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ABSTRACT. Let M be a compressionbody containing a properly em-
bedded graph T (with at least one edge) such that ∂+M−T is parallel
to the frontier of T ∪ ∂−M in M. We extend methods of Hayashi and
Shimokawa to show that if H is a bridge surface for T then one of the
following occurs:

• H is stabilized, boundary stabilized, or perturbed
• T contains a removable path
• M is a trivial compressionbody and H −T is properly isotopic in

M−T to ∂+M−T .
The results of this paper are used in later work to show that if a bridge

surface for a graph in a 3–manifold is c-weakly reducible then either
a degenerate situation occurs or the exterior of the graph contains an
essential meridional surface.

1. INTRODUCTION

Hayashi and Shimokawa [HS3] created a version of thin position that com-
bines the notion of thin position for a knot or link in S3 [G] with thin posi-
tion for a 3–manifold [ST3]. They prove an analogue of a famous theorem
of Casson and Gordon [CG] for their version of thin position. Informally:
if a bridge surface for a link in a 3–manifold can be untelescoped then ei-
ther the bridge position was not “minimal” or there is an essential closed or
meridional surface in the exterior of the link. The arguments in [HS3] rely
heavily on other work [HS1, HS2] which classifies Heegaard splittings of
certain 1–manifolds in certain 3–manifolds. These classification theorems
are used to understand what happens if every component of a thin surface
is boundary parallel in the exterior of the 1–manifold.

In [ST2], Scharlemann and Thompson defined thin position for a graph in
the 3–sphere (see also [GST,S]). Applications have included a new proof of
the classification of Heegaard splittings of S3 and a theorem about levelling

Date: November 24, 2010.
The second author was supported by a grant from the National Science Foundation

during this research.
1



HEEGAARD SURFACES FOR CERTAIN GRAPHS IN COMPRESSIONBODIES 2

unknotting tunnels of tunnel number one knots and links. Li [L] used thin
position for graphs to show that if for a graph in the 3–sphere thin position
is not equal to bridge position then there is an essential meridional or almost
meridional planar surface in its exterior.

Although Scharlemann and Thompson’s definition for thin position of a
graph in S3 can be easily adapted to define thin position for a graph in
any 3–manifold, this definition has not been very productive. Instead, in
[TT], we extend Hayashi and Shimokawa’s definition of thin position for
a link in a 3–manifold to graphs in a 3–manifold. We use this definition
to prove a Casson-Gordon type theorem which says (informally) that either
thin position for a graph in a 3–manifold is bridge position, or there exists
an essential meridional or closed surface in its complement, or one or more
various degenerate situations occur. This theorem generalizes both [HS3]
and [T]. In [TT], we use this new type of thin position to prove a theorem
about leveling edges of Heegaard spines in an arbitrary closed orientable
3–manifold, a theorem somewhat analogous to [GST].

Just as Hayashi and Shimokawa’s work in [HS3] rests on the classification
results in [HS1, HS2], all of which are quite technical, so our result in [TT]
rests on the classification results of this paper. Our methods are inspired
by the work of Hayashi and Shimokawa but because we work in far greater
generality, numerous complications must be overcome. An understanding
of Hayashi and Shimokawa’s techniques in [HS1,HS2] will be very benefi-
cial in reading our paper.

In Section 2 we give the definitions needed to state our theorem which we
do in Section 3. Section 4 gives an outline of the proof and the rest of the
paper is devoted to the details of this proof.

2. DEFINITIONS

2.1. Trivially embedded graphs in compressionbodies. Suppose that T
is a finite graph. We will usually assume that there are no vertices of valence
2; exceptions will be explicitly mentioned. We allow T to contain compo-
nents homeomorphic to S1. Let ∂T denote the vertices of valence 1. The
vertices of T which are not in ∂T are called the interior vertices of T . We
say that T is properly embedded in a 3–manifold M if T ∩ ∂M = ∂T . A
pod is a finite tree having at least 3 edges, 0 or 1 of which is a distinguished
edge called a handle. The edges of the pod which are not the handle are
called the legs of the pod. If T ′ ⊂ T is a subgraph of a graph T , then we say
that cl(T −T ′) is obtained by removing T ′ from T .
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Let I = [0,1]. Let F be a closed, possibly disconnected, surface and let T
be the disjoint union of finitely many edges and pods properly embedded in
F × I. An edge e of T is vertical if it is isotopic to {point}× I. An edge e
of T is a bridge edge if there exists an embedded disc D so that ∂D is the
endpoint union of e and an arc in F ×{1}. The disc D is called a bridge
disc for the edge e. A pod p of T is a bridge pod if p has no handle and
is contained in a disc D such that ∂D ⊂ F ×{1}. The disc D is called a
pod disc. The closures of the components of D− p are bridge discs for
p. More generally a disc E such that ∂E is the endpoint union of an arc
traversing exactly two edges of p and an arc in F ×{1} is a bridge disc
for p. It is not difficult to see that if every pair of edges of p has a bridge
disc then there exists a pod disc for p. Finally, suppose that p is a pod with
handle h. Assume that there is a pod disc for p−h. Notice that compressing
F × I along the boundary of a regular neighborhood of a pod disc creates
a 3–manifold with one component homeomorphic to F × I. The pod p is a
vertical pod if h is a vertical edge in that component.

Suppose that T is the disjoint union of vertical edges, bridge edges, bridge
pods, and vertical pods such that the bridge edges, bridge pods, and vertical
pods have pairwise disjoint bridge discs and pod discs. Suppose also that
these bridge discs and pod discs are disjoint, except at the endpoints of the
handles, from the vertical edges and handles. Assume also that the vertical
edges and handles can all be simultaneously isotoped to be {points}× I in
F × I. Then T is trivially embedded in F × I. If T is properly embedded
in a 3–ball B3, T is trivially embedded if it is the disjoint union of bridge
edges and bridge pods which have pairwise disjoint bridge discs and pod
discs.

A compressionbody C is formed from F × I by attaching a finite number
of 1–handles to F ×{1}. Let ∂−C = F ×{0} and let ∂+C = ∂C− ∂−C.
A collection of compressing discs ∆ for ∂+C is a complete collection if
boundary-reducing C using ∆ produces a manifold homeomorphic to ∂−C×
I. We consider a handlebody to be a compressionbody with ∂−C = ∅. In
this case, a complete collection of discs is a collection of compressing discs
for ∂+C = ∂C which cut C into a 3–ball. We require compressionbodies to
be connected and nonempty.

Let T be a finite graph properly embedded in a compressionbody C. We say
that T is trivially embedded in C if there exists a complete collection of
discs ∆ for C disjoint from T such that if C′ is a component of C reduced by
∆, then T ∩C′ is trivially embedded in C′. Figure 1 is a schematic depiction
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FIGURE 1. A trivially embedded graph in a compressionbody

of a trivially embedded graph in a compressionbody. Let C̃ denote the com-
pressionbody obtained from C by capping off with 3–balls any 2–sphere
components of ∂−C which are disjoint from T .

Remark. Because we allow a trivially embedded graph in a compression-
body to contain pods with handles, our definition of “trivially embedded” is
more general than that of Hayashi and Shimokawa [HS1]. (Allowing pod
handles is advantageous if a Heegaard surface for a graph in a 3–manifold
is perturbed and you wish to unperturb it. See below for the definition of
“perturbed”. See [TT] for details on unperturbing Heegaard splittings.)

A spine for a compressionbody C with trivially embedded graph T is a 2 or
less dimensional complex Q embedded in C so that:

(1) ∂+C∩Q = ∅.
(2) ∂−C∩Q is contained in the valence 1 vertices of Q not contained in

a 2–cell of Q.
(3) Every bridge edge of T intersects Q at precisely one vertex of Q.
(4) If τ is a bridge pod, then τ ∩Q is a vertex of both Q and τ .
(5) If τ is a vertical pod, then τ ∩Q is the handle of τ .
(6) All vertical arcs of T are disjoint from Q.
(7) All valence one vertices of Q lie in T ∪∂−C.
(8) C collapses to ∂−C∪Q∪T .

