}\right)$-essential and at least one loop of $E^{\prime} \cap R_{+}$is $\left(\beta-c_{\beta}\right)$-essential. If the union of these loops is either $\partial E_{1} \cap R(\gamma)$ or $\partial E_{2} \cap R(\gamma)$, then either E_{1} or E_{2} is allowable. Thus, we may assume that one arc of $E_{i} \cap R(\gamma)$ is $\left(\beta-c_{\beta}\right)$-essential and the other one is inessential for both $i=1$ and $i=2$. Gluing the two arcs of $\partial E_{i} \cap c_{8}$ together we obtain a product annulus with one end $\left(\beta-c_{\beta}\right)$-essential and the other end $\left(\beta-c_{\beta}\right)$-essential. Capping the inessential end off, creates a disc disjoint from $\left(\beta-c_{\beta}\right)$ with boundary a $\left(\beta-c_{\beta}\right)$-essential loop in $R(\gamma)$. That is, the disc is a $\left(\beta-c_{\beta}\right)$ compressing disc for $R(\gamma)$, a contradiction. Hence, if both E_{1} and E_{2} are self-amalgamating discs at least one of them is allowable. Since each of E_{1} and E_{2} intersects D_{β} fewer times than does E, we have contradicted our choice of E.

Claim 4: No arc component of $D_{\beta} \cap E$ joins side c_{3} to side c_{7} or side c_{1} to side c_{5}.

Suppose that there is such an arc. Without loss of generality, we may assume that the arc joins side c_{3} to side c_{7}. Out of all such arcs choose one ξ that is outermost on E. Boundary compress D_{β} using the outermost disc in E bounded by ξ. This converts D_{β} into two discs, D_{4} and D_{8} containing c_{4} and c_{8} respectively. The disc D_{4} also contains the edge c_{6} and the disc D_{8} also contains the edge c_{1}. Since both c_{2} and c_{6} are contained in $A(\gamma)$, the
discs D_{4} and D_{8} are either cancelling discs or product discs. We must show that if they are both product discs, then at least one of them is allowable.

Assume to the contrary, that both D_{4} and D_{8} are product discs that are not allowable. Since product discs that are not allowable can be isotoped in the complement of $\left(\beta-c_{\beta}\right)$ to have boundary lying in $R(\gamma)$, and since $R(\gamma)$ is ($\beta-c_{\beta}$)-incompressible, both D_{4} and D_{8} are discs with $\left(\beta-c_{\beta}\right)$-inessential boundary in ∂M. The disc D_{β} can be reconstructed by banding the discs D_{4} and D_{8} together using an arc lying entirely in R_{+}. Since M is $\left(\beta-c_{\beta}\right)$ irreducible and since c_{β} lies in D_{β}, the arc c_{β} is isotopic in in D_{β} into ∂M relative to its endpoints.

We now study how cancelling discs, amalgamating discs, product discs, and product annuli give band-taut sutured manifold decompositions.
4.3.2. Eliminating cancelling discs, product discs, and nonself amalgamating discs.
Lemma 4.5. Suppose that (M, γ, β) is a connected band taut sutured manifold other than a 3-ball containing a single suture in its boundary and a single arc of $\beta-c_{\beta}$. If M contains a cancelling disc or allowable product disc, then there is a band-taut decompositions

$$
(M, \gamma, \beta) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)
$$

The decomposition is a decomposition by a product disc, possibly satisfying (BT1).

Proof. If $e_{\beta}=\varnothing$ and if c_{β} is parallel into ∂M along D_{β}, let $D_{\beta^{\prime}}=c_{\beta^{\prime}}=\varnothing$. The decomposition by the given cancelling disc or allowable product disc is then band-taut. Thus, by Lemma 4.4, we may assume that there is a cancelling disc or allowable product disc P that is disjoint from D_{β}. If P is a cancelling disc, let S be the frontier of a regular neighborhood of P in M. Notice that S is an allowable product disc since M is not a 3-ball with a single suture in its boundary and a single arc in $\beta-c_{\beta}$. If P was a cancelling disc for a component of e_{β}, then S is a band-decomposing product disc. If P is an allowable product disc, let $S=P$. Decomposing a taut sutured manifold using a product disc is a taut decomposition, so it is evident that the decomposition $(M, \gamma, \beta) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is band-taut.

Notice that if (M, γ, β) has a cancelling disc for an edge $e \subset \beta$, then the decomposition given by Lemma 4.5 cuts off from M a 3-ball having a single suture in its boundary and containing the edge e and the cancelling disc. We then cancel the arc e. (The reason for decomposing along S is that at the end
of the hierarchy we will want to ignore all arc cancellations. Decomposing along the product disc S before cancelling ensures that the cancellable arc is in its own component of the sutured manifold at the end of the hierarchy.)

As a final remark in this subsection, we note that if (M, γ, β) is a band-taut sutured manifold and if there is a nonself amalgamating disc P disjoint from D_{β} we can eliminate a component of $P \cap\left(\beta-e_{\beta}\right)$ from β and preserve band tautness. If P runs across two components of e_{β}, then we view the elimination of one of the components of e_{β} as a melding together of the two sides of D_{β}. That is, the band D_{β} is isotoped so that both sides run across the same component of e_{β} and the other component of e_{β} is eliminated. Thus, amalgamating arcs preserves band-tautness.
4.3.3. Eliminating allowable self amalgamating discs. In the construction of a band-taut hierarchy, it will be necessary to eliminate allowable self amalgamating discs as in [S2, Lemma 2.4]. We briefly recall the essentials.

We make use of a trick which allows us to convert between arcs and sutures [S2, Definition 2.2]. If $e \subset \beta$ is an edge with one endpoint in R_{-}and one in R_{+}, then we convert e to a suture γ_{e} by letting $M^{\prime}=M-\stackrel{\circ}{\eta}(e)$ and letting $\gamma_{e} \subset \partial M^{\prime}$ be a meridian of e. Lemma 2.2 of [S2] shows that (M, γ, β) is β-taut if and only if $\left(M^{\prime}, \gamma \cup \gamma_{e}, \beta-e\right)$ is $(\beta-e)$-taut.

Suppose that P is an allowable self amalgamating disc in (M, γ, β) disjoint from D_{β}. Gluing the components of $\partial P \cap \beta$ together along the edge of β they traverse and isotoping it off β creates a product annulus P_{A}. Notice that since P was disjoint from D_{β}, the annulus P_{A} can be created so that it is disjoint from D_{β}. Furthermore, if a boundary component of P_{A} is inessential in $R(\gamma)$, the disc in $R(\gamma)$ it bounds is also disjoint from D_{β}.

If both components of ∂P_{A} are essential in $R(\gamma)$, we decompose along P_{A}. The parallelism of the edge $P \cap \beta$ into P_{A} becomes a cancelling disc in the decomposed manifold and we cancel the $\operatorname{arc} P \cap \beta$ as in Subsection 4.3.2.

If a component of ∂P_{A} is inessential in $R(\gamma)$, we choose one such component δ and let Δ be the disc in $R(\gamma)$ that it bounds. Let D be the pushoff of $P_{A} \cup \Delta$ so that it is properly embedded. We decompose along D. As described in [S2, Lemma 2.4], after amalgamating arcs and converting an arc to a suture, the decomposed sutured manifold is equivalent to the sutured manifold obtained by decomposing along P_{A}. By [S1, Lemma 4.2] and [S2, Lemmas 2.3 and 2.4], if (M, γ, β) is band taut, so is the decomposed sutured manifold.
4.4. Decomposing by rinsed surfaces. In the previous sections, we have seen how surfaces satisfying (BD) can be used to construct decompositions of banded sutured manifolds and how the presence of a product surface can be used to construct a band-taut decomposition of a band taut sutured manifold. In this section we show that, in the presence of non-trivial second homology, we can find a rinsed surface giving a band-taut decomposition of a band-taut sutured manifold. We begin with some preliminary lemmas that simplify the search for such a surface.

Lemma 4.6. Suppose that S is a conditioned or rinsed surface in (M, γ, β). Then the surface S_{k} obtained by double curve summing S with k copies of $R(\gamma)$ for any $k \geq 0$, is conditioned or rinsed, respectively. Furthermore, if S is rinsed and satisfies conditions (2) and (3) of (BD) in the definition of band decomposing surface, then S_{k} does also.

Proof. By induction, it suffices to prove the lemma when $k=1$. We have already observed that ∂S_{k} is conditioned. Since S satisfies (C3), it is obvious that S_{k} does also.

If S is rinsed, then the algebraic intersection number of S with c_{β} is zero. Since $R(\gamma)$ is disjoint from c_{β}, the surface S_{k} also has this property. Suppose that F is a closed component of S_{k} (with $k=1$). Since S satisfies condition (C2), no component of S_{k} is a separating closed surface intersecting S. Any closed component of S_{k} must, therefore, be parallel to a component of $R(\gamma)$ and bounds a region of parallelism intersecting β only in vertical arcs. Consequently, if S is rinsed, so is S_{k}. Finally, if S satisfies conditions (2) and (3) of (BD), it follows immediately from (C0) and (C1) that S_{k} also satisfies (2) and (3) of (BD).

Lemma 4.7. Suppose that (M, γ, β) is band-taut and that S is a rinsed surface satisfying conditions (2) and (3) of (BD) in the definition of banddecomposing surface. Then after an isotopy relative to ∂S to minimize the pair $\left(\left|S \cap D_{\beta}\right|,\left|S \cap c_{\beta}\right|\right)$ with respect to lexicographic order, the surface S is a band decomposing surface satisfying (BD).

Proof. If c_{4} or c_{8} lies in $A(\gamma)$, since ∂S is conditioned, condition (4) or (5) of (BD) is satisfied for that component. If c_{4} or c_{8} lies in e_{β}, then by condition (C3) in the definition of rinsed, condition (4) or (5) of (BD) is satisfied for that component. Thus, we need only show that S satisfies condition (1) of (BD).

Each arc of $S \cap D_{\beta}$ intersects c_{β} at most once, by our initial isotopy of S. Suppose that a component ζ of $S \cap D_{\beta}$ joins c_{4} to c_{8}. Since S has algebraic intersection number zero with c_{β}, there exists another arc ζ^{\prime} intersecting
c_{β} but with opposite sign. By conditions (2) and (3) of (BD), at least one endpoint of ζ^{\prime} must lie on c_{4} or c_{8}. Without loss of generality, assume it to be c_{4}. Since S always intersects c_{4} with the same sign, ζ and ζ^{\prime} intersect c_{4} with the same sign. Since the signs of intersection of each of ζ and ζ^{\prime} with c_{β} are the same or opposite of their intersections with c_{4}, and since they intersect c_{4} with the same sign, ζ and ζ^{\prime} intersect c_{β} with the same sign. This contradicts the choice of ζ^{\prime}. Hence no arc joins c_{4} to c_{8}. Thus, every arc joins either the top or bottom of D_{β} to either c_{4} or c_{8}. A similar argument shows that if ζ and ζ^{\prime} are arcs each with an endpoint on c_{8} (or each with an endpoint on c_{4}) and each intersecting c_{β} then they intersect c_{β} with the same sign. It follows that if $S \cap c_{\beta}$ is non-empty, then precisely one of the following happens:
(1) There are equal numbers of arcs joining c_{5} to c_{8} as there are arcs joining c_{1} to c_{4} and there are no other arcs.
(2) There are equal numbers of arcs joining c_{3} to c_{8} as there are arcs joining c_{7} to c_{4} and there are no other arcs.

It follows that conclusion (1) of (BD) holds and so S is a band-decomposing surface.

The previous two lemmas produce a rinsed band decomposing surface from a given rinsed surface. The next lemma produces a rinsed band decomposing surface from a given homology class.

Lemma 4.8. Suppose that (M, γ, β) is a band-taut sutured manifold and that $y \in H_{2}(M, \partial M)$ is non-zero. Then there exists a rinsed band-decomposing surface S in M representing $\pm y$.

Proof. Let C be a conditioned 1 -manifold in ∂M representing ∂y. Isotope C so that
(a) Each circle component of $C \cap A(\gamma)$ is contained in a collar of $\partial R(\gamma)$ that is disjoint from ∂c_{β}
(b) Each arc component of $C \cap A(\gamma)$ is disjoint from $\partial D_{\beta} \cap A(\gamma)$.

Let Σ be a surface representing y with $\partial \Sigma=C$. Discard any separating closed component of Σ. The surface Σ is a decomposing surface. We now proceed to modify it to obtain the surface we want. We begin by arranging for the surface to have non-positive algebraic intersection number with c_{β}.
Let i be the algebraic intersection number of Σ with c_{β}. If $i>0$, let $\bar{\Sigma}$ be the result of reversing the orientation of Σ and let $\bar{C}=\partial \bar{\Sigma}$. Notice that Σ
represents $-y$ and that the algebraic intersection between $\bar{\Sigma}$ and c_{β} is nonpositive. If \bar{C} is not conditioned, perform cut and paste operations of $\bar{\Sigma}$ with copies of subsurfaces of $R(\gamma)$ to produce a surface Σ^{\prime} having conditioned boundary C^{\prime} and satisfying (a) and (b). Since $R(\gamma)$ is disjoint from c_{β}, the algebraic (and geometric) intersection number of Σ^{\prime} with c_{β} is the same as the algebraic (and geometric) intersection number of $\bar{\Sigma}$ with c_{β}. This number is, therefore, negative.

We may, therefore, assume without loss of generality that we have a surface Σ such that $C=\partial \Sigma$ satisfies (a) and (b), and:
(c) Σ is a conditioned surface representing $\pm y$
(d) The algebraic intersection number i of Σ with c_{β} is non-positive.

By Lemma 4.6 and the fact that $R(\gamma)$ is disjoint from c_{β}, replacing Σ with the double curve sum Σ_{k} of Σ with k copies of $R(\gamma)$ does not change (a), (b), (c), or (d).

We now explain why we may also assume that Σ satisfies conditions (2) and (3) of (BD). Suppose that $\partial \Sigma$ intersects the top of D_{β} in points of opposite intersection number. At least one of those points must lie in c_{1} or c_{3}. After possibly increasing k and isotoping a circle component of $\Sigma \cap A(\gamma)$ into $R(\gamma)$ (not allowing it to pass through c_{β}) we may band together points of $\partial \Sigma \cap c_{1}$ or $\partial \Sigma \cap c_{3}$ having opposite intersection number to guarantee that all points of $\Sigma \cap\left(c_{1} \cup c_{2} \cup c_{3}\right)$ have the same intersection number as $\gamma \cap c_{2}$. Perform any additional necessary cut and paste operations with subsurfaces of $R(\gamma)$ to ensure that Σ is conditioned. Since $R(\gamma)$ is disjoint from c_{β}, this does not change i. Since each intersection point of $\partial R(\gamma)$ with the top of D_{β} has the same sign as $\gamma \cap c_{2}$, we still have the property that $\partial \Sigma$ intersects the top of D_{β} with the same sign as $\gamma \cap c_{2}$. Similarly, we can guarantee that $\partial \Sigma$ also always intersects the bottom of D_{β} with the same sign as $\gamma \cap c_{6}$. This implies that we may assume that Σ and Σ_{k} (for $k \geq 1$) satisfies conditions (2) and (3) of (BD) in the definition of band-decomposing surface. By tubing together points of opposite intersection number, we may also assume that the geometric intersection number of Σ and Σ_{k} with each edge of β is equal to the algebraic intersection number. From Σ discard every closed separating component that does not bound a product region with $R(\gamma)$ intersecting β in vertical arcs. Thus, by Lemma 4.7, we may assume that Σ and Σ_{k} (for $k \geq 0$), in addition to satisfying (a) - (d), satisfy every requirement for being a rinsed band decomposing surface except that the algebraic intersection number of Σ and Σ_{k} with c_{β} may possibly be negative. We now show how to trade (a) for the property that Σ has algebraic intersection number 0 with c_{β}. We will then have proved our lemma.