We let ∂1Q denote those vertices of Q which lie on T . Let Q2 be the union
of the 2–simplices of Q and let Q1 be the union of 1–simplices of Q not
contained in Q2. If Q = Q1, then we say that the spine Q is elementary. In
the arguments which involve a spine Q, we will always begin by assuming
that Q is elementary, but deformations in the course of the argument may
convert Q into a non-elementary spine. If C is a handlebody, we will never
convert Q into a non-elementary spine.
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If C = B3 and T = ∅, then a single point in the interior of C is a spine for
C. If C = ∂−M× I and every arc of T is a vertical arc, then ∅ is a spine for
M.

In general, for a graph T trivially embedded in C, it is straightforward to
construct a spine for (C,T ). Figure 2 depicts a spine for a genus 2 handle-
body containing a bridge edge and a bridge pod.

FIGURE 2. A spine for a genus 2 handlebody with a bridge
edge and a bridge pod

2.2. Heegaard surfaces and compressions. Let M be a compact con-
nected orientable 3–manifold. A Heegaard surface H ⊂M is an orientable
surface such that cl(M−H) consists of two distinct compressionbodies C1
and C2 with H = ∂+C1 = ∂+C2. We will be studying Heegaard surfaces in a
compressionbody M. (We choose the notation M to emphasize the fact that
it is the ambient 3–manifold and two avoid confusion with the compression-
bodies on either side of a Heegaard surface in M.) We always assume that
∂+M ⊂C2. Note the possibly confusing notation: ∂+M is a component of
∂−C2.

Suppose that T ⊂ M is a properly embedded finite graph. We say that H
is a Heegaard surface for (M,T ) if Ti = T ∩Ci is trivially embedded in
Ci for i ∈ {1,2}. We also will say that T is in bridge position with re-
spect to H and that H is a splitting of (M,T ). Notice that this definition of
bridge position generalizes that in [HS1] since we allow vertical pods in a
compressionbody.

Suppose that F ⊂ M is a surface such that ∂F ⊂ (∂M∪T ). Then F is T –
compressible, if there exists a compressing disc for F −T in M−T . If F
is not T –compressible, it is T –incompressible. F is T –∂–compressible if
there exists a disc D ⊂ M−T with interior disjoint from F such that ∂D is
the endpoint union of an arc γ in F and an arc δ in ∂M. We require that γ

not be parallel in F−T to an arc of ∂F−T . If F is not T –∂–compressible,
it is T –∂–incompressible.
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2.3. Stabilization, Cancellation, Perturbation, and Removable Edges.
A Heegaard surface H for (M,T ) is stabilized if there exist discs D1 ⊂C1
and D2 ⊂ C2 which are T –compressing discs for H and have boundaries
intersecting transversally in a single point. If a Heegaard surface H is stabi-
lized, there is another Heegaard surface H ′ with genus(H ′) = genus(H)−1
and with |T ∩H|= |T ∩H ′|.

Suppose that D1 ⊂ C1 and D2 ⊂ C2 are bridge discs for T1 and T2 respec-
tively such that the arcs ∂D1 ∩H and ∂D2 ∩H have disjoint interiors but
share at least one endpoint. If such discs exist, H is cancellable. If, in
addition, ∂D1∩H and ∂D2∩H share only a single endpoint then H is per-
turbed. Hayashi and Shimokawa’s notion of “strongly cancellable” is the
same as perturbed. The discs {D1,D2} will be known as either a cancelling
pair or perturbing pair of discs. If ∂D1∪ ∂D2 does not contain a vertex
of T then (∂D1 ∪ ∂D2)∩ T lies in a single edge e of T . We say that the
edge e is cancellable or perturbed (corresponding to whether {D1,D2} is
a cancelling or perturbing pair of discs). See [TT] for situations where a
splitting can be unperturbed.

Suppose that F is a closed connected surface and that V = F × I. A type I
Heegaard surface for V is a Heegaard surface which separates the compo-
nents of ∂V . A type II Heegaard surface is a Heegaard surface for V which
does not separate the components of ∂V . Type I and Type II Heegaard
splittings were classified in [ST1].

Let F be a component of ∂−C1 ⊂ ∂M and let T ′ be a collection of vertical
arcs in F × [−1,0]. Let H ′ be a minimal genus type II Heegaard surface for
F × [−1,0] which intersects each arc in T ′ exactly twice. H ′ can be formed
by tubing two parallel copies of F along a vertical arc not in T ′. Assume
that T ′∩ (F ×{0}) = T ∩F . (Recall that F × [0,1] ⊂ M.) We can form a
Heegaard surface H ′′ for M ∪ (F × [−1,0]) by amalgamating H and H ′.
This is simply the usual notion of amalgamation of Heegaard splittings (see
[S]). In fact, H ′′ is a Heegaard surface for (M∪(F× [−1,0]),T ∪T ′). Since
(M∪(F× [−1,0]),T ∪T ′) is homeomorphic to (M,T ), we may consider H ′′

to be a Heegaard surface for (M,T ). H ′′ is called a boundary stabilization
of H. See Figure 3.

Suppose that ζ ⊂ T is a 1–manifold which is the the union of edges in T
(possibly a closed loop containing zero or one vertices of T ). We say that ζ

is a removable path if the following hold:

(RP 1) Either the endpoints of ζ lie in ∂M or ζ is a cycle in T .
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Amalgamation

FIGURE 3. Boundary stabilizing a Heegaard surface

(RP 2) ζ intersects H exactly twice
(RP 3) If ζ is a cycle, there exist a cancelling pair of discs {D1,D2} for ζ

with D j ⊂C j. Furthermore there exists a compressing disc E for H
such that |E ∩T |= 1 and if E ⊂C j then |∂E ∩∂D j+1|= 1 (indices
run mod 2) and E is otherwise disjoint from a complete collection
of bridge discs for T −H containing D1∪D2.

(RP4) If the endpoints of ζ lie on ∂M, there exists a bridge disc D for the
bridge arc component of ζ −H such that D−T is disjoint from a
complete collection of bridge discs ∆ for T −H. Furthermore, there
exists a compressing disc E for H on the opposite side of H from T
such that |E ∩D|= 1 and E is disjoint from ∆.

If ζ is a removable path, then a slight isotopy of ζ which does not move the
rest of T , moves ζ to be a subset of a spine of one of the compressionbodies
M−H. (See [ST4, Lemma 3.3].) Also, note that by (RP2), ζ can contain at
most 3 vertices of T (and that only if it contains two pod handles). See Fig-
ure 4 for an example of a removable path that is an edge with both endpoints
on ∂M.

3. THE MAIN RESULT

Theorem 3.1 (Main Theorem). Let T be a properly embedded graph in a
compressionbody M, such that ∂+M− η̊(T ) is isotopic to the frontier of a
regular neighborhood of ∂−M∪T . Let H be a Heegaard surface for (M,T ).
Assume that T contains an edge. Then one of the following occurs:

(1) H is stabilized
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FIGURE 4. The edge ζ is a removable path with both end-
points on ∂M.

(2) H is boundary stabilized
(3) H is perturbed
(4) T contains a removable path disjoint from ∂+M.
(5) M is a 3–ball. T is a tree with a single interior vertex. H− η̊(T ) is

parallel to ∂M− η̊(T ) in M− η̊(T ).
(6) M = ∂−M×I and H−η̊(T ) is isotopic in M−η̊(T ) to ∂+M−η̊(T ).

If we define a trivial compressionbody to be either the product of a closed
surface with an interval or a 3–ball, the last two conclusions could be grouped
into the single statement that M is trivial and that H − η̊(T ) is isotopic in
M− η̊(T ) to ∂+M− η̊(T ). However, in the proof of Theorem 3.1 we often
need to treat these two trivial compressionbodies differently.

Remark. The proof of Theorem 3.1 shows, in fact, that conclusion (2) can
be replaced with the stronger statement that H is boundary stabilized along a
component of ∂−M. In [TT, Theorem 3.6], we prove directly that Theorem
3.1 as stated above implies this stronger version.

4. AN OUTLINE OF THE PROOF

The pairs (M,T ) we are studying consist of a compressionbody M and a
graph T so that ∂+M− η̊(T ) is isotopic to the frontier of a regular neigh-
borhood of ∂−M∪T . Let H be a Heegaard surface for this pair.