Let $\rho_{ \pm}$be the surface $R_{ \pm} \cup\left(A_{ \pm}-\stackrel{\circ}{\eta}(\gamma)\right)$. Let S be the surface obtained by taking the double curve sum of Σ_{k} with i copies of ρ_{-}. Since A_{-}has intersection with c_{β} consisting of a single point with sign $+1, S$ has zero algebraic intersection number with c_{β}. Tube together points with opposite intersection number in the intersection of S with each component of $\beta-c_{\beta}$. Discard any closed separating component. Isotope S slightly so that all circle components of $S \cap A(\gamma)$ are disjoint from γ. After discarding any closed separating components of S, we have constructed a rinsed band-decomposing surface representing $\pm y$.

Our next two results, which are based on [S1, Theorems 2.5 and 2.6], are the key to constructing band-taut decompositions. As usual, we let S_{k} denote the oriented double curve sum of S with k copies of $R(\gamma)$. Recall that S and S_{k} (for any $k \geq 0$) represent the same class in $H_{2}(M, \partial M)$. For reference, we begin by stating [S 1 , Theorem 2.5]. (As this is an important theorem for us, we note that the surface R in Scharlemann's theorem need not be $R(\gamma)$. Indeed, the statement of the theorem does not mention sutured manifolds.)
Theorem (Theorem 2.5 of [S1]). Given:
(a) A β-taut surface $(R, \partial R)$ in a β-irreducible 3-manifold $(M, \partial M)$
(b) a properly embedded family C of oriented arcs and circles in $\partial M-$ $\eta(\partial R)$ which is in the kernel of the map

$$
H_{1}(\partial M, \eta(\partial R)) \rightarrow H_{1}(M, \eta(\partial R))
$$

induced by inclusion.
(c) y in $H_{2}(M, \partial M)$ such that $\partial y=[C]$,
then there is a surface $(S, \partial S)$ in $(M, \partial M)$ such that
(i) $\partial S-\eta(\partial R)=C$
(ii) for some integer $m,[S, \partial S]=y+m[R, \partial R]$ in $H_{2}(M, \partial M)$,
(iii) for any collection R^{\prime} of parallel copies of components of R (similarly oriented), the double curve sum of S with R^{\prime} is β-taut,
(iv) any edge of β which intersects both R and S intersects them with the same sign.

Notice that conclusion (iv) actually follows immediately from conclusion (iii).

Theorem 4.9. Suppose that (M, γ, β) is a band taut sutured manifold and that $y \in H_{2}(M, \partial M)$ is non-zero. Then there exists a rinsed band-decomposing surface $(S, \partial S) \subset(M, \partial M)$ satisfying $(B D)$ such that:
(i) S represents $\pm y$ in $H_{2}(M, \partial M)$.
(ii) $[S, \partial S]= \pm y+k[R(\gamma), \partial R(\gamma)]$ for some $k \geq 0$.
(iii) for any collection R^{\prime} of parallel copies of components of $R(\gamma)$, the double curve sum of S with R^{\prime} is $\left(\beta-c_{\beta}\right)$-taut.

Proof. Let Σ be the rinsed band-decomposing surface obtained from Lemma 4.8. Let S be the surface given by [S1, Theorem 2.5]. (To apply it we let $\beta-c_{\beta}$ be the 1-complex in the hypothesis of that theorem and $R=R(\gamma)$ and $C=\partial \Sigma-\stackrel{\circ}{\eta}(\partial R)$.)

Discard any closed separating component of S and isotope S relative to its boundary to minimize $\left|S \cap D_{\beta}\right|$. Our conclusions (i) - (iiii) coincide with conclusions (i) - (iii) of Scharlemann's theorem. Since Σ and S are homologous in $H_{2}(M, \partial \Sigma \cup \eta(\partial R(\gamma)), S$ has algebraic intersection number 0 with c_{β}. The criteria for S to be a rinsed, band decomposing surface follow easily from the construction, Lemma 4.7 , and that $\partial S=\partial \Sigma$ outside a small neighborhood of $\partial R(\gamma)$ and inside ∂S is oriented the same direction as $\partial R(\gamma)$.

Corollary 4.10. Suppose that (M, γ, β) is a band-taut sutured manifold with $y \in H_{2}(M, \partial M)$ non-zero. Then there exists a rinsed band-decomposing surface $S \subset M$ representing $\pm y$ such that for all non-negative $k \in \mathbb{Z}$, the surface S_{k} gives a band-taut decomposition $(M, \gamma, \beta) \xrightarrow{S_{k}}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$. Furthermore, if (BT1) does not hold, then each component of $\left(D_{\beta} \cap M^{\prime}\right)-D_{\beta^{\prime}}$ is a product disc or cancelling disc.

Proof. Let S be the surface provided by Theorem 4.9. Let $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ be the result of decomposing (M, γ, β) using S_{k}. By Lemmas 4.6 and 4.7, S_{k} is a rinsed band-decomposing surface satisfying (BD).

Since the double curve sum of S with $(k+1)$ copies of $R(\gamma)$ is β-taut, $R\left(\gamma^{\prime}\right)$ is $\left(\beta^{\prime}-c_{\beta}\right)$-taut, the decomposition

$$
(M, \gamma, \beta) \xrightarrow{S_{k}}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)
$$

is $\left(\beta-c_{\beta}\right)$-taut. By Lemma 4.2, the decomposition is band-taut and if (BT1) does not hold then each component of $\left(D_{\beta} \cap M^{\prime}\right)-D_{\beta^{\prime}}$ is a product disc or cancelling disc.

5. Parameterizing Surfaces

Let (M, γ, β) be a sutured manifold with β having endpoints disjoint from $A(\gamma) \cup T(\gamma)$. (That is, (M, γ, β) satisfies (T0).) A parameterizing surface is an orientable surface Q properly embedded in $M-\stackrel{\eta}{\eta}(\beta)$ satisfying:
(P1) $\partial Q \cap A(\gamma)$ consists of spanning arcs each intersecting γ once
(P2) no component of Q is a sphere or disc disjoint from $\beta \cup \gamma$.
For a parameterizing surface Q, let $\mu(Q)$ denote the number of times that ∂Q traverses an edge of β. Define the index of Q to be:

$$
I(Q)=\mu(Q)+|\partial Q \cap \gamma|-2 \chi(Q) .
$$

Remark. In the definition of index given in [S1, Definition 7.4], there is also a term denoted \mathscr{K} that is the sum of values of a function defined on the interior vertices of β. As Scharlemann remarks, that the function can be chosen arbitrarily, and in this paper we will always choose it to be identically zero. Also, Scharlemann allows parameterizing surfaces to contain spherical components. No harm is done to [S1] by forbidding them and some simplicity is gained since spherical components have negative index. Lackenby in [L1] has a similar convention.

We define a parameterizing surface in a banded sutured manifold (M, γ, β) to be a parameterizing surface Q in $\left(M, \gamma, \beta-c_{\beta}\right)$.

If Q is a parameterizing surface and if $S \subset M$ is a decomposing surface, we say that S and Q are normalized if they have been isotoped in a neighborhood of $A(\gamma) \cup T(\gamma)$ to intersect minimally and if no component of $S \cap Q$ is an inessential circle on Q. It is clear that if S is β-taut then S and Q can be normalized without increasing the index of Q. Furthermore, it is not difficult to see that if Q_{1}, \ldots, Q_{n} are parameterizing surfaces, not necessarily disjoint, then a β-taut decomposing surface S and Q_{1}, \ldots, Q_{n} can be simultaneously normalized by an isotopy of S and each Q_{i}.

Suppose that $(M, \gamma, \beta) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is a β-taut decomposition and that $Q \subset M$ is a parameterizing surface. If S is a conditioned surface normalized with respect to Q, we say that the decomposition respects Q if $Q \cap M^{\prime}$ is a parameterizing surface.

The next lemma is a simple extension of [S1, Section 7]. Recall that S_{k} denotes the oriented double curve sum of S with k copies of $R(\gamma)$.

Lemma 5.1. Suppose that $(M, \gamma, \beta) \xrightarrow{S_{k}}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is β-taut decomposition with S a conditioned surface and that Q_{1}, \ldots, Q_{n} are parameterizing surfaces in (M, γ, β) such that S_{k} and each Q_{i} are normalized. Then for k large enough, the decomposition of (M, γ, β) using S_{k} respects each Q_{i} and the index of each Q_{i} does not increase under the decomposition.

Proof. Scharlemann [S1, Lemma 7.5] shows that for each i, there exists $m_{i} \in \mathbb{N}$ such that if $k_{i} \geq m_{i}$, and if $S_{k_{i}}$ is normalized with respect to a parameterizing surface Q_{i}, then $Q_{i} \cap M^{\prime}$ is a parameterizing surface with index no larger than Q_{i}. Since for each k, S_{k} can be normalized simultaneously with Q_{1}, \ldots, Q_{n}, we simply need to choose $k \geq \max \left(m_{1}, \ldots, m_{n}\right)$.

Suppose that S is a product disc, product annulus, or disc with boundary in $R(\gamma)$. We say that a parameterizing surface $Q^{c} \subset M$ is obtained by modifying Q relative to S if Q^{c} is obtained by completely boundary compressing Q using outermost discs of $S-Q$ bounded by outermost arcs having both endpoints in $R_{ \pm}$, normalizing Q and S, and then removing all disc components with boundary completely contained in $R(\gamma)$. Scharlemann proves [S1, Lemma 7.6] that modifying a parameterizing surface does not increase index. Lackenby [L1] points out that if Q^{c} is compressible so is Q.
Lemma 5.2. Suppose that $(M, \gamma, \beta) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is a β-taut decomposition with S a product disc, product annulus, or disc with boundary in $R(\gamma)$. Let Q_{1}, \ldots, Q_{n} be parameterizing surfaces. Then after replacing each Q_{i} with Q_{i}^{c}, each of the surfaces $Q_{i}^{c} \cap M^{\prime}$ is a parameterizing surface in M^{\prime} with index no larger than the index of Q_{i}.

Proof. This is nearly identical to the proof of Lemma 5.1, but uses [S1, Lemma 7.6].

We say that the decomposition described in Lemma 5.2 respects Q.
We now assemble some of the facts we have collected.
Theorem 5.3. Suppose that (M, γ, β) is a band-taut sutured manifold and that $y \in H_{2}(M, \partial M)$ is non-zero. Suppose that Q_{1}, \ldots, Q_{n} are parameterizing surfaces in M. Then there exists a band-taut decomposition

$$
(M, \gamma, \beta) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)
$$

respecting each Q_{i} with S a rinsed band-decomposing surface representing $\pm y$.

Proof. By Corollary 4.10, there exists a band-taut decomposition

$$
(M, \gamma, \beta) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)
$$

with S a rinsed band-decomposing surface representing $\pm y$. By Lemma 5.1, if we replace S with S_{k} for large enough k, we may assume that the decomposition respects each Q_{i}.

Similarly we have:

Theorem 5.4. Suppose that (M, γ, β) is a band taut sutured manifold and that there exists an allowable product disc or allowable product annulus in M^{\prime}. Let Q_{1}, \ldots, Q_{n} be parameterizing surfaces in M. Then there exists an allowable product disc or allowable product annulus P, such that, after modifying each Q_{i}, the decomposition given by P is band-taut and respects each Q_{i}.

Proof. This follows immediately from Lemma 4.5 and Lemma 5.2.

6. Sutured Manifold Decompositions and Branched Surfaces

In [G3, Construction 4.16], Gabai explains how to build a branched surface $B(\mathscr{H})$ from a sequence of sutured manifold decompositions

$$
\mathscr{H}:(M, \gamma, \beta) \xrightarrow{S_{1}}\left(M_{1}, \gamma_{1}, \beta_{1}\right) \xrightarrow{S_{2}} \ldots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}, \beta_{n}\right)
$$

Essentially, the branched surface is the union $\bigcup_{i=1}^{n} S_{i}$ with the intersections smoothed. We will call $B(\mathscr{H})$ the branched surface associated to the sequence \mathscr{H}.

Lemma 6.1. If \mathscr{H} is a sequence of band-taut sutured manifold decompositions, there is an isotopy of c_{β} (relative to ∂c_{β}) to an arc a such that the closure of $a \cap \dot{M}_{n}$ is $c_{\beta_{n}}$ and so that $a-c_{\beta_{n}}$ is embedded in $\partial M \cup B(\mathscr{H})$. Furthermore, there is a proper isotopy of c_{β} in M to $(a \cap B(\mathscr{H})) \cup c_{\beta_{n}}$.

Proof. By the definition of "band-taut" decomposition, the decomposition

$$
\left(M_{i}, \gamma_{i}, \beta_{i}\right) \xrightarrow{S_{i+1}}\left(M_{i+1}, \gamma_{i+1}, \beta_{i+1}\right)
$$

defines an isotopy ϕ_{i} in $D_{\beta_{i}}$ of $c_{\beta_{i}}$ (relative to its endpoints) to an arc a_{i} such that the intersection of a_{i} with the interior of M_{i+1} is the core $c_{\beta_{i+1}}$. If the decomposition is of the form (BT1), then the isotopy moves $c_{\beta_{i}}$ into $\partial M \cup B(\mathscr{H})$. By Lemma 4.3, the intersection of a_{i} with $\partial D_{\beta_{i}}$ consists of arcs, each joining an endpoint of $c_{\beta_{i}}$ to an endpoint of $c_{\beta_{i+1}}$. Each of these arcs, if not a single point, intersects $D_{\beta_{i+1}}$ in an arc with one endpoint on $\partial c_{\beta_{i+1}}$ and the other on a point of $\partial S_{i+1} \cap \partial D_{\beta_{i}}$.
Each ϕ_{i} is also a homotopy of c_{β}. Their concatanation is a homotopy ϕ of c_{β}. We desire to show ϕ can be homotoped to provide an isotopy ϕ^{\prime} in D_{β} of the $\operatorname{arc} c_{\beta}$ (relative to ∂c_{β}) to an arc a so that a intersects the interior of M_{n} in $c_{\beta_{n}}$ and $a-c_{\beta_{n}}$ is embedded in $B(\mathscr{H})$.

To that end, suppose that i is the smallest index such that the isotopy of $c_{\beta_{i}}$ to $c_{\beta_{i+1}}$ makes c_{β} non-embedded. This implies that a_{i} intersects a_{i-1}. The arc a_{i-1} lies in $\partial D_{\beta_{i-1}}$ and the arc a_{i} lies in $\partial D_{\beta_{i}}$. The boundary of $D_{\beta_{i}}$ is the union of portions of $\partial D_{\beta_{i-1}}$ with components of $S_{i} \cap D_{\beta_{i-1}}$. The arcs a_{i-1} and a_{i}, therefore, intersect in closed intervals lying in $\partial D_{\beta_{i-1}} \cap \partial D_{\beta_{i}}$. There are at most two intervals of overlap and each interval of overlap has one endpoint lying on ∂S_{i}. These intervals of overlap can each be homotoped to be a point of $\partial S_{i} \cap \partial D_{\beta}$. This homotopy deforms the concatenation of the isotopy from $c_{\beta_{i-1}}$ to $c_{\beta_{i}}$ with the isotopy from $c_{\beta_{i}}$ to $c_{\beta_{i+1}}$ to be an isotopy of c_{β} such that c_{β} intersects the interior of M_{i+1} in $c_{\beta_{i+1}}$ and, after the isotopy, $c_{\beta}-c_{\beta_{i+1}}$ is embedded in $B(\mathscr{H})$. By induction on i, we create the desired isotopy of c_{β} to a.

The intersection $a \cap \partial M$ consists of at most two arcs, each with an endpoint at ∂c_{β} and with the other endpoint at $\partial c_{\beta_{1}}$. There is, therefore, also a proper isotopy of c_{β} to $(a \cap B(\mathscr{H})) \cup c_{\beta_{n}}$.