In Section 5 we prove a number of preliminary results that allow us to make
various simplifying assumptions throughout the proof of Theorem 3.1. For
example, we show that we can always assume that no component of T −H
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contains a pod handle adjacent to ∂−M. This is called the NPH condition.
We also completely classify all surfaces that are in a certain sense incom-
pressible (called T -incompressible and ∂ -T-incompressible surfaces) in a
compression body containing a trivially embedded graph.

The compressing discs for ∂+M together with the discs that arise from the
isotopy between ∂+M− η̊(T ) and the frontier of a regular neighborhood
of ∂−M∪T can be used to create a complex R, defined in Section 6. The
main property of this complex is that cutting M along R produces a collec-
tion of 3-balls and T is contained in the boundary of these balls. Also R is
the union of T -incompressible and ∂ -T-incompressible surfaces. Although
much more complicated, R plays the role of a “complete collection of com-
pressing discs” often used when one studies compressionbodies without an
embedded graph. Our complex generalizes similar complexes defined in
[HS1] and [HS2]

Proposition 7.1 in section 7 is an important special case of Theorem 3.1 and
this section is devoted to its proof. Because the proof of Theorem 3.1 in
the general situation relies on the proof of this special case, under the hy-
potheses of the special case we prove a result that is slightly stronger than
Theorem 3.1. The essence of this stronger result is that not only is Theorem
3.1 true in this special case, but it remains true if we remove certain edges
from the graph T . The main tool for this proof is to consider how the com-
plex R intersects each of the compressionbodies C1 and C2 of a Heegaard
splitting H of (M,T ).

The proof of Proposition 7.1 is structured as follows: First we show that we
may assume that R∩C1 is T -incompressible and ∂ -T-incompressible and
that R∩C2 is T -incompressible. We then consider 2 cases:

• In Case 1 we assume that R∩C2 is ∂ -T-incompressible. In Lemma
7.5 we show that in this case M is either the three-ball or it is home-
omorphic to surface cross an interval. These two situations are con-
sidered separately to conclude that in either situation we contradict
the hypothesis of the proposition.

• In Case 2 we assume that R∩C2 is ∂ -T-compressible. This case
is significantly more complicated and takes up the rest of this sec-
tion. The proof is done via combinatorial arguments analysing the
intersection of H and R.

In Section 8 we prove the theorem in complete generality. The proof is by
induction on −χ(∂+M). We show that either the inductive hypothesis can
be applied or that we can reduce the general situation to the special case
addressed in Section 7 by adding edges to the graph T . This is in the spirit
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of [HS1] where Heegaard splittings for a (3–manifold, graph) pair are first
defined.

5. PRELIMINARY LEMMAS

5.1. Resolving pod handles. Suppose that τ is a trivially embedded graph
in a compressionbody C. Although we allow τ to contain pod handles, we
begin by showing that, for the purposes of proving the theorem, certain pod
handles can be eliminated.

Suppose that h is the handle of a pod p. Let ρ be a regular neighborhood of
h in C and notice that ∂ρ intersects each pod leg of p once. For each pod
leg, λ , choose a path hλ ⊂ ∂ρ from λ ∩∂ρ to ∂−C so that hλ is parallel to
h and so that the collection {hλ} for legs λ of p is pairwise disjoint. Let
τ ′ be the result of removing τ ∩ρ from τ and adding the union of the hλ .
Notice that τ ′ is trivially embedded in C. We say that (C,τ ′) is obtained by
resolving the pod handle h. See Figure 5.

FIGURE 5. Resolving a pod handle in a compressionbody.

If T is a graph properly embedded in M and if H is a Heegaard surface for
(M,T ), then we can obtain a new graph T ′ ⊂ M in M by resolving one or
more of the pod handles in either or both compressionbodies of cl(M−H).
H is still a Heegaard surface for (M,T ′).

Lemma 5.1. Suppose that (M,T ′) is obtained from (M,T ) by resolving a
pod handle of T in M−H which is adjacent to ∂−M. If (M,T ) satisfies the
hypotheses of Theorem 3.1, then so does (M,T ′). Furthermore, if (M,T ′)
satisfies the conclusion of Theorem 3.1, then so does (M,T ).

Proof. It is not hard to see that if (M,T ) satisfies the hypotheses of Theorem
3.1, then so does (M,T ′). We, therefore, limit ourselves to showing that if
(M,T ′) satisfies the conclusion of Theorem 3.1, then so does (M,T ).

Let h be the handle of the pod τ ⊂ T which is resolved. Suppose that
(M,T ) satisfies the hypotheses of Theorem 3.1, and that (M,T ′) satisfies
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the conclusion of Theorem 3.1. Let ρ = η(h) and let hλ be the arcs from
the definition of handle resolution.

(1) Suppose that H is stabilized as a splitting of (M,T ′). Let S be a
sphere in M disjoint from T ′ intersecting H in a single simple closed
curve. Out of all such spheres, we may assume that S has been
chosen to minimize |S∩∂ρ|. Since ∂ρ−∪hλ is a disc, an innermost
disc argument shows that S is disjoint from ρ . Hence, H is stabilized
as a splitting of (M,T ).

(2) Suppose that H is boundary-stabilized as a splitting of (M,T ′). If
the boundary stabilization is along a component of ∂−M not adja-
cent to a resolved pod handle, then the splitting of (M,T ) is bound-
ary stabilized.

Suppose, therefore, that h is adjacent to the component F of ∂−M
along which H is boundary stabilized as a splitting of (M,T ′). Let ψ

be the vertical arc (not in T ) along which the boundary stabilization
was performed. An innermost disc/outermost arc argument shows
that the compressing disc for H which is a meridian of η(ψ) can be
chosen to be disjoint from ρ = η(h). Thus, ψ is disjoint from ρ .

Consider a square V in M, with one edge of its boundary on F ,
one edge on H, one edge on ∂η(ψ), and one edge on an edge e of T ′

containing an hλ . We may arrange for the interior of V to intersect
H in a single arc and for V to contain an edge e′ 6= e which contains
an hλ ′ . To reconstruct τ from e, e′, and possibly other vertical arcs,
hλ and hλ ′ (and possibly other arcs) are merged into a single arc. We
may perform this merger within V . Suppose that Ci contains F and
that C j is the other compressionbody of M−H. The intersection of
the component of V −T ′ with C j is a bridge disc for a component of
e′∩C j. This bridge disc intersects a bridge disc for the pod τ in V in
a single point, showing that H is perturbed as a splitting of (M,T ).
See Figure 6.

(3) Suppose that H is perturbed as a splitting of (M,T ′). An argument
similar to the case when H is stabilized as a splitting of (M,T ′)
shows that H is also perturbed as a splitting of (M,T ).

(4) Suppose that T ′ contains a removable path ζ disjoint from ∂+M. If
the endpoints of ζ are identified in T ′, ζ is also a removable path in
T . Suppose, therefore, that the endpoints of ζ lie on ∂−M.
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ψV

FIGURE 6. Undoing a handle resolution may result in a perturbation.

If ζ is disjoint from ρ , then ζ continues to be a removable path
in T . Assume that ζ is not disjoint from ρ . Resolving h results in a
collection of vertical edges. At most two of these vertical edges lie
in ζ .

If exactly one edge hλ lies in ρ , then T is perturbed as in Case
(2). Suppose, therefore, that hλ 6= hλ ′ both lie in ζ ∩ρ . Then the
component of T containing h consists of a loop γ and the edge h.
There are cancelling discs {D1,D2} for γ such that D1 is a bridge
disc for the bridge arc component of ζ −H. The disc D2 is disjoint
from the disc E in (RP 4). See Figure 7.

e

E

hλ

D1

h′
λ

FIGURE 7. Undoing a handle resolution causes removable
paths to persist. A portion of the lower green disc becomes
a bridge disc after undoing the pod resolution.

(5) If M is a 3–ball, then ∂−M = ∅ and T = T ′.

(6) Suppose that M = ∂−M × I, that H is isotopic in M − η̊(T ′) to
∂+M− η̊(T ′) and that each edge of T ′ intersects H no more than
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one time. Since H is parallel to ∂+M, H separates ∂+M from ∂−M.
Thus, (C2,T ′

2) = (∂+M × I,points× I). Since h ⊂ C1, we have
(C2,T2) = (C2,T ′

2). Thus, conclusion (6) holds for (M,T ).

�

As a result of this lemma, we will frequently assume that if (M,T ) satisfies
the hypotheses of Theorem 3.1 and if H is a Heegaard surface for (M,T ),
then

(NPH) No component of T −H contains a pod handle adjacent to ∂−M.

5.2. Puncturing Interior Monotonic Edges. Suppose that (M,T ) satis-
fies the hypotheses of Theorem 3.1 and that H is a Heegaard surface for
(M,T ) dividing M into compressionbodies C1 and C2 with ∂+M ⊂ C2. A
monotonic interior edge is an edge e of T with no endpoint on ∂M and
which intersects H in a single point.

If e is an interior monotonic edge of T ⊂ M, then one endpoint v of e is
in C1. Let M′ = M− η̊(v) and T ′ = T ∩M′. If there are no pod handles
adjacent to ∂−M, then since v ∈C1, H ′ is a Heegaard surface for (M′,T ′).
It is clear that (M′,T ′) satisfies the hypotheses of Theorem 3.1.

Lemma 5.2. Suppose that no pod handles of T are adjacent to ∂−M. If H
as a splitting of (M′,T ′) satisfies the conclusion of Theorem 3.1, then it also
does so as a splitting of (M,T ).

Proof. Let C′
i for i = 1,2 denote the compressionbodies into which H splits

M′. If H is stabilized or perturbed as a splitting of (M′,T ′) then it is stabi-
lized or perturbed as a splitting of (M,T ) since any disc which is essential
in C′

i is also essential in Ci.

Suppose that H is boundary-stabilized as a splitting of (M′,T ′) and let F
be the component of ∂−M′ along which the boundary-stabilization was
performed. If F 6= ∂η(v), then H is boundary-stabilized as a splitting of
(M,T ). If F = ∂η(v), then an argument similar to that of Lemma 5.1 shows
that H is perturbed as a splitting of (M,T ).

Suppose that ζ is a removable path in T ′. If ζ is disjoint from ∂η(v),
then ζ remains a removable path in T . Suppose, therefore, that ζ has both
endpoints on ∂η(v). Let D, ∆, and E be the discs from (RP 4). Choose a
vertical disc V in C1 which is disjoint from ∆∪E and which contains the
edges ζ ∩C1. Let V ′ ⊂ η(v) be a bridge disc for T ∩η(v) such that V ∩
∂η(v) = V ′∩∂η(v). Let D1 = D and D2 = V ∪V ′. Let ζT be the loop in T
containing ζ . The pair {D1,D2} is a cancelling pair for ζT which is disjoint
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from ∆ and which intersects E exactly once. Thus, ζT is a removable loop
in T .

It is impossible for M′ to equal B3. If M′ = ∂−M′× I, then M′ = S2× I since
∂η(v)⊂ ∂−M′. If H−η̊(T ′) is isotopic in M−η̊(T ′) to ∂+M′−η̊(T ′), then
both endpoints of e∩M′ lie on ∂M′. This contradicts the fact that e is an
interior monotonic edge. �

We say that (M′,T ′) is obtained by puncturing an interior monotonic edge
of (M,T ).

5.3. Essential Surfaces in (Compressionbody, Trivial Graph). In [HS1,
Lemma 2.4], Hayashi and Shimokawa classify compact T –incompressible
and T –∂–incompressible surfaces in a compressionbody with a trivially em-
bedded graph. We need a version of their theorem that allows for trivially
embedded graphs to have pod handles.

Proposition 5.3. Let T be a graph trivially embedded in a compressionbody
C. Suppose that F is a compact embedded surface in C such that F −T is
connected. Suppose also that ∂F ⊂ (∂C∪T ), (F ∩∂C)⊂ ∂F, and F ∩T is
the union of edges of T . If F is T –incompressible and T –∂–incompressible,
then F is one of the following:

(1) a sphere disjoint from T
(2) a properly embedded disc D ⊂C which is disjoint from T
(3) a properly embedded disc D such that ∂D ⊂ ∂+C and D∩ T is a

single pod leg
(4) a properly embedded disc D such that ∂D⊂ ∂−C such that D∩T is

a single pod handle
(5) a bridge disc
(6) a vertical disc D such that ∂D∩T has two components. Each com-

ponent is either a vertical edge or a pod leg and an adjacent pod
handle

(7) a vertical annulus A such that A∩T is either empty, consists of a
vertical edge, or consists of a pod handle and one or two pod legs.

(8) one of types (6) or (7) that also contains some number of pod han-
dles but none of their adjacent pod legs

(9) a closed surface parallel to ∂−C̃.

Figure 8 shows a schematic representation of surfaces of type (7) and (8).
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FIGURE 8. A disc of type (8) and an annulus of type (7)
which contains a handle and two adjacent pod legs.

Proof. Let F be a surface satisfying the hypotheses of the proposition and
suppose that F is not of type (3), (4), or (5).

Claim 1: F ∩T contains a pod leg in its interior only if it also contains an
adjacent pod handle.

Let e be a pod leg of a pod τ ⊂ T such that e ⊂ F and F does not contain a
handle for τ . Let D be a pod disc for τ minimizing |D∩F |. The frontier δ

of a small regular neighborhood of D is a disc which intersects a handle for
τ once. Either F divides δ into two discs or F ∩ δ = ∅. In the latter case,
F is parallel to D and so F is a bridge disc. In the former case, let δ ′ be
the disc which is the closure of a component of δ −F not intersecting the
handle for τ . The disc δ ′ is a T –∂ -compressing for F , unless F is of type
(3). �(Claim 1)

Claim 2: If F ∩ T contains a valence 1 vertex in its interior then there
is a graph T ′ in C such that C, T ′, and each component of F −T ′ satisfy
the hypotheses of the theorem. The graph T ′ is obtained by introducing
additional pod legs to T which lie in F . F ∩T ′ has no valence 1 vertices in
the interior of F .

Any valence one vertex of T ∩F , by Claim 1, must be an endpoint of a
pod handle in F . Let h be the pod handle and τ be the pod containing h.
Let ρ be a regular neighborhood of h in C and consider the punctured disc
Q = ∂ρ − τ . The boundary of Q lies in ∂−C and has one puncture for each
leg of the pod τ . The intersection Q∩F consists of a single essential arc on
Q.

Let p1 and p2 be punctures in Q on opposite sides of the arc Q∩F . Let e1
and e2 be the pod legs of τ associated to p1 and p2. Let δ be the bridge disc
containing them. An innermost disc/outermost arc argument shows that we
may assume that F ∩ δ consists of a single arc which has one endpoint at
the pod vertex and the other at ∂+C.
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Add the edge F ∩ δ to τ creating a pod τ ′ with an additional pod leg. The
discs δ −F are bridge discs for τ ′, showing that τ ′ is trivially embedded.
Do this for each such τ to create the graph T ′. It is easy to see that F is
T ′-incompressible and T ′–∂ -incompressible. Hence, C, T ′, and each com-
ponent of cl(F −T ′) satisfy the hypotheses of the proposition. �(Claim
2)

Let F ′ be a component of the closure of F − T ′, where T ′ is the graph
provided by Claim 2. Notice that, by Claims 1 and 2, each vertex of F ′∩T ′

in the interior of F ′ has valence at least 2. Let T ′′ be the graph created
from T ′ by resolving all the pod handles of T . Since F ′−T is connected,
after a small isotopy of F ′ to intersect a new vertical arc, rather than a pod
handle, resolving the pod handles does not have any effect on F ′ and the
intersection betweeen F ′ and T ′ is the same as between F ′ and T ′′.

Suppose that τ is a pod of T having a handle h. Let e1, . . . ,en be the vertical
arcs in C created by resolving h. We think of the ei as lying in ∂η(τ).
Let D be a pod disc for τ . Let δ1, . . . ,δn be the vertical discs contained
in ∂η(τ ∪D) so that δi contains ei and ei+1 (with indices mod n) in its
boundary. By construction, F ′′ is disjoint from the interior of each δi. The
boundary of F ′′ may intersect ∂δi along ei and ei+1.