7. Band Taut Hierarchies

Let (M, γ, β) be a β-taut sutured manifold and suppose that $U \subset T(\gamma)$. A β-taut sutured manifold hierarchy (cf. [S2, Definition 2.1]) relative to U is a finite sequence

$$
\mathscr{H}:(M, \gamma) \xrightarrow{S_{1}}\left(M_{1}, \gamma_{1}\right) \xrightarrow{S_{2}} \ldots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}\right)
$$

of β-taut decompositions for which
(i) each S_{i} is either a conditioned surface, a product disc, a product annulus whose ends are essential in $R\left(\gamma_{i-1}\right)$, or a disc whose boundary is β-essential in $R\left(\gamma_{i-1}\right)$ and each S_{i} is disjoint from U.
(ii) $H_{2}\left(M_{n}, \partial M_{n}-U\right)=0$.

If $U=\varnothing$, then we simply call it a β-taut sutured manifold hierarchy.
We say that the hierarchy respects a parameterizing surface $Q \subset M$ if each decomposition in \mathscr{H} respects Q. (Implicitly, we assume that Q may be modified by isotopies and ∂-compressions during the decompositions as in Section 5.)

Suppose that (M, γ, β) is a band-taut sutured manifold. A band-taut hierarchy for M is a $\left(\beta-c_{\beta}\right)$-taut sutured manifold hierarchy \mathscr{H} for $(M, \gamma, \beta-$ c_{β}) with each decomposition $\left(M_{i-1}, \gamma_{i-1}, \beta_{i-1}\right) \xrightarrow{S_{i}}\left(M_{i}, \gamma_{i}, \beta_{i}\right)$ a band-taut decomposition.

Theorem 7.1. Suppose that (M, γ, β) is a band-taut sutured manifold and that Q_{1}, \ldots, Q_{n} are parameterizing surfaces in M. Then the following are all true:
(1) there exists a band-taut sutured manifold hierarchy

$$
\mathscr{H}:(M, \gamma) \xrightarrow{S_{1}}\left(M_{1}, \gamma_{1}\right) \xrightarrow{S_{2}} \ldots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}\right)
$$

for M respecting each Q_{i}.
(2) Each surface S_{i} is a band-decomposing surface and if S_{i} is conditioned then it is also rinsed.
(3) If $y \in H_{2}(M, \partial M)$ is non-zero, S_{1} may be taken to represent $\pm y$
(4) There is a proper isotopy of c_{β} in M to an arc disjoint from S_{1}.
(5) Let $B(\mathscr{H})$ be the branched surface associated to \mathscr{H}. There is an isotopy of c_{β} in D_{β} relative to ∂c_{β} to an arc a such that the the closure of the arc $a \cap \stackrel{\circ}{M}_{n}$ is $c_{\beta_{n}}$, the arc $a-c_{\beta_{n}}$ is embedded in $\partial M \cup$ $B(\mathscr{H})$. Furthermore, there is a proper isotopy of c_{β} in D_{β} to an embedded arc in $B(\mathscr{H})$.

Proof. Let S_{1} be the surface provided by Theorem 5.3 representing $\pm y$ and giving a band-taut sutured manifold decomposition $(M, \gamma, \beta) \xrightarrow{S_{1}}\left(M_{1}, \gamma_{1}, \beta_{1}\right)$ respecting Q. Let Q_{1} be the parameterizing surface in ($M_{1}, \gamma_{1}, \beta_{1}$) resulting from Q.

If $H_{2}\left(M_{1}, \partial M_{1}-U\right)=0$, we are done. Otherwise, define S_{2} according to the instructions below. In the description below, it should always be assumed that if S is chosen at step (i), then step (k) for all $k>i$ will not be applied.
(1) If $e_{\beta_{1}}=\varnothing$ and if $D_{\beta_{1}}$ is a boundary parallel disc in $M-\left(\beta-c_{\beta}\right)$, then let $S_{2}=c_{\beta_{2}}=D_{\beta_{2}}=\varnothing$. The decomposition by S_{2} is of the form (BT1).
(2) If $\left(M_{1}, \gamma_{1}, \beta_{1}-c_{\beta_{1}}\right)$ contains a cancelling disc or product disc, it contains one disjoint from $D_{\beta_{1}}$ (Lemma 4.4). Let S_{2} be either a product disc disjoint from $D_{\beta_{1}}$ or the frontier of a regular neighborhood of a cancelling disc disjoint from $D_{\beta_{1}}$. If S_{2} is the frontier of a cancelling disc, after decomposing along S_{2}, cancel the edge of β_{1} adjacent to the cancelling disc.
(3) If $\left(M_{1}, \gamma_{1}, \beta_{1}-c_{\beta_{1}}\right)$ contains a nonself amalgamating disc, amalgamate an arc component of β_{1} and let $S_{2}=\varnothing$. This does not affect the fact that $\left(M_{1}, \gamma_{1}, \beta_{1}\right)$ is a band-taut sutured manifold by [S 1 , Lemmas 4.3 and 4.4].
(4) If $\left(M_{1}, \gamma_{1}, \beta_{1}-c_{\beta_{1}}\right)$ contains an allowable product disc choose one S_{2} that is disjoint from $D_{\beta_{1}}$ (Lemma 4.4). Modify Q_{1} so that S_{2} respects Q_{1}. Decomposing along S_{2} gives a band-taut decomposition by Theorem 5.4.
(5) If ($M_{1}, \gamma_{1}, \beta_{1}-c_{\beta_{1}}$) has an allowable self amalgamating disc, choose one that is disjoint from $D_{\beta_{1}}$. This is possible by Lemma 4.4. If the associated product annulus has both ends essential in $R(\gamma)$, let S_{2} be that annulus. Otherwise, let S_{2} be the disc obtained by isotoping the disc obtained by capping off the annulus with a disc in $R(\gamma)$ so that it is properly embedded in M. Modify Q_{1} so that S_{2} respects Q_{1}.
(6) If $\left(M_{1}, \gamma_{1}, \beta_{1}-c_{\beta_{1}}\right)$ has no product discs, cancelling discs, or allowable nonself amalgamating discs, let S_{2} be the surface obtained by applying Theorem 5.3 to an nontrivial element of $H_{2}\left(M_{2}, \partial M_{2}-U\right)$.

Decompose $\left(M_{1}, \gamma_{1}, \beta_{1}\right)$ using S_{2} to obtain $\left(M^{\prime}, \gamma_{2}^{\prime}, \beta_{2}^{\prime}\right)$. If S_{2} was a disc with boundary in $R\left(\gamma_{1}\right)$, amalgamate arcs and convert an arc to a suture as in Section 4.3.3. By the results of that section, this elimination of nonself amalgamating discs preserves the fact that the resulting sutured manifold $\left(M_{2}, \gamma_{2}, \beta_{2}\right)$ is band-taut. Let Q_{2} be the resulting parameterizing surface in M_{2}.

If $H_{2}\left(M_{2}, \partial M_{2}-U\right)=0$ we are done. Otherwise, a sutured manifold $\left(M_{3}, \gamma_{3}, \beta_{3}\right)$ can be obtained from $\left(M_{2}, \gamma_{2}, \beta_{2}\right)$ by a method analogous to how we obtained $\left(M_{2}, \gamma_{2}, \beta_{2}\right)$ from $\left(M_{1}, \gamma_{1}, \beta_{1}\right)$. Repeating this process creates a sequence of band-taut sutured manifold decompositions

$$
\mathscr{H}:(M, \gamma, \beta) \xrightarrow{S_{1}}\left(M_{1}, \gamma_{1}, \beta_{1}\right) \xrightarrow{S_{2}}\left(M_{2}, \gamma_{2}, \beta_{2}\right) \xrightarrow{S_{3}} \ldots
$$

respecting Q.
By the proofs of [S1, Theorem 4.19] and [S2, Theorem 2.5], the sequence

$$
\left(M_{1}, \gamma_{1}, \beta_{1}-c_{\beta_{1}}\right) \xrightarrow{S_{2}}\left(M_{2}, \gamma_{2}, \beta_{2}-c_{\beta_{2}}\right) \xrightarrow{S_{3}} \ldots
$$

must terminate in $\left(M_{n}, \gamma_{n}, \beta_{n}-c_{\beta_{n}}\right)$ with $H_{2}\left(M_{n}, \partial M_{n}-U\right)=0$. Consequently, \mathscr{H} is finite. This sequence with all arc cancellations and amalgamations ignored is the desired hierarchy. If $c_{\beta_{i}} \neq \varnothing$ but $c_{\beta_{i+1}}=\varnothing$ then, by the definition of band taut decomposition, $c_{\beta_{i}}$ can be isotoped in $D_{\beta_{i}}$ (rel $\partial c_{\beta_{i}}$) in ∂M_{i}. Conclusions (3) and (4) follow from Lemma 6.1

Many arguments in sutured manifold theory require showing that a hierarchy remains taut after removing some components of β. We will need the following theorem, which is a slight generalization of what is stated in [S2] (and is implicit in that paper and in [S1]).

Theorem 7.2 ([S2, Lemma 2.6]). Suppose that

$$
(M, \gamma, \beta)=\left(M_{0}, \gamma_{0}, \beta_{0}\right) \xrightarrow{S_{1}}\left(M_{1}, \gamma_{1}, \beta_{1}\right) \xrightarrow{S_{2}} \ldots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}, \beta_{n}\right)
$$

is a sequence of β-taut sutured manifold decompositions in which
(1) no component of M is a solid torus disjoint from $\gamma \cup \beta$
(2) each S_{i} is either a conditioned surface, a product disc, a product annulus with each boundary component essential in $R\left(\gamma_{i-1}\right)$, or a disc D such that
(a) $\partial D \subset R\left(\gamma_{i-1}\right)$
(b) If ∂D is β-inessential in $R\left(\gamma_{i-1}\right)$ then D is disjoint from β.
(3) If a closed component of S_{i} separates, then it bounds a product region with a closed component of $R(\gamma)$ intersecting β in vertical arcs.

Then if $\left(M_{n}, \gamma_{n}, \beta_{n}\right)$ is β_{n}-taut so is every decomposition in the sequence.
Proof. The only difference between this and what is found in [S2] is that we allow closed components of S_{i} to be parallel to closed components of $R(\gamma)$. Decomposing along such a component creates a sutured manifold equivalent to the original and so if the sutured manifold after the decomposition is (β_{i+1})-taut, the original must be $\left(\beta_{i}\right)$-taut.

Remark. The reason for stating this generalization of [S2, Lemma 2.6] is that in creating a sutured manifold hierarchy that respects a parameterizing surface we may need to decompose along the double curve sum S_{k} of a conditioned surface S with some number of copies of $R(\gamma)$. If S is disjoint from a closed component of $R(\gamma)$ then some components of S_{k} will be closed and separating.

The next corollary is immediate:
Corollary 7.3. Suppose that (M, γ, β) is a band-taut sutured manifold such that no component of M is solid torus disjoint from $\left(\beta-c_{\beta}\right) \cup \gamma$ and that

$$
\mathscr{H}:(M, \gamma) \xrightarrow{S_{1}}\left(M_{1}, \gamma_{1}\right) \xrightarrow{S_{2}} \ldots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}\right)
$$

is the band-taut sutured manifold hierarchy given by Theorem 7.1. If $\left(M_{n}, \gamma_{n}\right)$ is $\beta_{n}-\left(e_{\beta_{n}} \cup c_{\beta_{n}}\right)$-taut, then (M, γ) is $\beta-\left(e_{\beta} \cup c_{\beta}\right)$-taut.

Before analyzing the parameterizing surface at the end of the hierarchy, we present one final lemma in this section. Recall that if $b \subset \partial M$ is a simple closed curve and if $Q \subset M$ is a surface, then a b-boundary compressing disc for Q is a disc whose boundary consists of an arc on Q and a sub-arc of b. Suppose that $\beta \subset M$ is an edge with both endpoints on ∂M and that b is a
meridian of β in the boundary of $M-\check{\eta}(\beta)$. If Q is a surface in $M-\dot{\eta}(\beta)$, we define a β-boundary compressing disc for Q in M to be a b-boundary compressing disc for Q in $M-\check{\eta}(\beta)$.
The next lemma gives a criterion for determining when a compressing disc or β-boundary compressing disc for a parameterizing surface at the end of a hierarchy can be pulled back to such a disc for a parameterizing surface in the initial sutured manifold.

Lemma 7.4. Suppose that

$$
(M, \gamma, \beta) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)
$$

is sutured manifold decomposition respecting a parameterizing surface Q with β a single arc. Assume that $\mu(Q) \geq 1$. Let Q^{\prime} be the resulting parameterizing surface in M^{\prime}. Let β_{0}^{\prime} be a component of β^{\prime}. Then if the surface Q^{\prime} has a compressing disc or β_{0}^{\prime}-boundary compressing disc with interior disjoint from β^{\prime} then the surface Q has a compressing disc or β-boundary compressing disc.

Proof. Let D be a compressing or β_{0}^{\prime}-boundary compressing disc for Q^{\prime}. Either $Q^{\prime}=Q-\stackrel{\circ}{\eta}(S)$ or $Q^{\prime}=Q^{c}-\dot{\eta}(S)$ is obtained by first modifying Q to Q^{c}. If $Q^{\prime}=Q-\stackrel{\circ}{\eta}(S)$, then $Q^{\prime} \subset Q$ and D is also a compressing or β-boundary compressing disc for Q. We may, therefore, assume that if $Q^{\prime}=Q^{c}-\stackrel{\circ}{\eta}(S)$, then Q^{c} has a compressing or β-boundary compressing disc E. By a small isotopy we may assume that $E \cap \partial M=\varnothing$.

By the construction of Q^{c}, Q can be obtained from Q^{c} by tubing Q^{c} to itself and to discs with boundary in $R(\gamma)$ using tubes that are the frontiers of regular neighborhoods of arcs in $R(\gamma)$. The disc E is easily made disjoint from those tubes by a small isotopy, and so E remains a compressing or β-boundary compressing disc for Q.

8. Combinatorics

We begin this section with a sequence of lemmas concerning sutured manifolds that are at the end of a band-taut hierarchy. We consider only the situation in which $e_{\beta}=\beta-c_{\beta}$. Recall from the definition of banded sutured manifold that $\left|e_{\beta}\right| \leq 2$.
Lemma 8.1. Suppose that (M, γ, β) is a connected band-taut sutured manifold with $H_{2}(M, \partial M)=0$ and $\beta-c_{\beta}=e_{\beta}$. Assume that $\partial M \neq \varnothing$. Then ∂M is the union of one or two spheres, each component of ∂M contains exactly one disc component of R_{-}and exactly one disc component of R_{+}, and one of the following holds:
(1) $e_{\beta}=\varnothing,|\gamma|=1$, and M is a 3-ball.
(2) $\left|e_{\beta}\right|=1, \partial M$ is a single sphere, and e_{β} has endpoints in the disc components of $R(\gamma)$.
(3) $\left|e_{\beta}\right|=2, \partial M$ is a single sphere, one edge e of e_{β} has endpoints in the disc components of $R(\gamma)$ and the other edge of e_{β} has endpoints either in the same disc components, in which case $|\gamma|=1$, or in the adjacent annulus components of $R(\gamma)$.
(4) $\left|e_{\beta}\right|=2, M=S^{2} \times[0,1]$, the edges of e_{β} are fibers in the product structure of M. Each component of ∂M contains a single suture.