Suppose that D is a T ′′-compressing or ∂–compressing disc for F ′. A stan-
dard innermost disc/outermost arc argument shows that we may assume that
D∩ δi = ∅ for all i. Then D is a T ′-compressing disc or ∂–compressing
disc for F ′, a contradiction. Hence, F ′ is T ′′ incompressible and T ′′–∂ -
incompressible.

Since F ′−T ′′ is connected and not of type (3) or (5), by [HS1, Lemma 2.4],
cl(F ′−T ′′) is one of the following:

(A.) a sphere disjoint from T ′′

(B.) a properly embedded disc disjoint from T ′′

(C.) a bridge disc for T ′′

(D.) a vertical disc such that ∂F ′∩T ′′ contains two vertical arc compo-
nents

(E.) a vertical annulus A such that A∩T ′′ is either empty or contains a
vertical arc

(F.) a closed component parallel in C̃ to ∂−C.

If F ′−T ′′ is of type (A.) or (B.), F ′−T ′ is a sphere or disc disjoint from T ′

and, thus, F is a sphere or disc disjoint from T .
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If F ′−T ′′ is of type (C.), then F ′−T ′ is a bridge disc for T ′, since F ′ does
not contain a pod handle of T ′. For the same reason, F −T is a bridge disc
for T .

If F ′−T ′′ is of type (E.), then T ′ ∩F ′ consists of at most one vertical arc
and so either F is of type (7) or (8). In the latter case, it contains exactly
one pod handle.

If F ′− T ′′ is of type (D.), then F ′− T ′, if it not the same as F ′− T ′′, is
obtained from F ′− T ′′ by gluing together two copies of a pod handle in
∂F ′. Thus, F ′−T ′ is either a vertical disc or is a vertical annulus of type
(7) which contains two pod legs. T ′ was created from T by attaching pod
legs to pod handles in the interior of F which were not adjacent to pod
handles in F . If F ′ is a vertical annulus containing a pod handle, the pod
handle is adjacent to two pod legs in F ′ and so if F ′ is a vertical annulus,
then F is of type (7).

By the previous observations, we may assume that each component of F −
T ′ is a vertical disc with interior disjoint from T ′. The closure of (F −T )
is obtained by removing a pod leg of T ′ ∩F which is the only pod leg in
F attached to a particular pod handle in F . Thus, F is of type (6), (7), or
(8). �

5.4. Frohman’s Trick. We will frequently use a technique due to Frohman
[F] for determining if a Heegaard splitting is stabilized. Informally, if a
spine for the compressionbody on one side of a Heegaard surface for (M,T )
contains a cycle which is contained in a 3–ball in M−T , then the Heegaard
surface is stabilized. The version we will most often use is [HS1, Lemma
4.1]. We refer the reader to that Lemma for a precise description of how the
trick works in our context.

6. THE COMPLEX R

6.1. The subgraphs of T . Suppose M is a compressionbody and T is a
properly embedded graph so that ∂+M− η̊(T ) is isotopic to the frontier of
a regular neighborhood of ∂−M∪T .

We divide T into the union of 3 subgraphs: T0, Tv, and Ts as follows: Since
∂+M− η̊(T ) is parallel to ∂−M ∪ ∂η(T ), T contains an elementary spine
T0 for M. Let Tv denote the components of T −T0 that join ∂−M to ∂+M.
Each component of Tv is a tree with one valence one vertex on ∂−M. Let Ts
denote T −(Tv∪T0). Each component of Ts is a tree which joins T0 to ∂+M.
A component of Ts is called a spoke. (Informally, T0 is a spine for M, Tv are
vertical components, and Ts consists of “spokes”.)
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Notice that if M = B3, then T = Ts is a tree. In this case, we let T0 be a
vertex of T , or if T is a single edge, a vertex of valence 2 in the interior of
the edge.

Figure 9 shows an example with T0 a θ -graph in a genus two handlebody
and every spoke a single edge. The graph T0 is drawn with a thicker line.

FIGURE 9. An example of the graph T in a genus two handlebody

Figure 10 schematically depicts two copies of a compressionbody M with
∂−M a torus and ∂+M a genus 2 surface. (In the picture, opposite sides
of the cubes should be glued together.) On the left, T0 consists of a single
edge with both endpoints on ∂−M. Ts is a single edge joining T0 to ∂+M
and Tv consists of a tree with four interior vertices. It shows up twice in
the diagram, since T 2× I has been cut open into a square× I. On the right,
T0 consists of two edges, one of which has a single endpoint on ∂−M. Ts
consists of two edges. One edge joins the interior vertex of T0 to ∂+M and
the other joins the interior of the edge which forms the loop in T0 to ∂+M.
Tv is the same as on the left.

6.2. The complex R. Suppose T satisfies the following conditions:

(A) Each edge of T0 with zero or two endpoints on ∂−M has at least one
spoke attached to its interior.

(B) Each vertex of T0−∂T0 has a spoke attached to it.
(C) Each component of ∂−M is adjacent to at least one component of

Tv.

In this case we can construct a complex R which has many useful proper-
ties, in particular T ⊂ R and cutting M along R produces a collection of
3-balls. Our complex R generalizes the surface R in [HS1] and the surface
R in [HS2]. Our R is considerably more complicated than either of those
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FIGURE 10. Two examples of a graph T in a compression-
body M with ∂−M a torus and ∂+M a genus two surface. The
vertical sides of each cube should have opposite faces iden-
tified.

surfaces, so it is recommended that the reader understand the constructions
in [HS1] and [HS2] before tackling this construction. The case when M is
a handlebody is also easier than when ∂−M 6= ∅. The first time reader may
want to concentrate on that situation. The figures below often (but not al-
ways) depict the situation when each spoke has a single edge. The situation
when spokes have multiple edges is not significantly more complicated, so
we avoid cluttering the figures with unnecessary detail. In describing the
construction we will often isotope T . The isotopies described are always
ambient isotopies which never move T through H.

Recall that if M = B3, then T = Ts. In this case, let D be a properly embed-
ded disc in M, containing T and let R = D.

If M 6= B3, for each edge of T0 with zero or two endpoints on ∂−M and for
each spoke adjacent to the interior of the edge choose a disc which intersects
the edge in exactly one point, contains a spoke adjacent to the interior of the
edge, and is otherwise disjoint from T . See Figure 11. Let D be the union
of these discs. For each disc D′ in D, choose a minimal path in Ts∩D′ from
D′∩T0 to ∂D′. Call this path the distinguished path.

FIGURE 11. Two discs in D adjacent to a single edge of T0.
Each contains a spoke. One spoke is a single edge and the
other is a tree with four edges.
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If M 6= B3, boundary reducing M using D creates a 3–manifold which is the
union of M0 = ∂−M× I and a collection of 3–balls. Let ∂+M0 = ∂−M×{1}
and ∂−M0 = ∂−M×{0}. For a component M′

0 of M0, let ∂+M′
0 = ∂M′

0 ∩
∂+M0 and let ∂−M′

0 = ∂M′
0 ∩ ∂−M0. Let D+ denote the discs in D which

are contained in ∂+M0.

Each component of T0∩M0 is a tree with a single edge having an endpoint
on ∂−M. Let τ be a component of T0∩M0 and let h be the edge of τ with
an endpoint on ∂−M. Since ∂+M0 is parallel to ∂−M∪ (T0∩M0), there is a
properly embedded disc E(τ) with boundary in ∂+M which is inessential in
M0 such that E(τ)∩T = E(τ)∩h is a single point that separates the point
∂h−∂−M from all other vertices of T on h. See Figure 12.

E(τ)

τ

h

Ts

Ts

FIGURE 12. An example of the disc E(τ).

If M is a handlebody, let E = ∅. Otherwise, let E =
⋃

τ E(τ). Boundary
reducing M using E cuts off handlebodies U which are disjoint from ∂−M.
(If M is a handlebody, then U = M.) T0∩U is a graph which is isotopic into
∂U . Let A′ be an embedded 2–complex which is the union of squares in U .
A square of A′−T has two edges in T and in most cases is a square of the
form (

edge of (T0−Ts)
)
× I.

The one exception is a square adjacent to some h. Such a square consists
only of a (portion of h)× I. We may isotope A′ so that for each disc D′ in D,
A′∩D′ is the distinguished path of Ts∩D′. Each vertex of T0 is adjacent to
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a spoke. Isotope each of these spokes to lie in A′ so that there is a minimal
path in the spoke which is (vertex ×I). Then A′−T is the union of pairwise
disjoint discs which meet in unions of edges of T . If ∂−M = ∅ (i.e. if M is
a handlebody) we let A = A′ and R = A∪D. Notice that in this case, there
is no edge h.

Recall that each square of A′ ⊂U is of the form(
edge of (T0−Ts)

)
× I.

Suppose that Ã is such a square that is not adjacent to an edge h of T0 having
one endpoint on ∂−M. Then one edge of ∂ Ã lies on an edge of T0, two edges
of ∂ Ã lie on distinct components of Ts, and one edge of ∂ Ã lies on ∂+M. Ã
may contain edges of Ts in its interior. No edge of Ts interior to Ã has an
endpoint interior to T0∩∂ Ã.

Figure 13 depicts the complex R when M is a genus 2 handlebody and T0 is
a θ -graph.

FIGURE 13. An example of the complex R in a genus 2 han-
dlebody. The discs D are shaded. The complex A is outlined.

If ∂−M 6= ∅ we still need to extend the squares of A′ adjacent to an edge h
of T0 having an endpoint on ∂−M to a surface with boundary on ∂M ∪T .
To that end, suppose that ∂−M 6= ∅. Let M′

0 be a component of M0 and
let g = genus(∂+M′

0). Since M is a compressionbody, by construction, the
complex (A′∪D)∩∂+M′

0 is contained in a disc in ∂+M′
0. In M′

0 there exists,
by assumption (C), a component of Tv. Choose a distinguished path p in
this component from ∂−M′

0 to ∂+M′
0 and perform an isotopy so that p is

equal to {point}× I in M′
0. Choose loops γ in ∂+M′

0 based at p∩ ∂+M′
0.

If ∂+M′
0 = S2, then γ should be a single loop cutting ∂+M0 into two discs.

If ∂+M′
0 6= S2, γ should cut ∂+M′

0 into a 4g–gon. There is a collection of
vertical annuli P′0 in M′

0 so that P′0∩ ∂+M′
0 = γ . The annuli intersect on p.

Choose the curves γ and the annuli P′0 to be disjoint from the remnants of
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D+ and E. Also isotope P′0 so that P′0∩T = Tv with the intersection of the
annuli still p. Cutting M′

0 along P′0 creates G which is a (4g− gon)× I if
∂+M′

0 6= S2 and otherwise is the disjoint union of two copies of D2× I. Let
Z± = G∩ ∂±M′

0. Thus, Z− and Z+ are each a 4g–gon. The polygon Z+
contains (A′∪D)∩∂+M′

0. See Figure 14 for an example with g = 1. Let P
be the union of the P′0 over all components M′

0.

p

D

A′

T

p

p

p

FIGURE 14. An example with g = 1. The first picture does
not show the portion of A′∩G adjacent to h. The disc E is
not pictured.

The complex A′ contains portions of the edges of T0 which have an endpoint
on ∂−M. We now extend A′ to a complex which we write as A∪B, so that T
is contained in A∪B∪D∪P. Let p+ be a vertex of the polygon Z+ ⊂ M′

0.
Of course, p+ is identified with p∩∂+M′

0 after gluing the 4g–gon together
to obtain ∂+M′

0. Let p− be the vertex of p∩Z− so that in G there is a copy
of p joining p− to p+.

Consider an edge h of T0 ∩M′
0 having an endpoint on ∂−M′

0. In A′, there
is one square having one side on a portion of h, one side on a spoke σ

adjacent to the vertex ∂h− ∂−M, and one side on ∂+G′
0. The fourth side

of the square does not lie on either T or ∂G, but does lie in E. For such
a square S, choose a path β (S) joining the point ∂σ ∩ ∂+G′

0 to p+, which
contains the edge S∩ ∂+G′

0 and which is otherwise disjoint from A′. Let
B(h) = β (S)× I ⊂ G′

0 and let B be the union of the B(h) for all h ⊂ T0.

Figure 15 shows an example of G′
0∩ (A∪B) for a component G′

0 which is a
square× I. In this example, T0 has an edge with a single endpoint on ∂−G′

0.

Figure 16 shows an example of the surface B in a compressionbody M with
∂−M a torus and ∂+M a genus 2 surface. In the picture, M has been cut
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p+

FIGURE 15. An example with g = 1. The blue surface is a
portion of A, the green surface is a component of B.

open along P. In this example, T0 is a single edge with both endpoints on
∂−M.

FIGURE 16. An example of the surface B when T0 has an
edge with both endpoints on ∂−M.

Isotope any spokes adjacent to h so that they lie in B. Let A = cl(A′−B)
so that we may think of A as the union of squares each with three edges on
T and one edge on ∂+M. These squares may contain edges of Ts in their
interior. Let R = A∪B∪D∪P.

Lemma 6.1. The complex R has the following properties:

(1) T ⊂ R.
(2) Each component of R−T is a disc with boundary lying on ∂M∪T .
(3) G = cl(M−R) is a collection of 3–balls containing copies of por-

tions of R in their boundary.
(4) R is T –incompressible and T –∂–incompressible.
(5) No component of R is disjoint from T .
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Proof. To see that the first claim is true, notice that each component of Tv is
contained in some component of P, T0 is contained in A∪B, and the spokes
in Ts were all isotoped to lie in A∪B∪D depending on which edges or
vertices of T0 they were adjacent to.

The second observation is equally easy to see. Notice that each component
of R− T is a component of A− T , D− T , B− T , or P− T . We have al-
ready observed that the first statement is true for components of A−T . The
statement is obviously true for components of P−T since P is the union of
annuli containing components of Tv. Each component of D and B is a disc
and so the statement is also true for components of D−T and B−T . See
Figure 17 for a picture of R ⊂ ∂G when M and T are the 3–manifold and
graph from Figure 16. See Figure 18 for a picture of R ⊂ ∂G when M and
T are the 3–manifold and graph from Figure 15.

P P P PB B B B

D D

FIGURE 17. The complex R in ∂G when M is a compres-
sionbody with ∂−M a torus and ∂+M a genus 2 surface. The
graph T0 is a single edge with both vertices on ∂−M. The
left and right edges should be glued together so that P∪B is
an annulus in ∂G. Edges with the same positive number of
hash marks are identified in M. The edge with a single hash
mark is the sole edge of Tv. The edges with two and three
hash marks belong to Ts. Non-horizontal edges without hash
marks are not glued to any other edges.

To see the third statement recall that a component of M−(D∪P) adjacent to
∂−M is a ball of the form G′

0 = (4g−gon)× I. Each component of (A∩G′
0)

is a disc with boundary on ∂+G′
0∪T . Each component of A∩G′

0 is joined
to a single (vertex× I) by a square in B. Thus, G′

0 − (A∪ B) is simply
connected and so is a 3–ball containing portions of R in its boundary.
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P BBP P P

A

D D

A A A

FIGURE 18. The complex R in ∂G when M is a compres-
sionbody with ∂−M a torus and ∂+M a genus 2 surface. The
graph T0 is a graph with two edges and two vertices, one
of which is on ∂−M. The left and right edges should be
glued together so that P∪B is an annulus in ∂G. Edges with
the same positive number of hash marks are identified in M.
The edge with a single hash mark is the sole edge of Tv. The
edges with two, three, and four hash marks belong to Ts.
Non-horizontal edges without hash marks are not glued to
any other edges.

A component of M− (D∪P) not adjacent to ∂−M is also a component of
M −D. Since every edge of T0 is adjacent to a spoke in its interior and
since every such spoke is contained in a disc of D, a component of M−D
not adjacent to ∂−M is a 3–ball. Considerations similar to those already
discussed show that the lemma is true in this case as well.

R is T –incompressible and T –∂–incompressible, because, by construction,
each component of R− T is a disc. Similarly, from the construction it is
obvious that no component of R is disjoint from T . �

7. SPECIAL CASE OF THEOREM 3.1

A vertical cut disc for M is a boundary reducing disc for ∂+M which in-
tersects T transversally in a single point and intersects H in a single simple
closed curve. Notice that if M = B3 or if M = ∂−M× I, then there is no
vertical cut disc. This is not the same definition of “cut disc” as that used in
[TT], although it is related.