Proof. Since $H_{2}(M, \partial M)=0$, by the "half lives, half dies" theorem of algebraic topology, the boundary of M must be the union of spheres. Since M is e_{β}-irreducible, if there is a component of ∂M that is disjoint from e_{β}, then ∂M must be that sphere and $\left|e_{\beta}\right|=0$. Since $\left(M, \gamma, e_{\beta}\right)$ is e_{β}-taut, this implies conclusion (1). Assume, therefore, that $\left|e_{\beta}\right| \in\{1,2\}$ and that each component of ∂M is adjacent to a component of e_{β}.
If M contains a sphere intersecting e_{β} exactly once, then since $R(\gamma)$ is $e_{\beta^{-}}$ incompressible, ∂M must be the union of two spheres, $\left|e_{\beta}\right|=1$ and $|\gamma|=$ 0 . This contradicts the definition of banded sutured manifold. Thus, each component of ∂M contains at least two endpoints of e_{β}. Furthermore, each disc component of $R(\gamma)$ must contain an endpoint of e_{β} since $R(\gamma)$ is $e_{\beta^{-}}$ incompressible. We conclude that ∂M has no more than two components.
If ∂M has two components, then each of them must contain two endpoints of e_{β} and so $\left|e_{\beta}\right|=2$. In each component of ∂M the endpoints of e_{β} are contained in disc components of $R(\gamma)$. Each component of $D_{\beta} \cap \partial M$ crosses γ exactly once and so each component of ∂M contains exactly one suture. The frontier of a regular neighborhood of $D_{\beta} \cup \partial M$ is a sphere in $M-e_{\beta}$ which must bound a 3 -ball in $M-e_{\beta}$. Thus, $M=S^{2} \times[0,1]$ and the components of e_{β} are fibers. This is conclusion (4).

We may assume, therefore, that ∂M is a single sphere. Suppose that R_{-} (say) has two disc components R_{1} and R_{2}. The discs R_{1} and R_{2} must each contain an endpoint v_{1} and v_{2}, respectively, of e_{β}. Since (M, γ) is e_{β}-taut, each component of e_{β} has one endpoint in R_{-}and one in R_{+}. Thus, v_{1} and v_{2} belong to different components of e_{β}. (Consequently, $\left|e_{\beta}\right|=2$.) Let w_{1} and w_{2} be the other endpoints of e_{β} (lying in R_{+}) so that v_{i} and w_{i} are endpoints of the same edge of e_{β}.

If R_{+}has a disc component, then one of w_{1} or w_{2} must lie in it. Without loss of generality, suppose it is w_{1}. A component of $\partial D_{\beta} \cap \partial M$ joins w_{1} to v_{2} and crosses γ once. The union of the disc component of R_{+}containing
w_{1} with R_{2} is a sphere and so ∂M contains more than one component, a contradiction. This implies that if $R_{ \pm}$contains two discs, then R_{\mp} cannot contain any. Since ∂M is a sphere, $R(\gamma)$ contains exactly two discs. Hence, all other components of $R(\gamma)$ are annuli. We see, therefore, that if $|\gamma|$ is even then $R_{ \pm}$contains two discs and all other components of $R(\gamma)$ are annuli and if $|\gamma|$ is odd then each of R_{-}and R_{+}contains a disc and all other components of $R(\gamma)$ are annuli.

If $\left|e_{\beta}\right|=1$, then since one endpoint of e_{β} is in R_{-}and the other is in R_{+} and since each disc component of $R(\gamma)$ contains an endpoint, conclusion (2) holds. Assume, therefore, that $\left|e_{\beta}\right|=2$. Suppose, for the moment, that some disc component D of $R(\gamma)$ contains two endpoints of e_{β}. These endpoints must belong to different components of e_{β}. Each component of $\partial D_{\beta} \cap \partial M$ joins endpoints of e_{β} and crosses γ once. Thus, the other endpoints of e_{β} are in the component of $R(\gamma)$ adjacent to D. This component must, therefore be a disc and so (3) holds. We may assume, therefore, that each disc component of $R(\gamma)$ contains exactly one endpoint of e_{β}.

Suppose that $|\gamma|$ is odd. Let $D_{ \pm}$be the disc component of $R_{ \pm}$. Each contains an endpoint $v_{ \pm}$of e_{β}. If v_{-}and v_{+}do not belong to the same arc of e_{β}, then the other endpoint of the arc containing v_{+}lies in the component of $R(\gamma)$ adjacent to D_{-}, since each component of $D_{\beta} \cap M$ intersects γ exactly once. But this component must lie in R_{+}and so a component of e_{β} has both endpoints in R_{+}, a contradiction. Thus, v_{-}and v_{+}are endpoints of the same component of e_{β}, and the fact that each component of $D_{\beta} \cap \partial M$ intersects γ exactly once immediately implies conclusion (3).

Suppose that $|\gamma|$ is even. Then both disc components of $R(\gamma)$ lie, without loss of generality, in R_{-}. Each contains exactly one endpoint of e_{β}. All other components of R_{-}are annuli disjoint from β. Thus, $x_{e_{\beta}}\left(R_{-}\right)=0$. The surface R_{+}is the union of annuli, one or two of which contain the two endpoints of $e_{\beta} \cap R_{+}$. Thus, $x_{e_{\beta}}\left(R_{+}\right)=2$. The union $R_{-} \cup A(\gamma)$ is a surface with boundary equal to ∂R_{+}and homologous to R_{+}in $H_{2}\left(M, \partial R_{+}\right)$. Consequently, R_{+}is not $x_{e_{\beta}}$-minimizing, and, therefore, not e_{β}-taut. This contradicts our hypotheses. Hence, $|\gamma|$ cannot be even and so each of $R_{ \pm}$ contains a single disc.

Lemma 8.2. Suppose that (M, γ, β) is a connected band-taut manifold such that $H_{2}(M, \partial M)=0, \partial M$ is connected and non-empty, and $\beta-c_{\beta}=e_{\beta}$. Then the number of sutures $|\gamma|$ is odd and there is an edge component e of e_{β} such that (M, γ, e) is e-taut. Furthermore, if (M, γ) is not \varnothing-taut, then either $|\gamma| \geq 3$ or M is a non-trivial rational homology ball.

Proof. Lemma 8.1 implies that either (M, γ) is a 3 -ball with a single suture in its boundary or one of the following occurs:

- $\left|e_{\beta}\right|=1$, and R_{-}and R_{+}each contain a single disc. The intersection of these discs with e_{β} is the endpoints of an edge e of e_{β}.
- $\left|e_{\beta}\right|=2, R_{-}$and R_{+}each contain a single disc. Unless $|\gamma|=1$, there is a component e of e_{β} such that the intersection of the disc components of $R(\gamma)$ with e_{β} is the endpoints of e. If $|\gamma|=1$, then that intersection contains all the endpoints of e_{β}.

Let e be an edge of e_{β} having endpoints in the disc components of $R(\gamma)$. Since e does not have both endpoints in $R_{ \pm}$, and since $R(\gamma)$ contains exactly two disc components, γ consists of an odd number of parallel sutures on the sphere ∂M.

We claim that (M, γ, e) is e-taut. Since $R(\gamma)$ has two disc components and $|\gamma|$ is odd, R_{-}and R_{+}are each e-minimizing. Suppose, first, that S is an e-reducing sphere. Choose S to minimize $\left|S \cap D_{\beta}\right|$. An innermost circle argument shows that $S \cap D_{\beta}$ is empty, and so S is disjoint from e_{β}. Since M is e_{β}-taut, S bounds a ball disjoint from e, a contradiction. Suppose, therefore, that S is a compressing disc for $R(\gamma)-e$ that is disjoint from e. Since ∂M is a 2 -sphere, there is a 2 -sphere in M intersecting e a single time. Hence, M contains a non-separating S^{2}, contradicting the assumption that $H_{2}(M, \partial M)=0$. Thus, (M, γ, e) is e-taut.

If M is a 3-ball with a single suture in its boundary, then (M, γ) is \varnothing-taut. Thus, either $|\gamma| \geq 3$ or M is not a 3-ball. The relative long exact sequence for $H_{2}(M, \partial M)$ shows that $H_{2}(M)=0$ and that $H_{1}(M)$ is isomorphic to $H_{1}(M, \partial M)$. Duality for manifolds with boundary shows that $H^{1}(M)=0$ since $H_{2}(M, \partial M)=0$. The universal coefficient theorem shows that $H^{1}(M)$ is isomorphic to the direct sum of the free part of $H_{1}(M)$ and the torsion part of $H_{0}(M)$. Thus, $H_{1}(M)$ is finite. This implies that if $M \neq B^{3}$, then M is a non-trivial rational homology ball, as desired.

The presence of a parameterizing surface can give us more information.
Lemma 8.3. Suppose that (M, γ, e) is a connected e-taut sutured manifold with e an edge. Assume that $H_{2}(M, \partial M)=0$. Suppose that $Q \subset M$ is a parameterizing surface having no compressing or e-boundary compressing disc. If $\mu(Q) \geq 1$, then one of the following holds:
(1) M is a 3-ball, $|\gamma|=1$ and e is boundary-parallel by a component of Q.
(2) M is a punctured lens space and e is a core of M.
(3) $I(Q) \geq 2 \mu(Q)$.

Proof. Since Q is a parameterizing surface, no component has negative index. Removing all components of Q that are disjoint from e does not increase index. Since Q is incompressible, no component of ∂Q is an inessential circle in $\partial M-e$. Since ∂M is the union of $2-$ spheres and since Q has no e-boundary compressing disc, each arc component of $\partial Q \cap \partial M$ joins distinct endpoints of e. Since $\mu(Q) \geq 1$, there is at least one such arc component. Thus, no component of ∂Q is an essential circle in $\partial M-e$. Therefore, each component of $\partial Q \cap \partial M$ is an arc joining the endpoints of e. Isotope Q so as to minimize $\partial Q \cap \gamma$. This does not increase $I(Q)$. Since e is an edge and (M, γ, e) is e-taut, $|\gamma|$ must be odd.

Case 1: $|\gamma|=1$.
If some component Q_{0} of Q is a disc intersecting γ once, then it is a cancelling disc for e. This implies that (M, γ) is \varnothing-taut. M is, therefore, a 3-ball and e is boundary parallel by a component of Q.
Suppose, therefore, that some component of Q is a disc intersecting γ more than once (and, therefore, running along e more than once). Compressing the frontier of $\eta(\partial M \cup e)$ using that disc produces a 2 -sphere which must bound a $3-$ ball. Hence, M is a punctured lens space with core e.

If no component of Q is a disc, then no component of Q has positive euler characteristic, and so $I(Q) \geq \mu(Q)+|\partial Q \cap \gamma|=2 \mu(Q)$.
Case 2: $|\gamma| \geq 3$.
There are at most $\mu(Q)$ components of Q and so $-2 \chi(Q) \geq-2 \mu(Q)$. We have, therefore, $I(Q) \geq \mu(Q)+|\partial Q \cap \gamma|-2 \mu(Q)$. Since $|\gamma| \geq 3$ and since all sutures are parallel, each arc of $\partial Q \cap \partial M$ intersects γ at least 3 times. Thus,

$$
I(Q) \geq \mu(Q)+3 \mu(Q)-2 \mu(Q)=2 \mu(Q)
$$

as desired.

The next theorem is the key result of the paper. It applies the combinatorics of the previous lemmas to the last term of a band-taut hierarchy.

Theorem 8.4. Suppose that (M, γ, β) is a band taut sutured manifold with $e_{\beta}=\beta-c_{\beta}$. Assume that e_{β} has components e_{1} and e_{2}. Let Q_{1} and Q_{2} be parameterizing surfaces in $\left(M, \gamma, e_{\beta}\right)$ with $Q_{1} \cap e_{2}=Q_{2} \cap e_{1}=\varnothing$. We allow the possibility that $e_{i}=Q_{i}=\varnothing$ for $i \in\{1,2\}$.
Then one of the following occurs:
(1) Some Q_{i} has a compressing or e_{i}-boundary compressing disc in $\left(M, \gamma, e_{i}\right)$.
(2) $\left|e_{\beta}\right|=2$ and M contains an S^{2} intersecting each edge of e_{β} exactly once.
(3) For some $i,\left(M, e_{i}\right)=\left(M_{0}^{\prime}, \beta_{0}^{\prime}\right) \#\left(M_{1}^{\prime}, \beta_{1}^{\prime}\right)$ where M_{1}^{\prime} is a lens space and β_{1}^{\prime} is a core of M_{1}^{\prime}.
(4) (M, γ) is \varnothing-taut. The arc c_{β} can be properly isotoped onto a branched surface $B(\mathscr{H})$ associated to a taut sutured manifold hierarchy \mathscr{H} for M. Also, a proper isotopy of c_{β} in M takes c_{β} to an arc disjoint from the first decomposing surface of \mathscr{H}. That first decomposing surface can be taken to represent $\pm y$ for any given non-zero $y \in H_{2}(M, \partial M)$.
(5) Either

$$
I\left(Q_{1}\right) \geq 2 \mu\left(Q_{1}\right) \text { or } I\left(Q_{2}\right) \geq 2 \mu\left(Q_{2}\right)
$$

Proof. By Theorem 7.1, there exists a band-taut hierarchy

$$
\mathscr{H}:(M, \gamma, \beta) \xrightarrow{S_{1}} \ldots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}, \beta_{n}\right)
$$

respecting Q_{1} and Q_{2} with S_{1} representing $\pm y$. By that theorem, there is a proper isotopy of c_{β} in M to an arc disjoint from S_{1}. Let $c_{\beta_{n}}$ be the core of the band in M_{n}. By Theorem 7.1, there is an isotopy of c_{β} so that $c_{\beta}-c_{\beta_{n}}$ is embedded in the union of ∂M with the branched surface $B(\mathscr{H})$. At each stage of the hierarchy, each component of $D_{\beta_{i}}-S_{i}$ not containing $c_{\beta_{i+1}}$ is a cancelling disc, product disc, or amalgamating disc (Lemma 4.2), and the hierarchy is constructed so as to eliminate all such discs. Thus, we may assume that each component of $\beta_{n}-\left(e_{\beta_{n}} \cup c_{\beta_{n}}\right)$ is an arc in a 3ball component of M_{n} having a single suture in its boundary; that 3-ball is disjoint from all other components of β_{n}. Deleting such arc components preserves the $\left(\beta_{n}-c_{\beta_{n}}\right)$-tautness of $\left(M_{n}, \gamma_{n}\right)$. Henceforth, we ignore such components.
Either conclusion (1) of our theorem occurs, or by Lemma 7.4, Q_{i} does not have a compressing or e_{i}-boundary compressing disc in $\left(M_{n}, \gamma_{n}, \beta_{n}-\left(c_{\beta_{n}} \cup\right.\right.$ e_{j}) (with $j \neq i$). We assume that Q_{i} does not have such a disc.

The manifold M_{n} has $H_{2}\left(M_{n}, \partial M_{n}\right)=0$. Let M^{\prime} denote the component of M_{n} containing $c_{\beta_{n}}$. Let $\gamma^{\prime}=\gamma \cap M^{\prime}$. We have $H_{2}\left(M^{\prime}, \partial M^{\prime}\right)=0$. By Lemma 8.1, ∂M_{n} is the union of one or two spheres and one of the following holds:
(a) $e_{\beta_{n}}=\varnothing,\left|\gamma^{\prime}\right|=1$, and M^{\prime} is a 3-ball.
(b) $\left|e_{\beta_{n}}\right|=1, \partial M^{\prime}$ is a single sphere, each of R_{-}and R_{+}contains a single disc, and $e_{\beta_{n}}$ has endpoints in the disc components of $R(\gamma)$.
(c) $\left|e_{\beta_{n}}\right|=2, \partial M^{\prime}$ is a single sphere, one edge e of $e_{\beta_{n}}$ has endpoints in the disc components of $R\left(\gamma^{\prime}\right)$ and the other edge of $e_{\beta_{n}}$ has endpoints either in the same disc components, in which case $|\gamma|=1$ or in the adjacent annulus components of $R\left(\gamma^{\prime}\right)$.
(d) $\left|e_{\beta_{n}}\right|=2, M^{\prime}=S^{2} \times[0,1]$, the edges of $e_{\beta_{n}}$ are fibers in a product structure of M^{\prime}. Each component of ∂M^{\prime} contains a single suture.

If (d) occurs then we have conclusion (2) of our theorem. Assume, therefore, that neither (1) nor (2) of our theorem occur.