Let I denote the union of components of Ts such that each component of
Ts in I consists of a single edge such that an endpoint of the edge is either
at a vertex of T0 or in the interior of an edge of T0 which has zero or two
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endpoints on ∂−M. If M = B3, we require that I = ∅. Let T = T −I. Notice
that H is a Heegaard surface for (M,T).

Proposition 7.1. Suppose M does not have a vertical cut disc and suppose
that H as a splitting of (M,T) does not satisfy conclusions (1), (2), (5), or
(6) of Theorem 3.1. Suppose also that no edge of T is perturbed and T
satisfies conditions (A)-(C) in Section 6 and condition (NPH). Then one of
the following occurs:

• H is perturbed as a splitting of both (M,T ) and of (M,T); or
• T has a removable cycle.

Proof. Consider the complex R constructed in Section 6. Because R is T –
incompressible and T –∂–incompressible, a T -compression or T –boundary
compression of R∩C1 may be accomplished by an isotopy of R. We may,
therefore, isotope R (fixing T and H) so that R∩C1 consists of surfaces of
type (2) - (9) in the statement of Proposition 5.3. Out of all such isotopies
of R, assume that R has been isotoped so as to minimize |R∩H|. Notice
that R∩C1 is T1–incompressible and T1–∂ -incompressible. R∩C2 is T2–
incompressible, but may be T2–∂ -compressible.

The following sequence of lemmas will complete the proof.

Lemma 7.2. If R∩C1 has a disc of type (2), then there exists a vertical cut
disc for M. Furthermore, R∩C2 does not have a disc of type (2).

Proof. Suppose that R∩C1 has a disc of type (2).

Case A: R∩C2 is T2–∂–compressible.

Because R−T is the union of discs, the proofs of [HS1, Proposition 3.3]
and [HS2, Proposition 3.3] show that R∩C1 does not have a disc of type
(2). �(Case A)

Case B: R∩C2 is T2–∂–incompressible.

Let E1 be the component of R∩C1 which is a disc of type (2). Let E2
be the component of (R∩C2)− T2 which contains ∂E1. Since E2 is T2–
incompressible and T2–∂–incompressible and since ∂E1 is disjoint from T ,
E2 is a surface of type (2), (7), or (8) from the statement of Proposition 5.3.
Let E = E1∪E2. E is one of the following:

(a) a sphere disjoint from T ,
(b) a disc disjoint from T which intersects H in a single simple closed

curve, or
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(c) a disc intersecting H in a single simple closed curve and which con-
tains some number of pod handles in C2.

Since E is a component of R−T , it cannot be of type (a). Similarly, since T
contains a spine for M and no component of R is disjoint from T , E cannot
be of type (b). Therefore, E is of type (c). The only components of R−T
whose closures have all of their boundary contained in ∂+M are discs in
D. Thus, E ⊂ D. Each disc in D contains a single spoke, and therefore
D∩T0 consists of a single point. A slight isotopy of D produces a vertical
cut disc. �(Case B)

Suppose that R∩C2 has a disc of type (2). Since R∩C1 is T1–∂–incompressible,
an argument symmetric to that of Case B above produces a compressing
disc for ∂−M in M. Since M is a compressionbody, this is impossible. �

As M has no vertical cut-discs, we conclude that R∩C1 has no disc of type
(2).

Let Q be an elementary spine of (C1,T1). In Case 2 below, we will be
deforming Q into a spine which may not be elementary. After such a de-
formation, we consider Q = Q1∪Q2 with Q1 a graph and Q2 the union of
discs.

Think of C1 as being a very small regular neighborhood of Q∪ (∂−M∩C1).
By hypothesis (NPH), Q does not contain any edges of T (i.e. pod handles).
Since R∩C1 does not have a disc of type (2), Q∩R = ∂1Q ⊂ T .

The next lemma will be useful at several points in upcoming arguments.

Lemma 7.3. Let D′ be a disc in D and suppose that D′ ∩C2 is T2–∂–
incompressible. Let x = D′∩T0. The point x may be a vertex of Ts of valence
2 or more. Then Q∩D′ ⊂ ∂1Q is a single point and one of the following
occurs:

• the component of Ts contained in D′ consists of a single edge and
∂1Q∩D′ = x.

• Ts∩D′ has a single vertex not on ∂D′ and that vertex is x which has
valence at least 3. Furthermore, ∂1Q∩D′ = x.

• Ts∩D′ has two vertices not on ∂D′. One of those vertices is x and x
has valence 2. The other vertex is the sole point of ∂1Q∩D′.

Proof. Let D̃ be the closure of a component of D′−T . The surface D̃∩C2
has a portion of its boundary on ∂+M ⊂ ∂−C2 and also intersects T . It must,
therefore, be a surface of type (4), (6), (7) or (8).
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If D̃∩C2 is of type (4), then D′ = D̃. Furthermore, Ts∩D′ is a single edge
which is disjoint from ∂1Q except at the endpoint of Ts∩D′ in the interior
of D′. Hence, the first conclusion holds.

We may, therefore, assume that D̃∩C2 is a surface of type (6), (7), or (8).
Suppose that D̃∩C2 is an annulus of type (7) or (8). In this case D̃ = D′.
Since D̃∩C2, in this case, has one circular boundary component on H and
the other on ∂+M, |∂1Q∩D′| = 1. Furthermore, because there is exactly
one component of T2∩(D̃∩C2) with an endpoint on H, and that component
spans D̃∩C2, the point x is equal to ∂1Q∩D′. Since D̃ = D′, we conclude
that Ts∩D′ consists of a single edge and ∂1Q∩D′ = x.

Henceforth, we assume that for each disc D̃ ⊂ cl(D′−T ), D̃∩C2 is a disc
of type (6) or (8). Since D′∩T0 is a single point, x is the only valence one
vertex of D′∩Ts. Furthermore, since Ts∩D′ is a tree, it is connected. Thus,
D̃∩C2 is a disc of type (6) and not of type (8). This implies that no point
of Ts∩D′ is a vertex of valence one on the interior of D′. Also, if D̃ is the
closure of a component of D′−T , D̃ is adjacent to exactly one point of ∂1Q.
Since no edge of T with neither endpoint on ∂M lies entirely in C2, each
edge of Ts∩D′ with neither endpoint on ∂D′ contains at least one point of
∂1Q. Similarly, if e1 and e2 are edges in Ts∩D′ sharing one endpoint and
having their other endpoints on ∂D′, then there must be a point of ∂1Q in
e1∪ e2. If x is a vertex of valence 2, for the moment cease considering it as
a vertex of Ts∩D′. Then, the hypotheses of Lemma A.1 (in the appendix)
are satisfied with T ′ = Ts ∩D′ and P = ∂1Q. Hence, |∂1Q∩D′| = 1 and
Ts∩D′ has at most a single vertex y not on ∂D′. Furthermore, if y exists, it
is the sole point of ∂1Q∩D′.

If x has valence 3 or more, then y = x, since y is the sole vertex of valence
3 or more on the interior of D′. �

Corollary 7.4. Suppose that M 6= B3 and that D′ is a disc in D such that D′∩
C2 is T2–∂–incompressible. Then there exists a vertical cut disc, contrary
to the hypotheses.

Proof. By Lemma 7.3, D′ intersects Q exactly once. Since M 6= B3, the
disc D′ is an essential disc in M. By construction, ∂D′ lies on ∂+M and
D′ intersects T0 exactly once in the interior of an edge e of T0. A slight
isotopy of D′ off Ts produces a disc which is disjoint from Ts, intersects T0
in a single point and intersects H = ∂η(Q∪∂−C1) in a single simple closed
curve. �
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We now consider two cases. The first is when R∩C2 is T2–∂–incompressible
and the second is when R∩C2 is T2–∂–compressible.

Case 1: R∩C2 is T2–∂–incompressible.

In this case the closure of each component of (R∩C2)−T2 is a surface of
type (2) - (8). By Lemma 7.2 each component of (R∩C2)−T2 is, in fact, a
surface of type (3) - (8).

Lemma 7.5. Either M = B3 or M = ∂−M× I.