If (a) occurs, then $\left(M_{n}, \gamma_{n}\right)$ is \varnothing-taut and by Corollary 7.3 , the sequence \mathscr{H} is \varnothing-taut. The disc $D_{\beta_{n}}$ is isotopic into ∂M^{\prime} and so the hierarchy \mathscr{H} can be extended by a decomposition satisfying (BT1) with empty decomposing surface. This gives conclusion (4).

Assume, therefore, that $\left|e_{\beta_{n}}\right| \geq 1$. By Lemma 8.2, $|\gamma|$ is odd and there exists an edge e of $e_{\beta_{n}}$ such that e has both endpoints in disc components of $R\left(\gamma^{\prime}\right)$ and ($M^{\prime}, \gamma^{\prime}, e$) is e-taut. If M^{\prime} is a 3 -ball and if e is boundary-parallel then, once again, we have conclusion (4). Assume, therefore, that conclusion (4) does not occur.

The edge e is a subarc of e_{i} for some $i \in\{1,2\}$. Let Q_{i}^{\prime} be the parameterizing surface in M^{\prime} resulting from Q_{i}. By hypothesis, $\mu\left(Q_{i}^{\prime}\right) \geq 1$ and Q_{i}^{\prime} does not have any compressing or e_{i}-boundary compressing discs. By Lemma 8.3, one of the following occurs:
(i) M^{\prime} is a punctured lens space and e is a core of M^{\prime}.
(ii) $I\left(Q_{i}^{\prime}\right) \geq 2 \mu\left(Q_{i}^{\prime}\right)$

If (i) happens then we have conclusion (3) of our theorem. If (ii) happens, then using the facts that $I\left(Q_{i}\right) \geq I\left(Q_{i}^{\prime}\right)$ and $\mu\left(Q_{i}\right)=\mu\left(Q_{i}^{\prime}\right)$ we have $I\left(Q_{i}\right) \geq$ $2 \mu\left(Q_{i}\right)$. This is conclusion (5) of our theorem.

9. From Arc-Taut to Band-Taut

We begin this section by constructing a band taut sutured manifold from an arc-taut sutured manifold (that is, a β-taut sutured manifold where β is an arc).

Let $\left(M, \gamma, \beta_{1}\right)$ be a β_{1}-taut sutured manifold with β_{1} an edge having endpoints in components of $R(\gamma)$ with boundary. Let c_{β} be obtained by isotoping the endpoints of β_{1} into components of A_{-}and A_{+}adjacent to the components of $R(\gamma)$ containing the endpoints of β_{1}. Let β_{2} be the arc obtained by continuing to isotope c_{β} so that its endpoints are moved across
γ and into $R(\gamma)$. Let D_{β} be the disc of parallelism between β_{1} and β_{2} that contains c_{β}. Let $\beta=\beta_{1} \cup c_{\beta} \cup \beta_{2}$. We call (M, γ, β) the associated banded sutured manifold.

Lemma 9.1. If $\left(M, \gamma, \beta_{1}\right)$ is a β_{1}-taut sutured manifold with β_{1} an edge, then (M, γ, β) is a band-taut sutured manifold.

Proof. Without loss of generality, we may assume that M is connected. Recall that $e_{\beta}=\beta_{1} \cup \beta_{2}$. We desire to show that $\left(M, \gamma, e_{\beta}\right)$ is e_{β}-taut. Clearly, since $M-\beta_{1}$ is irreducible, $M-e_{\beta}$ is irreducible. Since e_{β} is disjoint from $T(\gamma), T(\gamma)$ is taut. It remains to show that $R_{ \pm}$is e_{β}-taut.
Let S be a e_{β}-taut surface with $\partial S=\partial R_{ \pm}$and $[S, \partial S]=\left[R_{ \pm}, \partial R_{ \pm}\right]$in $H_{2}\left(M, \partial R_{ \pm}\right)$. Out of all such surfaces, choose S to intersect D_{β} minimally.
Since S is e_{β}-taut and since D_{β} is a disc, no component of $S \cap D_{\beta}$ is a circle or an arc with both endpoints on the same component of e_{β}. Since $\partial S=$ $\partial R_{ \pm}$, the intersection $S \cap D_{\beta}$ contains exactly two arcs having an endpoint on ∂M. Since S and $R_{ \pm}$are homologous, the algebraic intersection number of each surface with each component of e_{β} is the same. Since S is e_{β}-taut, the geometric intersection number of S with each component of e_{β} equals the absolute value of the algebraic intersection number. Consequently, S intersects each component of e_{β} exactly once. This implies that $S \cap D_{\beta}$ consists exactly of two arcs each joining ∂M to e_{β} and S intersects both components of e_{β}.

Suppose, for a moment, that some disc component R_{1} of $R_{ \pm}$is disjoint from β_{1} but not from e_{β}. Let R_{2} be the component of R_{\mp} adjacent to R_{1}. Since R_{1} is adjacent to β_{2}, R_{2} must be adjacent to β_{1}. Consequently, R_{1} is a β_{1}-compressing disc for R_{2}. This contradicts the fact that R_{2} is β_{1} incompressible. We conclude that no component of $R_{ \pm}$is a disc disjoint from β_{1} but not from β_{2}. Consequently,

$$
x_{e_{\beta}}\left(R_{ \pm}\right)=x_{\beta_{1}}\left(R_{ \pm}\right)+1
$$

Without loss of generality, we may assume that S contains no sphere component disjoint from e_{β}. Thus, if S_{0} is a component of S, then either $x_{e_{\beta}}\left(S_{0}\right)=-\chi\left(S_{0}\right)+\left|S_{0} \cap e_{\beta}\right|$ or S_{0} is a disc disjoint from e_{β}. Suppose that S_{0} is a disc disjoint from e_{β} and let R be the component of $R_{ \pm}$with $\partial S \subset \partial R$. Since R is β_{1}-incompressible, R must be a disc disjoint from β_{1}. By the previous paragraph, R is also disjoint from β_{2}. This implies that the component of ∂M containing R is a 2 -sphere disjoint from e_{β} and containing a single suture. Since M is β_{1} irreducible, this implies that M is a 3-ball disjoint
from β_{1} and having a single suture in its boundary, a contradiction. Thus, no component of S is a disc disjoint from e_{β} and $x_{e_{\beta}}(S)=-\chi(S)+\left|S \cap e_{\beta}\right|$.
Similarly, if S_{0} is a component of S then either $x_{\beta_{1}}\left(S_{0}\right)=-\chi\left(S_{0}\right)+\left|S_{0} \cap \beta_{1}\right|$ or S_{0} is a disc disjoint from β_{1}. The component of $R_{ \pm}$containing ∂S_{0} is β_{1}-incompressible and so must be a disc disjoint from β_{1}. As before, this implies that M is a 3 -ball disjoint from β_{1} with a single suture in its boundary. This contradicts our hypotheses and so $x_{\beta_{1}}(S)=-\chi(S)+\mid S \cap$ $\beta_{1} \mid$. Consequently,

$$
x_{e_{\beta}}(S)=x_{\beta_{1}}(S)+1 .
$$

Since $R_{ \pm}$is β_{1}-minimizing, we have

$$
x_{\beta_{1}}\left(R_{ \pm}\right) \leq x_{\beta_{1}}(S)
$$

Hence,

$$
x_{e_{\beta}}\left(R_{ \pm}\right)-1 \leq x_{e_{\beta}}(S)-1,
$$

and so

$$
x_{e_{\beta}}\left(R_{ \pm}\right) \leq x_{e_{\beta}}(S) .
$$

Since S is e_{β}-minimizing, $R_{ \pm}$must be as well.
If $R_{ \pm}$were e_{β}-compressible by a compressing disc D, the boundary of D would have to be β_{1}-inessential in $R_{ \pm}$. Since β_{2} has only one endpoint in $R_{ \pm}$, the union of D with a disc contained in $R_{ \pm}$produces a sphere intersecting β_{2} exactly once. Since β_{1} and β_{2} are parallel, there is a sphere intersecting β_{1} exactly once transversally. The components of $R(\gamma)$ containing the endpoints of β_{1} are, therefore, β_{1}-compressible, a contradiction. Thus $R_{ \pm}$is e_{β}-incompressible and so (M, γ, β) is band-taut.

If $\left(M, \gamma, \beta_{1}\right)$ has a parameterizing surface Q_{1}, the isotopy of β_{1} to β_{2} gives an isotopy of Q_{1} to a parameterizing surface Q_{2} for $\left(M, \gamma, \beta_{2}\right)$. The next two results give conditions guaranteeing the existence of such an isotopy that does not increase the index of the parameterizing surface. First, we define some notation for the statement of the lemmas.

Let $v_{ \pm}$be the endpoints of β_{1}. Let $\alpha_{ \pm}$be the path from $v_{ \pm}$to the endpoints of β_{2} defined by the isotopy of β_{1} to β_{2}. Let $\gamma_{ \pm}$be the components of γ intersecting $\alpha_{ \pm}$. Let $n_{ \pm}$be the number of arc components of ∂Q_{1} in a neighborhood of $v_{ \pm}$. Some arc components may belong to edges of $\partial Q_{1} \cap$ $R(\gamma)$ parallel to $\alpha_{ \pm}$. Let $m_{ \pm}$be the number of those arcs plus the number of circle components of $\partial Q \cap \gamma$ parallel to $\gamma_{ \pm}$.

Lemma 9.2. Assume that any component of $\partial Q_{1} \cap R(\gamma)$ intersecting $\alpha_{ \pm}$is a circle parallel to $\gamma_{ \pm}$. Then there is an isotopy of Q_{1} to a parameterizing surface Q_{2} for $\left(M, \gamma, \beta_{2}\right)$ so that

$$
I\left(Q_{2}\right)=I\left(Q_{1}\right)+\left(n_{-}+n_{+}\right)-2\left(m_{-}+m_{+}\right)
$$

Proof. Each arc component of $\partial Q_{1} \cap R_{ \pm}$contributing to $m_{ \pm}$can be isotoped to lie entirely in R_{\mp}. Each other arc component of $\partial Q_{1} \cap R_{ \pm}$after the isotopy of Q_{1} to Q_{2} crosses γ an additional time. Any component of $\partial Q \cap R(\gamma)$ intersecting $\alpha_{ \pm}$can be isotoped across $A(\gamma)$ without changing the index of Q, since such a component is hypothesized to be parallel to $\gamma_{ \pm}$.

Figure 8 shows an example of an isotopy which decreases index by 1 .

Figure 8. An example with $n_{ \pm}=5$ and $m_{ \pm}=3$. The isotopy of the endpoint $v_{ \pm}$across γ reduces the index of the parameterizing surface by 1 .

Corollary 9.3. Suppose that $\left(M, \gamma, \beta_{1}\right)$ is a β_{1}-taut sutured manifold with β_{1} an arc having endpoints on annular components of $R(\gamma)$. Suppose also that Q_{1} is a parameterizing surface with $\mu\left(Q_{1}\right) \geq 1$ and that those annular components do not contain any inessential arc or circle of $\partial Q_{1} \cap R(\gamma)$. Let (M, γ, β) be an associated banded sutured manifold and let Q_{2} be a parameterizing surface in $\left(M, \gamma, \beta_{2}\right)$ isotopic to Q_{1}. Then β_{2} and Q_{2} can be chosen so that $I\left(Q_{1}\right) \geq I\left(Q_{2}\right)$ and $Q_{1} \cap \beta_{2}=Q_{2} \cap \beta_{1}=\varnothing$.

Proof. Let $\rho_{ \pm}$be the components of $R_{ \pm}$containing the endpoints of β_{1}. The surfaces $\rho_{ \pm}-\partial \beta_{1}$ are thrice punctured spheres. Let $R=\rho_{ \pm}-\partial \beta_{1}$. By hypothesis, each arc of $\partial Q_{1} \cap R$ is an essential arc. In particular, $\partial Q_{1} \cap R$ has at most one isotopy class of arcs with both endpoints on a single component of $\partial R(\gamma)$. Choose paths $\alpha_{ \pm}$from $\partial \beta_{1}$ to $A_{ \pm}$disjoint from any arcs with both
endpoints on a single component of $\partial R(\gamma)$. If there are no arcs with both endpoints on a single component of $\partial R(\gamma)$, then choose $\alpha_{ \pm}$to join $\partial \beta_{1}$ to the component of $\partial \rho_{ \pm}$containing the greatest number of endpoints of $\partial Q_{1} \cap \rho_{ \pm}$. Any arc of $\partial Q_{1} \cap R$ having both endpoints at $\partial \beta_{1}$ forms a loop parallel to both components of $\partial \rho_{ \pm} \cap \partial R(\gamma)$. Hence, we have satisfied the hypotheses of Lemma 9.2. In the notation of that lemma, we have $2 m_{ \pm} \geq$ $n_{ \pm}$. Thus, $I\left(Q_{1}\right) \geq I\left(Q_{2}\right)$. A small isotopy makes Q_{1} disjoint from β_{2} and Q_{2} disjoint from β_{1}.

We can now use Theorem 8.4 to obtain a theorem for arc taut sutured manifolds where the arc has endpoints in annulus components of $R(\gamma)$.

Theorem 9.4. Suppose that (M, γ, β) is a β-taut sutured manifold with β a single edge. Let Q be a parameterizing surface in M with $\mu(Q) \geq 1$. Assume that the endpoints of β lie in annulus components $\rho_{ \pm}$of $R_{ \pm}$and that no arc or circle of $\partial Q \cap \rho_{ \pm}$is inessential. Then one of the following is true:
(1) Q has a compressing or β-boundary compressing disc.
(2) $(M, \beta)=\left(M_{0}^{\prime}, \beta_{0}^{\prime}\right) \#\left(M_{1}^{\prime}, \beta_{1}^{\prime}\right)$ where M_{1}^{\prime} is a lens space and β_{1}^{\prime} is a core of M_{1}^{\prime}.
(3) (M, γ) is \varnothing-taut. The arc β can be isotoped relative to its endpoints to be embedded on the union of ∂M with a branched surface $B(\mathscr{H})$ associated to a taut sutured manifold hierarchy \mathscr{H} for M. Furthermore, there is a proper isotopy of β in M to an arc disjoint from the first decomposing surface of \mathscr{H}. That first decomposing surface can be taken to represent $\pm y$ for any given non-zero $y \in H_{2}(M, \partial M)$.
(4)

$$
I(Q) \geq 2 \mu(Q)
$$

Proof. Let $e_{1}=\beta$. By Corollary 9.3, the endpoints of β_{1} can be isotoped across $A(\gamma)$ to create an arc e_{2} and an associated banded sutured manifold $(M, \gamma, \widehat{\beta})$. By Lemma 9.1, this sutured manifold is band-taut. By Corollary 9.3, the isotopy can be chosen so that $Q=Q_{1}$ is isotoped to a surface Q_{2} disjoint from e_{1} such that $I\left(Q_{2}\right) \leq I\left(Q_{1}\right)$. By a small isotopy, we can make $Q_{1} \cap e_{2}=Q_{2} \cap e_{1}=\varnothing$. (The surfaces Q_{1} and Q_{2} may intersect.) By Theorem 8.4, one of the following happens:
(a) Some Q_{i} has a compressing or e_{i}-boundary compressing disc in $\left(M, \gamma, e_{i}\right)$.
(b) M contains an S^{2} intersecting each of e_{1} and e_{2} exactly once.
(c) For some $i,\left(M, e_{i}\right)=\left(M_{0}^{\prime}, \beta_{0}^{\prime}\right) \#\left(M_{1}^{\prime}, \beta_{1}^{\prime}\right)$ where M_{1}^{\prime} is a lens space and β_{1}^{\prime} is a core of a genus one Heegaard splitting of M_{1}^{\prime}.
(d) (M, γ) is \varnothing-taut. The arc $c_{\widehat{\beta}}$ can be isotoped relative to its endpoints to be embedded on the branched surface associated to a taut sutured manifold hierarchy for M. Furthermore, there is a proper isotopy of $c_{\widehat{\beta}}$ in M to an arc disjoint from the first decomposing surface of the hierarchy. That first decomposing surface can be taken to represent $\pm y$ for any given non-zero $y \in H_{2}(M, \partial M)$.
(e) Either

$$
I\left(Q_{1}\right) \geq 2 \mu\left(Q_{1}\right) \text { or } I\left(Q_{2}\right) \geq 2 \mu\left(Q_{2}\right)
$$

Since each $\left(e_{i}, Q_{i}\right)$ is isotopic to (β, Q), possibility (a) implies conclusion (1) of our theorem. Possibility (b) cannot occur since that would imply that there was a β-compressing disc for $R(\gamma)$. Possibility (c) implies Conclusion (2), since e_{i} is isotopic to β. Possibility (d) implies Conclusion (3). Possibility (e) implies conclusion (4) since $I(Q)=I\left(Q_{1}\right) \geq I\left(Q_{2}\right)$ and $\mu(Q)=\mu\left(Q_{2}\right)=\mu\left(Q_{1}\right)$.

We can now prove Theorem 10.7 for the case when the components of $R(\gamma)$ adjacent to b are thrice-punctured spheres. It is really only a slight rephrasing of Theorem 9.4.

Theorem 9.5. Suppose that (N, γ) is a taut sutured manifold and that $b \subset \gamma$ is a curve adjacent to thrice-punctured sphere components of $R(\gamma)$. Let Q be a parameterizing surface in N with $|Q \cap b| \geq 1$ and with the property that the intersection of Q with the components of $R(\gamma)$ adjacent to b contains no inessential arcs or circles. Let β be the cocore in $N[b]$ of a 2-handle attached along b. Then one of the following is true:
(1) Q has a compressing or b-boundary compressing disc.
(2) $(N[b], \beta)=\left(M_{0}^{\prime}, \beta_{0}^{\prime}\right) \#\left(M_{1}^{\prime}, \beta_{1}^{\prime}\right)$ where M_{1}^{\prime} is a lens space and β_{1}^{\prime} is a core of a genus one Heegaard splitting of M_{1}^{\prime}.
(3) $(N[b], \gamma-b)$ is \varnothing-taut. The arc β can be properly isotoped to be embedded on a branched surface $B(\mathscr{H})$ associated to a taut sutured manifold hierarchy \mathscr{H} for $N[b]$. There is also a proper isotopy of β in $N[b]$ to an arc disjoint from the first decomposing surface of \mathscr{H}. That first decomposing surface can be taken to represent $\pm y$ for any given non-zero $y \in H_{2}(N[b], \partial N[b])$.
(4)

$$
-2 \chi(Q)+|Q \cap \gamma| \geq 2|Q \cap b|
$$

Proof. Let $M=N[b]$. Convert the suture b to an $\operatorname{arc} \beta$. Since (N, γ) is \varnothing taut, $(M, \gamma-b, \beta)$ is β-taut. The theorem then follows immediately from Theorem 9.4.

10. Separating Sutures on Genus Two Surfaces

In this section, we prove Theorem 10.7 for the case when b is adjacent to once-punctured tori. The key idea is to create a band-taut sutured manifold by viewing a certain decomposition of the original sutured manifold in three different ways.

We say that a sutured manifold (M, γ, β) is almost taut if it satisfies (T1), (T2) from Section 3 and also:
(AT) β is a single edge and either has both endpoints in distinct components of $T(\gamma)$ or has both endpoints in distinct components of $A(\gamma)$.

The strategy is to begin with an arc-taut sutured manifold $M_{+}=\left(M, \gamma, \beta_{+}\right)$ where β_{+}is an arc having endpoints in distinct torus components of $R(\gamma)$. Convert it to an almost taut sutured manifold $M_{0}=\left(M, \gamma, c_{\beta}\right)$ where c_{β} has endpoints in distinct torus components of $T(\gamma)$, produce a so-called "almost-taut decomposition" of M_{0} resulting in an almost taut sutured manifold $M_{0}^{\prime}=\left(M^{\prime}, \gamma^{\prime}, c_{\beta}^{\prime}\right)$, convert M_{0}^{\prime} to a band-taut sutured manifold $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ and then appeal to Theorem 8.4. Along the way we will also have to analyze the behaviour of parameterizing surfaces.

We establish the following notation:
Let $M_{+}=\left(M, \gamma, \beta_{+}\right)$be a sutured manifold, with β_{+}an arc having endpoints in torus components $T_{-} \subset R_{-}(\gamma)$ and $T_{+} \subset R_{+}(\gamma)$. Let $M_{-}=\left(M, \gamma, \beta_{-}\right)$be the sutured manifold resulting from moving T_{-}into R_{+}, moving T_{+}into R_{-} and performing a small isotopy of β_{+}to an arc β_{-}disjoint from β_{+}. Let $M_{0}=\left(M, \gamma, c_{\beta}\right)$ be the sutured manifold resulting from moving $T=T_{-} \cup T_{+}$ into $T(\gamma)$ and performing a small isotopy of β_{+}to an arc c_{β} that is disjoint from $\beta_{+} \cup \beta_{-}$.
10.1. Preliminary tautness results. The next lemma is straightforward to prove, and so we omit the proof.

Lemma 10.1. If M_{+}is β_{+}-taut, then M_{0} is almost taut.
Now suppose that we are given an almost taut sutured manifold $M_{0}^{\prime}=$ ($M^{\prime}, \gamma^{\prime}, c_{\beta^{\prime}}$) with the endpoints of $c_{\beta^{\prime}}$ in $A(\gamma)$. We create a banded sutured manifold $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ as follows. Isotope the endpoints of $c_{\beta^{\prime}}$ out of $A\left(\gamma^{\prime}\right)$ and into $R\left(\gamma^{\prime}\right)$ so that one endpoint lies in R_{-}and the other in R_{+}. (We require that once the endpoints leave $A\left(\gamma^{\prime}\right)$ they do not reenter it during the isotopy.) Since the endpoints of $c_{\beta^{\prime}}$ lie in distinct components of $A\left(\gamma^{\prime}\right)$,
up to ambient isotopy of M^{\prime} (relative to $A\left(\gamma^{\prime}\right)$) there are two ways of isotoping $c_{\beta^{\prime}}$ so that the endpoints lie in $R\left(\gamma^{\prime}\right)$. Let $M_{-}^{\prime}=\left(M^{\prime}, \gamma^{\prime}, \beta_{-}^{\prime}\right)$ and $M_{+}^{\prime}=\left(M^{\prime}, \gamma^{\prime}, \beta_{+}^{\prime}\right)$ denote the two ways of doing this. Perform the isotopies so that $c_{\beta^{\prime}}, \beta_{+}^{\prime}$, and β_{-}^{\prime} are pairwise disjoint. Let β^{\prime} denote their union, and let $D_{\beta^{\prime}}$ be an (embedded) disc of parallelism between β_{-}^{\prime} and β_{+}^{\prime} that contains $c_{\beta^{\prime}}$ in its interior. Then $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is a banded sutured manifold. We say that it is a banded sutured manifold derived from M_{0}^{\prime}. The next lemma gives criteria guaranteeing that the derived sutured manifold is band-taut.

Lemma 10.2. Suppose that $\left(M^{\prime}, \gamma^{\prime}, c_{\beta^{\prime}}\right)$ is a $c_{\beta^{\prime}}$-almost taut connected sutured manifold and that $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is a derived banded sutured manifold. Suppose that no sphere in M^{\prime} intersects $c_{\beta^{\prime}}$ exactly once transversally. If no component of $R\left(\gamma^{\prime}\right)$ containing an endpoint of $e_{\beta^{\prime}}=\beta_{-}^{\prime} \cup \beta_{+}^{\prime}$ is a disc and if $\chi\left(R_{-}\right)=\chi\left(R_{+}\right)$, then $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is band taut.

Proof. Since each component of $e_{\beta^{\prime}}$ is isotopic to $c_{\beta^{\prime}}$ and since no sphere separates the components of $e_{\beta^{\prime}},\left(M^{\prime}, \gamma^{\prime}, e_{\beta^{\prime}}\right)$ is $e_{\beta^{\prime}}$-irreducible.
Suppose that $R_{ \pm}$is $e_{\beta^{\prime}}$-compressible by a disc D. Since $R_{ \pm}$is $c_{\beta^{\prime}}$-incompressible, the boundary of D bounds a disc $D^{\prime} \subset R_{ \pm}$containing one or two endpoints of $e_{\beta^{\prime}}$. If it contains two endpoints, they must be endpoints of different components of $e_{\beta^{\prime}}$. Then $D \cup D^{\prime}$ is a sphere in M^{\prime} intersecting an edge of $e_{\beta^{\prime}}$ in a single point. Since each edge of $e_{\beta^{\prime}}$ is isotopic to $c_{\beta^{\prime}}$, there is a sphere in M^{\prime} intersecting $c_{\beta^{\prime}}$ in a single point, contrary to hypothesis.
Let S be a surface representing $\left[R_{ \pm}, \partial R_{ \pm}\right]$in $H_{2}\left(M^{\prime}, \partial R_{ \pm}\right)$such that:

- S is $e_{\beta^{\prime}}$-incompressible
- S intersects each edge of $e_{\beta^{\prime}}$ always with the same sign.

We wish to show that $x_{e_{\beta^{\prime}}}\left(R_{ \pm}\right) \leq x_{e_{\beta^{\prime}}}(S)$.
Isotope S, relative to ∂S, to minimize the pair $\left(\left|D_{\beta^{\prime}} \cap S\right|,\left|c_{\beta^{\prime}} \cap S\right|\right)$ lexicographically. An innermost disc argument shows that S intersects $D_{\beta^{\prime}}$ in arcs only. An outermost arc argument shows that each of these arcs has an endpoint on ∂M or joins β_{-}^{\prime} to β_{+}^{\prime}. Since S represents $\left[R_{ \pm}, \partial R_{ \pm}\right]$, the algebraic intersection of S with each component of $e_{\beta^{\prime}}$ is ± 1 and the algebraic intersection of S with $c_{\beta^{\prime}}$ is zero. The absolute value of the algebraic intersection of S with each edge of $e_{\beta^{\prime}}$ is equal to the geometric intersection number. Since $\left|\partial S \cap D_{\beta^{\prime}}\right|=2$, there are two arcs in $S \cap D_{\beta^{\prime}}$. Since the algebraic intersection number of S with each component of $e_{\beta^{\prime}}$ is ± 1, each of β_{-}^{\prime} to β_{+}^{\prime} is incident to exactly one arc of $S \cap D_{\beta^{\prime}}$. If an arc of $S \cap D_{\beta^{\prime}}$ joins β_{-}^{\prime} to β_{+}^{\prime}, then S would have algebraic intersection number ± 1 with $c_{\beta^{\prime}}$.

This contradicts the fact that $(S, \partial S)$ is homologous to ($R_{ \pm}, \partial R_{ \pm}$). Thus, neither arc joins β_{-}^{\prime} to β_{+}^{\prime}. Similarly, since $S \cap D_{\beta^{\prime}}$ contains two arcs and since each of β_{-}^{\prime} and β_{+}^{\prime} intersects an arc and since they don't intersect the same arc, each arc of $S \cap D_{\beta^{\prime}}$ joins ∂M^{\prime} to $e_{\beta^{\prime}}$. Since S has zero algebraic intersection with $c_{\beta^{\prime}}$, as in Figure 9, either these arcs are both disjoint from $c_{\beta^{\prime}}$ or they each intersect $c_{\beta^{\prime}}$ exactly once.

Figure 9. The two possible kinds of intersection between S and $D_{\beta^{\prime}}$ (for the case when S is homologous to R_{+}).

Case 1: The arcs $S \cap D_{\beta^{\prime}}$ are disjoint from $c_{\beta^{\prime}}$.
By the $e_{\beta^{\prime}}$-irreducibility of M and our hypotheses, we may assume that no component of S is a sphere intersecting $e_{\beta^{\prime}}$ one or fewer times. Let n_{S} be the number of components of S that are discs intersecting $e_{\beta^{\prime}}$ exactly once. Similarly, we may assume that no component of $R\left(\gamma^{\prime}\right)$ is a sphere intersecting $e_{\beta^{\prime}}$ one or fewer times. Recall that no component of $R\left(\gamma^{\prime}\right)$ containing an endpoint of $e_{\beta^{\prime}}$ is a disc. We have

$$
x_{e_{\beta^{\prime}}}\left(R_{ \pm}\right)=x_{c_{\beta^{\prime}}}\left(R_{ \pm}\right)+2
$$

and

$$
x_{e_{\beta^{\prime}}}(S)=x_{c_{\beta^{\prime}}}\left(R_{ \pm}\right)+2-n_{S}
$$

If a component of S is a disc intersecting $e_{\beta^{\prime}}$ once, then either it is a $c_{\beta^{\prime}}$ compressing disc for the component of $R_{ \pm}$sharing its boundary, or that component is a disc. Since $R_{ \pm}$is $c_{\beta^{\prime}}$-taut and since no sphere intersects an edge of $e_{\beta^{\prime}}$ once, that component of $R_{ \pm}$must be a disc intersecting $e_{\beta^{\prime}}$ once, contradicting our hypotheses. Thus, $n_{S}=0$. It then follows that since $R_{ \pm}$is $x_{c_{\beta^{\prime}}}$-minimizing, $x_{e_{\beta^{\prime}}}\left(R_{ \pm}\right) \leq x_{e_{\beta^{\prime}}}(S)$. Hence, $R_{ \pm}$is $e_{\beta^{\prime}}$-taut.
Case 2: The arcs $S \cap D_{\beta^{\prime}}$ are not disjoint from $c_{\beta^{\prime}}$.
Since the endpoints of $c_{\beta^{\prime}}$ are in different components of $A\left(\gamma^{\prime}\right)$, we can isotope S so that ∂S moves across $A\left(\gamma^{\prime}\right)$ and so that S is made disjoint from
$c_{\beta^{\prime}}$. Call the resulting surface S^{\prime}. We have $\partial S^{\prime}=\partial R_{\mp}$. The intersection between S^{\prime} and $D_{\beta^{\prime}}$ is as in Figure 10. An isotopy of S^{\prime} relative to ∂S^{\prime} makes S^{\prime} disjoint from $c_{\beta^{\prime}}$.

Figure 10. The intersection between S^{\prime} and $D_{\beta^{\prime}}$ (for the case when S is homologous to R_{+}).

Let $S^{\prime \prime}=S^{\prime} \cup T\left(\gamma^{\prime}\right)$. Since $[S, \partial S]=\left[R_{ \pm}, \partial R_{ \pm}\right]$, we have $\left[S^{\prime \prime}, \partial S^{\prime \prime}\right]=\left[R_{\mp}, \partial R_{\mp}\right]$. We note that $S^{\prime \prime}$ is $e_{\beta^{\prime}}$-incompressible and that it always intersects each edge of $e_{\beta^{\prime}}$ with the same sign. Consequently, by Case 1 and the fact that R_{-}and R_{+}have the same euler characteristic,

$$
x_{e_{\beta^{\prime}}}\left(R_{ \pm}\right)=x_{e_{\beta^{\prime}}}\left(R_{\mp}\right) \leq x_{e_{\beta^{\prime}}}\left(S^{\prime \prime}\right)=x_{e_{\beta^{\prime}}}(S)
$$

Hence, $R_{ \pm}$is $x_{e_{\beta^{\prime}}}$-minimizing and is, therefore, $e_{\beta^{\prime}}$-taut.
We have proved that, in either case, $R_{ \pm}$is $e_{\beta^{\prime}}$-taut. It is easy to show that $T\left(\gamma^{\prime}\right)$ is $e_{\beta^{\prime}}$-taut and, therefore, that $\left(M, \gamma, e_{\beta^{\prime}}\right)$ is $e_{\beta^{\prime}}$-taut. Consequently, $\left(M^{\prime}, \gamma^{\prime}, e_{\beta^{\prime}} \cup c_{\beta^{\prime}}\right)$ is band-taut.

We say that a sutured manifold decomposition

$$
\left(M, \gamma, c_{\beta}\right) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, c_{\beta^{\prime}}\right)
$$

is almost-taut if S is disjoint from c_{β} (and so $c_{\beta}=c_{\beta^{\prime}}$) and both $\left(M, \gamma, c_{\beta}\right)$ and ($M^{\prime}, \gamma^{\prime}, c_{\beta^{\prime}}$) are almost taut.
10.2. Almost taut decompositions. To create almost taut decompositions, we recall the definition of "Seifert-like" homology class from the introduction: A class $y \in H_{2}(M, \partial M)$ is Seifert-like for the union T of two torus components of ∂M, if the projection of y to the first homology of each component is non-zero. By the "half-lives, half-dies" theorem from algebraic topology, there are non-zero classes in the first homology of each component of T that are the projections of the boundary of classes $y_{1}, y_{2} \in$
$H_{2}(M, \partial M)$. If neither y_{1} nor y_{2} is Seifert-like for T, then summing them produces a Seifert-like homology class. Thus, if ∂M has two torus components, there is a class in $H_{2}(M, \partial M)$ that is Seifert-like for their union. The next two lemmas show how to construct an almost taut decomposition, given a Seifert-like homology class.

Lemma 10.3. Suppose that $\left(M, \gamma, c_{\beta}\right)$ is a c_{β}-almost taut sutured manifold, with c_{β} an arc having both endpoints on torus components T of $T(\gamma)$. Let y be a Seifert-like homology class for T. Then there exists a conditioned surface S representing y and disjoint from c_{β}, such that the double curve sum S_{k} of S with k copies of $R(\gamma)$ is c_{β}-taut for any $k \geq 0$. Hence, the decomposition

$$
\left(M, \gamma, c_{\beta}\right) \xrightarrow{S_{k}}\left(M^{\prime}, \gamma^{\prime}, c_{\beta}\right)
$$

is c_{β}-almost taut for any $k \geq 0$.

Proof. Claim 1: There exists a conditioned surface Σ representing y disjoint from c_{β}.
Standard arguments show that there exists a conditioned surface representing y. Out of all such surfaces, choose one Σ that minimizes $\left|\Sigma \cap c_{\beta}\right|$. By tubing together points of opposite intersection, we may assume that the geometric intersection number of Σ with c_{β} equals the absolute value of the algebraic intersection number. If this number is non-zero, we may isotope the boundary components of Σ around a simple closed curve on one component of T so as to introduce enough intersections of Σ with c_{β} of the correct sign so that Σ and c_{β} have algebraic intersection number zero. This does not change the fact that Σ is conditioned. By tubing together points of opposite intersection, we obtain a surface contradicting our original choice of Σ.

Claim 2: There exists a conditioned surface S representing y that is disjoint from c_{β} and which has the property that the double curve sum S_{k} of S with $k \geq 0$ copies of $R(\gamma)$ creates a c_{β}-taut surface disjoint from c_{β}.
We apply Theorem 2.5 of [S1] (see page 25). We apply the theorem with $R=R(\gamma), C=\partial \Sigma$, and $y=[\Sigma]$. As noted on page 25 , Scharlemann's theorem applies even in the absence of a sutured manifold structure, and so there is no problem with applying it in our situation. Since $R(\gamma)$ is disjoint from c_{β}, each of the surfaces S_{k} is disjoint from c_{β}.
Claim 3: The manifold ($M^{\prime}, \gamma^{\prime}, c_{\beta^{\prime}}$) obtained by decomposing (M, γ, β), using S_{k} from Claim 2, is $c_{\beta^{\prime}}$-almost taut.

Since S_{k} is disjoint from c_{β}, we have $c_{\beta^{\prime}}=c_{\beta}$. The endpoints of c_{β} lay in distinct components of $T(\gamma)$, so the endpoints of $c_{\beta^{\prime}}$ lie in distinct components of $A\left(\gamma^{\prime}\right)$. The surface $R\left(\gamma^{\prime}\right)$ is the double curve sum of S_{k} with $R(\gamma)$, i.e. S_{k+1}. Thus, $R\left(\gamma^{\prime}\right)$ is $c_{\beta^{\prime}}$-taut. It follows easily that $\left(M^{\prime}, \gamma^{\prime}, c_{\beta^{\prime}}\right)$ is $c_{\beta^{\prime}}$-almost taut.

We now show that starting with an arc-taut sutured manifold, converting it to an almost taut sutured manifold, applying an almost-taut decomposition, and then creating a banded sutured manifold can result in a band-taut sutured manifold.

Lemma 10.4. Suppose that M_{+}is β_{+}-taut and that $y \in H_{2}(M, \partial M)$ is Seifertlike for T. Let S be a conditioned surface that represents y and that gives an almost taut decomposition:

$$
M_{0} \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, c_{\beta^{\prime}}\right)
$$

Then the banded sutured manifold $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ derived from $\left(M^{\prime}, \gamma^{\prime}, c_{\beta^{\prime}}\right)$ is band-taut.

Proof. Since M_{+}is β_{+}-taut and since T has one component in $R_{-}(\gamma)$ and one in $R_{+}(\gamma), \chi\left(R_{-}(\gamma)-T\right)=\chi\left(R_{+}(\gamma)-T\right)$. Also, since $T \subset M_{+}$is β_{+-} incompressible, no sphere in M intersects $c_{\beta^{\prime}}$ exactly once transversally. In M^{\prime}, the components of $R\left(\gamma^{\prime}\right)$ adjacent to $T \cap M^{\prime}$ each contain a copy of a component of S, since S had boundary on both components of T. If one of the components of $R\left(\gamma^{\prime}\right)$ containing an endpoint of $e_{\beta^{\prime}}$ is a disc, then some component of S with boundary on T must be a disk. Since S is conditioned and disjoint from c_{β}, this implies that a component of T is compressible in $M-c_{\beta}$ and thus in $M-\beta_{+}$. This contradicts the fact that M_{+}is β_{+-}taut. Therefore, no component of $R\left(\gamma^{\prime}\right)$ containing an endpoint of $e_{\beta^{\prime}}$ is a disc. Thus, by Lemma 10.2, ($\left.M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ is band-taut.
10.3. Parameterizing surfaces. Suppose that M_{+}is β_{+}-taut and that $y \in$ $H_{2}(M, \partial M)$ is Seifert-like for T. Let S be a conditioned surface representing y and giving an almost taut decomposition:

$$
M_{0} \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, c_{\beta}\right)
$$

Let $Q \subset M_{+}$be a parameterizing surface.
Lemma 10.5. Assume that no component of $\partial Q \cap\left(T-\stackrel{\circ}{\eta}\left(c_{\beta}\right)\right)$ is an inessential arc or inessential circle in $T-c_{\beta}$. Let T^{\prime} be a component of $T \cap M^{\prime}$. The following are true:

- $\partial Q \cap T^{\prime}$ consists of either essential loops in T^{\prime} or edges joining the components of ∂T^{\prime} and edges joining an endpoint of c_{β} to a component of ∂T^{\prime}.
- There are equal numbers of edges joining the endpoint of c_{β} to the two components of ∂T^{\prime}.

Proof. The lemma follows immediately from the observation that on a component $T_{ \pm}$of T, each arc of $\partial Q \cap\left(T_{ \pm}-\eta{ }_{\eta}\left(c_{\beta}\right)\right)$ is an essential loop. Such a loop σ is either disjoint from ∂S or always intersects each component of ∂S with the same sign of intersection.

We observe that by Lemma 10.1, M_{0} is c_{β}-almost taut. We do not know that M_{-}is β_{-}-taut. Let S be a conditioned decomposing surface giving an almost taut decomposition $M_{0} \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, c_{\beta}\right)$. Let $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$ be the banded sutured manifold derived from $M_{0}^{\prime}=\left(M^{\prime}, \gamma^{\prime}, c_{\beta}\right)$. By Lemma 10.4, ($M^{\prime}, \gamma^{\prime}, \beta^{\prime}$) is band-taut. The surface S also gives sutured manifold decompositions of M_{+}and M_{-}, with S disjoint from β_{+}and β_{-}respectively. The resulting sutured manifolds M_{-}^{\prime} and M_{+}^{\prime} can also be obtained by isotoping the endpoints of c_{β}^{\prime} out of $A\left(\gamma^{\prime}\right) \subset M^{\prime}$ and into $R(\gamma) \subset M^{\prime}$. This gives us the following decompositions:

$$
\begin{aligned}
& M_{+} \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta_{+}^{\prime}\right)=M_{+}^{\prime} \\
& M_{-} \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}, \beta_{-}^{\prime}\right)=M_{-}^{\prime}
\end{aligned}
$$

The arcs β_{+}^{\prime} and β_{-}^{\prime} are obtained by isotoping the arc $c_{\beta} \subset M^{\prime}$ so that its endpoints move out of $A(\gamma)$. That is, $\beta_{+}^{\prime} \cup \beta_{-}^{\prime}=e_{\beta^{\prime}}$. See Figure 11 for a schematic depiction of the relationship between $M_{-}^{\prime}, M_{+}^{\prime}$, and M_{0}^{\prime}.

If $Q_{ \pm}$is a parameterizing surface in $M_{ \pm}$, then we have the decomposed surfaces $Q_{ \pm}^{\prime} \subset M_{ \pm}^{\prime}$. We assume that the ambient isotopy of β_{+}to β_{-}takes Q_{+}to Q_{-}and that $\beta_{-} \cap Q_{+}=\beta_{+} \cap Q_{-}=\varnothing$. We say that the decomposition $M_{ \pm} \xrightarrow{S} M_{ \pm}^{\prime}$ respects Q_{+}if Q_{-}^{\prime} and Q_{+}^{\prime} are parameterizing surfaces.

Lemma 10.6. Suppose that $M_{0}, M_{ \pm}, S$, and $Q_{ \pm}$are as above and that no component of $\partial Q \cap\left(T-\dot{\eta}\left(c_{\beta}\right)\right)$ is an inessential arc or inessential circle in $T-c_{\beta}$. Then, for large enough k, the decompositions

$$
M_{-} \xrightarrow{S_{k}} M_{-}^{\prime} \quad \text { and } \quad M_{+} \xrightarrow{S_{k}} M_{+}^{\prime}
$$

respect Q, where S_{k} is the surface obtained by double-curve summing S with k copies of $R(\gamma) \subset M_{0}$. If $Q_{ \pm}^{\prime} \subset M_{ \pm}^{\prime}$ are the resulting parameterizing surfaces, then $I\left(Q_{ \pm}^{\prime}\right)=I(Q)$.

Figure 11. This is a schematic depiction of the creation of $M_{0}^{\prime}, M_{+}^{\prime}, M_{-}^{\prime}$, and the banded sutured manifold $\left(M^{\prime}, \gamma^{\prime}, \beta^{\prime}\right)$. The arrows ϕ_{1}, ϕ_{2}, and ϕ_{3} show the decompositions $M_{+} \rightarrow$ $M_{+}^{\prime}, M_{0} \rightarrow M_{0}^{\prime}$ and $M_{-} \rightarrow M_{-}^{\prime}$ respectively. The arrows ψ_{1} and ψ_{3}, show how M_{+}^{\prime} and M_{-}^{\prime} can be obtained from M_{0}^{\prime} by an isotopy of the sutured manifold structure. The arrow ξ shows how the banded sutured manifold ($M^{\prime}, \gamma^{\prime}, \boldsymbol{\beta}^{\prime}$) is derived from M_{0}^{\prime} and is the result of superimposing the sutured manifolds $M_{+}^{\prime}, M_{0}^{\prime}$, and M_{-}^{\prime}. In all diagrams, the green lines represent the decomposing surface, blue curves represent annuli $A(\gamma)$, and the circle represents a component of T.

Proof. Fix $k \geq 0$ and let $M_{ \pm}^{\prime}=\left(M^{\prime}, \gamma_{ \pm}^{\prime}, \beta_{ \pm}^{\prime}\right)$ be the result of decomposing $M_{ \pm}$by S_{k}. Recall that S_{k} is disjoint from c_{β}. Since β_{-}, β_{+}, and c_{β} are related by isotopies we may assume that S_{k} is also disjoint from $\beta_{-} \cup \beta_{+}$. Let $M_{0}^{\prime}=\left(M_{0}^{\prime}, \gamma_{0}^{\prime}, c_{\beta}^{\prime}\right)$ be the result of decomposing M_{0} by S_{k}. By Lemma 10.5, no component of $\partial Q_{ \pm}^{\prime} \cap\left(T \cap M^{\prime}\right)$ is an inessential loop or arc, and no component has both endpoints on the same boundary component of $T \cap M^{\prime}$. Thus, if q is a disc component of $Q_{ \pm}^{\prime}$ having boundary in $R\left(\gamma_{ \pm}^{\prime}\right)$, then either
∂q is disjoint from $T \cap M^{\prime}$, or q is a $\beta_{ \pm}^{\prime}$ compressing disk for $T \cap M^{\prime}$. If the latter happens, then $\partial q \subset \partial Q$. This would imply that q was actually a component of Q that was a β_{+}-compressing disk for T. This contradicts the fact that M_{+}is β_{+}-taut. Thus, ∂q is disjoint from $T \cap M^{\prime}$. This implies that $\partial q \subset R\left(\gamma_{0}^{\prime}\right)$.

The proof of Claim 1 of [S1, Lemma 7.5] shows that for large enough k, no component of $Q_{ \pm}^{\prime}$ is a disc with boundary in $R\left(\gamma_{0}^{\prime}\right)$. Hence, $Q_{ \pm}^{\prime}$ is a parameterizing surface in $M_{ \pm}^{\prime}$. Claim 2 of [S1, Lemma 7.5] shows that $I\left(Q^{\prime}\right)=I(Q)$.

We can now prove the main result of this paper.
Theorem 10.7. Suppose that (N, γ) is a taut sutured manifold and that $F \subset \partial N$ is a component of genus at least 2 . Let $b \subset \gamma \cap F$ be a simple closed curve such that either each component of $R(\gamma)$ adjacent to b is a thrice punctured sphere or each component of $R(\gamma)$ adjacent to b is a oncepunctured torus. Let $M=N[b]$ and let β be the cocore of the $2-$ handle attached to b. Let $Q \subset N$ be a parameterizing surface. Assume that $|Q \cap b| \geq 1$ and that the intersection of Q with the components of $R(\gamma)$ adjacent to b contains no inessential arcs or circles. Then one of the following is true:
(1) Q has a compressing or b-boundary compressing disc.
(2) $(N[b], \beta)=\left(M_{0}^{\prime}, \beta_{0}^{\prime}\right) \#\left(M_{1}^{\prime}, \beta_{1}^{\prime}\right)$ where M_{1}^{\prime} is a lens space and β_{1}^{\prime} is a core of a genus one Heegaard splitting of M_{1}^{\prime}.
(3) The sutured manifold $(N[b], \gamma-b)$ is \varnothing-taut. The arc β can be properly isotoped to be embedded on a branched surface $B(\mathscr{H})$ associated to a taut sutured manifold hierarchy \mathscr{H} for $N[b]$. There is also a proper isotopy of β in $N[b]$ to an arc disjoint from the first decomposing surface of \mathscr{H}. If b is adjacent to thrice-punctured sphere components of $R(\gamma)$, that first decomposing surface can be taken to represent $\pm y$ for any given non-zero $y \in H_{2}(N[b], \partial N[b])$. If b is adjacent to once-punctured tori, the first decomposing surface can be taken to represent y for any given homology class in $H_{2}(N[b], \partial N[b])$ that is Seifert-like for the corresponding unpunctured torus components of $\partial N[b]$.
(4)

$$
-2 \chi(Q)+|Q \cap \gamma| \geq 2|Q \cap b|
$$

Proof. By Theorem 9.5, it suffices to prove the statement for the case when b is a separating suture on a genus two surface. Convert b to an arc β_{+}(see Section 4.3.3) so that we have the β_{+}-taut sutured manifold $M_{+}=(M, \gamma-$ $\left.b, \beta_{+}\right)$. Let T be the components of $R(\gamma-b)$ containing the endpoints of
β_{+}. Let $y \in H_{2}(M, \partial M)$ be Seifert-like for T. By the remarks preceding Lemma 10.3 , such a y exists. Let $Q_{+}=Q$.

Isotope β_{+}off itself slightly in two directions to obtain disjoint arcs β_{-}and c_{β}. Let $M_{0}=\left(M_{0}, \gamma, c_{\beta}\right)$ be the sutured manifold obtained by moving T into $T(\gamma-b)$ and ignoring $\beta_{+} \cup \beta_{-}$. Let $M_{-}=\left(M_{-}, \gamma, \beta_{-}\right)$be the sutured manifold obtained by swapping the locations of the components of T in $R(\gamma-b)$ and ignoring $\beta_{+} \cup c_{\beta}$. Let Q_{-}be the parameterizing surface in M_{-} obtained by isotoping Q_{+}using the isotopy taking β_{+}to β_{-}. By a small adjustment of the isotopy, we may assume that $\beta_{+} \cap Q_{-}=\beta_{-} \cap Q+=\varnothing$.

Let S be the surface provided by Lemma 10.3, so that the decomposition $M_{0} \xrightarrow{S_{k}} M_{0}^{\prime}$ is c_{β}-almost taut for any $k \geq 0$. Choose k large enough so that the decompositions $M_{-} \xrightarrow{S_{k}} M_{-}^{\prime}$ and $M_{+} \xrightarrow{S_{k}} M_{+}^{\prime}$ respect Q. This is possible by Lemma 10.6. Recall that these decompositions are disjoint from $c_{\beta} \cup \beta_{-} \cup$ β_{+}, since S_{k} is obtained by summing S with copies of $R(\gamma) \subset M_{0}$ (and not $\left.R(\gamma) \subset M_{ \pm}\right)$. Let $Q_{1}=Q_{+}^{\prime}$ and $Q_{2}=Q_{-}^{\prime}$ be the resulting parameterizing surfaces in M_{+}^{\prime} and M_{-}^{\prime} respectively. Note that they are isotopic to each other. By Lemma 10.6, we have $I(Q)=I\left(Q_{-}^{\prime}\right)=I\left(Q_{+}^{\prime}\right)$.

Recall from Lemma 10.4 that the banded sutured manifold ($M^{\prime}, \gamma^{\prime}, \beta^{\prime}$) derived from $\left(M^{\prime}, \gamma^{\prime}, c_{\beta}^{\prime}\right)$ is band taut and that the components β_{-}^{\prime} and β_{+}^{\prime} of e_{β} are obtained by isotopies of c_{β}^{\prime} in M_{0}^{\prime}. Let $e_{1}=\beta_{+}^{\prime}$ and $e_{2}=\beta_{+}^{\prime}$. By Theorem 8.4 one of the following occurs:
(1) Some Q_{i} has a compressing or e_{i}-boundary compressing disc in ($M^{\prime}, \gamma^{\prime}, e_{i}$).
(2) M^{\prime} contains an S^{2} intersecting each of e_{1} and e_{2} exactly once.
(3) For some $i,\left(M^{\prime}, e_{i}\right)$ has a connect summand that is a lens space and a core.
(4) $\left(M^{\prime}, \gamma^{\prime}\right)$ is \varnothing-taut. The arc c_{β} can be properly isotoped onto a branched surface $B\left(\mathscr{H}^{\prime}\right)$ associated to a taut sutured manifold hierarchy for M^{\prime}.
(5) Either $I\left(Q_{1}^{\prime}\right) \geq 2 \mu\left(Q_{1}^{\prime}\right)$ or $I\left(Q_{2}^{\prime}\right) \geq 2 \mu\left(Q_{2}^{\prime}\right)$.

If (1) holds, then by Lemma 7.4, Q would have a compressing or b-boundary compressing disc in (M, γ).

If (2) holds, then there is an S^{2} in M intersecting β_{+}exactly once, contradicting the fact that M_{+}is β_{+}-taut with the endpoints of β_{+}in torus components of $R(\gamma) \subset M_{+}$.

If (3) holds, then since β_{+}is isotopic to c_{β}, there is a (lens space, core) summand of $\left(M, \beta_{+}\right)$.

If (4) holds, then by Theorem 7.2, since S_{k} is conditioned (M, γ) is \varnothing taut. By construction the first decomposing surface is disjoint from the arc. Lemma 6.1 shows, in fact, that there is an isotopy of c_{β} (rel endpoints) to lie on $\partial M^{\prime} \cup B\left(\mathscr{H}^{\prime}\right)$. There is a proper isotopy of c_{β} in M to lie on $S_{k} \cup B\left(\mathscr{H}^{\prime}\right)$. Thus, there is a branched surface $B(\mathscr{H})$ associated to a taut sutured manifold hierarchy \mathscr{H} for (M, γ) such that there is a proper isotopy of c_{β} into $B(\mathscr{H})$.
If (5) holds, then since $I(Q)=I\left(Q_{1}^{\prime}\right)=I\left(Q_{2}^{\prime}\right)$ and since $\mu\left(Q_{1}\right)=\mu\left(Q_{2}\right)=$ $\mu(Q)$, we have $-2 \chi(Q)+|\partial Q \cap \gamma| \geq 2|\partial Q \cap b|$.

11. Tunnel Number One Knots

In this section we apply Theorem 10.7 to the study of tunnel number one knots and links. Scharlemann and Thompson [ST, Proposition 4.2], proved that given a tunnel for a tunnel number one knot in S^{3}, the tunnel can be slid and isotoped to be disjoint from some minimal genus Seifert surface for the knot 1. We generalize and extend this result in several ways:

- Scharlemann and Thompson's result holds for 2-component tunnel number one links in S^{3}.
- A similar theorem applies to all tunnel number one knots and 2component links in any closed, orientable 3-manifold. (Of course, if a 3-manifold contains a tunnel number one knot or link, the 3manifold has Heegaard genus less than or equal to two.)
- A given tunnel for a tunnel number one knot or link can be properly isotoped to lie on a branched surface arising from a certain taut sutured manifold hierarchy of the knot or link exterior.

We begin with some terminology.
A link C in a closed 3-manifold M is a generalized unlink if each component of $\partial(M-\stackrel{\eta}{\eta}(C))$ is compressible in the exterior of C. Suppose that $L_{b} \subset M$ is a knot or two-component link and that β is an arc properly embedded in the complement of L_{b}. The arc β is a tunnel for L_{b} if the exterior of $L_{b} \cup \beta$ is a handlebody. If L_{b} is a two-component link this implies that β joins the components of L_{b}. L_{b} has tunnel number one if it has a tunnel and is not a generalized unlink.

[^0]A generalized Seifert surface S for a knot or link L_{b} in a closed manifold M is a compact oriented surface properly embedded in $M-\eta{ }_{\eta}\left(L_{b}\right)$ such that ∂S consists of parallel (as oriented curves) longitudes on each component of $\partial\left(M-\dot{\eta}\left(L_{b}\right)\right)$. In particular, ∂S has components on each component of $\partial\left(M-\dot{\eta}\left(L_{b}\right)\right)$. If ∂S has a single component on each component of $\partial\left(M-\stackrel{\circ}{\eta}\left(L_{b}\right)\right)$ then S is a Seifert surface for L_{b}. A generalized Seifert surface is minimal genus if it has minimal genus among all generalized Seifert surfaces in the same homology class.

Theorem 11.1. Suppose that $L_{b} \subset M$ has tunnel number one and that β is a tunnel for L_{b}. Assume also that $\left(M-L_{b}, \beta\right)$ does not have a (lens space, core) summand. Then there exist (possibly empty) curves $\widehat{\gamma}$ on $\partial(M-$ $\left.\stackrel{\circ}{\eta}\left(L_{b}\right)\right)$ such that $\left(M-\dot{\eta}\left(L_{b}\right), \widehat{\gamma}\right)$ is a taut sutured manifold and the tunnel β can be properly isotoped to lie on the branched surface associated to a taut sutured manifold hierarchy of $\left(M-\grave{\eta}\left(L_{b}\right), \widehat{\gamma}\right)$. In particular, if L_{b} has a (generalized) Seifert surface, then there exists a minimal genus (generalized) Seifert surface for L_{b} that is disjoint from β.

Proof. Let $W=\eta\left(L_{b} \cup \beta\right)$ and let $N=M-\stackrel{\circ}{W}$ be the complementary handlebody. Let $H=\partial W$. Let $b \subset H$ be a simple closed curve that is a meridian of β, so that the exterior $N[b]$ of L_{b} can be obtained by attaching a 2 -handle to ∂N along b. The tunnel β is a cocore of that 2-handle.

Claim: $H-b$ is incompressible in N.

Proof of Claim. If b is compressible in N, then (W, N) is a reducible Heegaard splitting for M. Since boundary reducing a handlebody creates a handlebody, L_{b} must be a generalized unlink. Suppose that D is a compressing disc for $H-b$. If b is separating, then ∂D must be an essential curve in one of the punctured torus components of $H-b$. Compressing that component using D creates a compressing disc for b in N. Thus, b cannot be separating. If b is non-separating then either L_{b} is a generalized unlink or ∂D is an inessential curve in $\partial N[b]$. In the latter case, ∂D bounds an essential disc in W (obtained by banding together two copies of the disc in W bounded by b), so once again (W, N) is a reducible Heegaard splitting for M and C must be a generalized unlink. Thus, $H-b$ is incompressible in N.

Let $Q \subset N$ be a pair of properly embedded non-parallel non-separating essential discs, chosen so as to intersect b minimally. As a consequence of the claim, no component of Q is disjoint from b. By the minimality of $|\partial Q \cap b|$, each component of $Q \cap(H-b)$ is an essential arc.

If there were a b-boundary compressing disc D for a component Q_{0} of Q, then boundary compressing Q_{0} using D results in two discs, each intersecting b fewer times than does Q with at least one of them a compressing disc for H in N. Thus, by the minimality of the intersection between ∂Q and b, Q has no b-boundary compressing disc.
If b is separating, choose $\widehat{\gamma}=\varnothing$. If b is non-separating, we want to choose essential curves $\widehat{\gamma} \subset H-\stackrel{\eta}{\eta}(b)$ with the following properties:
(1) $\widehat{\gamma}$ consists of two essential simple closed curves that are parallel in $\partial N[b]$ and which separate the components of $\partial \eta(b)$.
(2) Each arc component of $Q \cap(H-\grave{\eta}(b))$ is an arc intersecting $\widehat{\gamma}$ zero or one times.

To see that this can be done, recall that the surface $H^{\prime}=H-\eta(b)$ is a twicepunctured torus and that $Q \cap H^{\prime}$ is a collection of essential arcs. We describe how to find $\widehat{\gamma}$ if each component of $Q \cap H^{\prime}$ joins the components of $\partial \eta(b)$. We leave the other case as an exercise. There are at most four disjoint nonparallel essential isotopy classes c_{1}, \ldots, c_{4} of arcs in $\partial Q \cap H^{\prime}$. An essential simple closed curve γ_{1} can be chosen that is disjoint from representatives of two of the arcs (say c_{1} and c_{2}) and that intersects representatives of the other two classes in a single point each. Let γ_{2} be a second copy of γ_{1}, isotoped to be disjoint from γ_{1}. In $\partial N[b]$, push a sub-arc of γ_{2} along arcs of $Q-\gamma_{1}$ until it crosses an endpoint of β. Then γ_{2} intersects c_{3} and c_{4} exactly once and is disjoint from c_{1} and c_{2}. By isotoping $\widehat{\gamma}=\gamma_{1} \cup \gamma_{2}$ in H^{\prime} to intersect ∂Q minimally we obtain the desired curves. See Figure 12 for a schematic depiction of the four isotopy classes of arcs and the sutures γ_{1} and γ_{2}.

It is now easy to verify that $(N, \widehat{\gamma} \cup b)$ is a taut sutured manifold and that $|\partial Q \cap \widehat{\gamma}| \leq|\partial Q \cap b|$. Since $-2 \chi(Q)=-4$, it is impossible that

$$
-2 \chi(Q)+|Q \cap(\widehat{\gamma} \cup b)| \geq 2|Q \cap b|
$$

Consequently, by Theorem 10.7, β can be isotoped to lie on a branched surface associated to a taut sutured manifold hierarchy of $(N[b], \widehat{\gamma})$.
If L_{b} has a (generalized) Seifert surface, choose $y \in H_{2}(N[b], \partial N[b])$ to be a class represented by (generalized) Seifert surfaces for L_{b}. The first surface S in the sutured manifold hierarchy constructed in the proof of Theorem 10.7 is a conditioned surface representing $\pm y$ that is taut in the Thurston norm of $N[b]$ and is disjoint from β. If Σ is a minimal genus (generalized) Seifert surface for L_{b} representing $\pm y$, then Σ can be isotoped to have the same boundary as S and (possibly after spinning around $\partial N[b]$ and changing orientation) is homologous to S in $H_{2}(N[b], \partial S)$. Since S has minimal

Figure 12. The possible isotopy classes of arcs of $\partial Q \cap$ ($H-b$) (up to homeomorphism of $H-b$) and the sutures γ_{1} and γ_{2} chosen to intersect those isotopy classes nicely.

Thurston norm among all such surfaces, it is a minimal genus (generalized) Seifert surface for L_{b} disjoint from β.

Scharlemann-Thompson's result follows immediately:
Corollary 11.2 (Scharlemann-Thompson). Suppose that K is a tunnel number one knot or link in S^{3} with tunnel β then β can be isotoped to be disjoint from a minimal genus Seifert surface for K.

REFERENCES

[CC] J. Cantwell and L. Conlon 'The sutured Thurston norm.' arxiv/0606534
[G1] D. Gabai 'Foliations and the topology of 3-manifolds.' J. Differential Geom. 18 (1983), no. 3, 445-503.
[G2] D. Gabai 'Foliations and the topology of 3-manifolds. II.' J. Differential Geom. 26 (1987), no. 3, 461-478.
[G3] D. Gabai 'Foliations and the topology of 3-manifolds. III.' J. Differential Geom. 26 (1987), no. 3, 479-536.
[K] E. Kalfagianni ‘Surgery n-triviality and companion tori.' J. Knot Theory Ramifications 13 (2004), no. 4, 441-456.
[L1] M. Lackenby, 'Surfaces, surgery and unknotting operations.' Math. Ann. 308 (1997) 4.
[L2] M. Lackenby, 'Dehn surgery on knots in 3-manifolds.' J. Amer. Math. Soc. 10 (1997) 4.
[L3] M. Lackenby, 'Upper bounds in the theory of unknotting operations.' Topology 37 (1998), no. 1, 63-73.
[S1] M. Scharlemann, 'Sutured manifolds and generalized Thurston norms.' J. Differential Geom. 29 (1989) 3.
[S2] M. Scharlemann, 'Producing reducible 3-manifolds by surgery on a knot.'Topology. 29 (1990) 4.
[ST] M. Scharlemann and A. Thompson, 'Unknotting tunnels and Seifert surfaces.' Proc. London Math. Soc. 87 (2003), 3 no. 2, 523-544.
[T1] S. Taylor, 'Boring split links and unknots.' Dissertation. University of California, Santa Barbara. September, 2008.
[T2] S. Taylor 'Comparing 2-handle additions to a genus 2 boundary component'. arXiv:0806.1572

E-mail address: sataylor@colby.edu

[^0]: ${ }^{1}$ It is perhaps worth remarking that [ST, Proposition 4.2] depends on [ST, Lemma 4.1] whose proof relies on sutured manifold theory. Also, we should note, that Scharlemann and Thompson prove, in fact, that in many cases the tunnel can be isotoped onto a minimal genus Seifert surface. We will not address that aspect of their work.