Proof. If D 6= ∅, then for any disc D′ in D, D′∩C2 is T2–∂–incompressible.
If T0 contains an edge, then (by construction of T0 and R), there exists a
disc D′ in D with ∂D′ essential in ∂+M. Then by Corollary 7.4, there exists
a vertical cut disc, contrary to the hypotheses of the Proposition. Thus, if
D 6= ∅, T0 is a single point. In which case, M = B3, Ts = T , and R = D is a
single disc containing Ts. If D = ∅, then M = ∂−M× I. �

Lemma 7.6. If M = B3, then either H is stabilized or H − T is properly
isotopic in M−T to ∂M−T .

Proof. If M = B3 then T0 is a single point x and T = Ts. R = D is a single
disc which contains T . By Lemma 7.3, Q∩R is a single point. G, which
is the closure of M−R, consists of two 3–balls, each with a copy of T in
its boundary. If Q has an edge, then there must be a cycle in Q∩G. By
Frohman’s trick [HS1, Lemma 4.1], H is stabilized. Thus we may assume
that Q is a single point. If T contains more than one edge, Q is the sole
interior vertex of T . Whether or not T has more than one edge, H −T is
parallel in M−T to ∂M−T . �

We now turn our attention to the case when M = ∂−M× I. In this case,
T = Tv.

Lemma 7.7. Suppose that P̃ is the closure of a component of P−T adjacent
to ∂−M. Then P̃∩Q = ∅.

Proof. We may think of P̃ as a square with two opposite sides on T , one
side on ∂+M, and one side on ∂−M. Suppose that Q∩ P̃ 6= ∅.

If ∂−M ⊂C2, then P̃∩C2 is a disc having at least three disjoint sub-arcs of
its boundary on T and two subarcs on ∂−C2. However, no surface of type
(2)-(8) has this property. (The surfaces of type (8) contain pod handles in
their interior, not on their boundary.) Thus, ∂−M ⊂C1.
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If ∂−M⊂C1, then P̃∩C2 is a disc having at least two subarcs of its boundary
on H, one subarc on ∂+M ⊂ ∂−C2, and at least three subarcs on T . No such
surface appears in the list from Lemma 5.3. �

Corollary 7.8. H separates ∂−M from ∂+M.

Proof. Suppose to the contrary that ∂−M ⊂ C2. Let P̃ be the closure of a
component of P−T adjacent to ∂−M. By Lemma 7.7, P̃∩Q = ∅. A path
from ∂+M to ∂−M lying in ∂ P̃∩ T is a path in T2 joining ∂−C2 to itself.
This is an impossibility since T2 is trivially embedded in C2. �

Corollary 7.9. Tv = T is disjoint from Q and each component of Tv is an
edge.

Proof. Let φ be a path in Tv joining ∂−M to ∂+M which contains a vertex
of T . If such a path exists, it is possible to choose φ so that it is contained
in the boundary of P̃, the closure of a component of P−T adjacent to ∂−M.
By Lemma 7.7, the edge of φ adjacent to ∂−M is disjoint from ∂1Q and
is, therefore, a pod handle in C2. This is impossible by assumption (NPH).
Thus, Tv contains no vertices.

Since component of Tv is an edge, each component is contained in the clo-
sure of a component of P−T adjacent to ∂−M; by Lemma 7.7, each edge
of Tv is disjoint from Q. �

We now put the previous results together to obtain:

Corollary 7.10. H−T is properly isotopic in M−T to ∂+M−T .

Proof. Recall that, by hypothesis, H is not stabilized. Since Q∩P = ∅, an
application of Frohman’s trick shows that QG is either empty or is a tree
with at most one endpoint on ∂−M. By Corollary 7.9, T is disjoint from Q
and so Q = ∅. Also, Corollary 7.9 shows that each component of Tv = T is
a vertical edge. Thus, C1 = η(∂−M). Since M = ∂−M× I, this implies that
H−T is properly isotopic to ∂+M−T in M−T . �

We have shown, therefore, that the hypotheses of Case 1 imply that one of
Conclusions (1), (5), or (6) of Theorem 3.1 occurs, contrary to the hypothe-
ses of Proposition 7.1. This concludes Case 1.

Case 2: R∩C2 is T2–∂–compressible.

This case requires the all the technology of the proofs of the main results in
[HS1] and [HS2].
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Let D1,D2, . . . ,Dn be the sequence of T2–∂ compressions which convert R∩
C2 into a T2–∂–incompressible surface. These T2–∂ compressions may be
accomplished by isotopies of R. Let Ri be the result of boundary-compressing
Ri−1 using the disc Di beginning with R0 = R. The boundary of each disc
Di is the endpoint union of two arcs αi and δi with αi ⊂ Ri−1 and δi ⊂ H.
We may isotope each disc Di so that each αi ⊂ R and we may extend each
Di so that δi is a, possibly non-embedded, path in ∂−C1∪Q. Let Γi be the
graph with vertices ∂1Q and edges α1, . . . ,αi.

Recall that G is the closure of M − R. G consists of 3–balls containing
copies of R in their boundary. Let Γ̃i be the intersection of Γi with ∂G, so
that Γ̃i contains two copies of each edge of Γi.

Suppose that G′ is a component of G which is adjacent to ∂−M. A hori-
zontal disc in G′ is a properly embedded disc E in G′ with the following
properties:

• if P̃ is a copy in ∂G′ of the closure of a component of (P∪B)−T
adjacent to ∂−G′ then E∩ P̃ is a single edge joining distinct compo-
nents of P̃∩T .

• D∪A does not contain any edges of ∂E.
• If B̃ is a copy in ∂G′ of a component of B− T , then ∂E ∩ B̃ is

connected and is the union of at most two edges. If ∂E ∩ B̃ is a
single edge, it joins Tv∩ B̃ to T0∩ B̃. If it is the union of two edges,
one edge joins Tv∩ B̃ to Ts∩ B̃ and the second edge joins Ts∩ B̃ to
T0∩ B̃.

Figure 19 depicts a horizontal disc in the case when M = T 2× I and T = Tv
is a single vertical edge. If E is a horizontal disc such that there exists
a component B̃ of B−T ⊂ ∂G′ such that E ∩ B̃ is the union of two edges,
then we call E a crooked horizontal disc. Figure 20 depicts the two possible
arcs in the boundary of a crooked horizontal disc.

We will soon be describing a sequence of deformations of the spine Q. Let
Qi denote the spine just after the ith deformation. The deformations will be
designed so that, for small enough i, Qi∩R = Γi. Before any deformations,
Q is an elementary spine and so contains no horizontal discs. The spine Qi
for i ≥ 1, may not be an elementary spine. It will, however, be the union of
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∂1Q

FIGURE 19. The solid edges outline a horizontal disc in G
which is obtained from M = T 2× I. The graph T = Tv is a
single vertical edge. Since every edge of Γi appears twice in
Γ̃i, if the boundary of the horizontal disc lies in Γi, both solid
and dashed edges will appear in Γ̃i. If j is the smallest num-
ber such that Γ̃ j contains the cycle which is the boundary of
the horizontal disc, the green edge is α j and is known as the
last edge of the cycle.

horizontal discs Q2
i and a graph Q1

i . Let QGi = Qi∩G, Q1
Gi = Q1

i ∩G, and
Q2

Gi = Q2
i ∩G. The graph Q1

Gi contains two copies of each edge of Γi.

Define a boundary compressing disc Di to be a splendisc (short for “splen-
did disc”) if:

• either i = 1 or Di−1 is a splendisc;
• we can slide the edges of Q1

Gi−Γi−1 and isotope Di so that δi does
not meet an edge of QGi more than once; and

• if after performing the previous operations, δi is disjoint from Q1
Gi−

Γi−1 then Di is a horizontal disc.

If Di is a splendisc, we always assume that the sliding and isotoping in the
definition of “splendisc” have been performed. Let k be the largest number
such that Dk is a splendisc.

We perform the ith deformation of Q along Di for i ≤ k as follows:

• When δi meets an edge e of Q− Γ̃i−1, we slide the edge e along the
arcs δi− e and isotope along the disc Di to push e in R. Then e is in
place of αi. We call this a type (i) deformation.

• If Di is a horizontal disc, we extend Q along the disc Di. We call αi
the last edge of Di. This is a type (ii) deformation. See Figure 19.
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FIGURE 20. Two possible arcs in the boundary of a crooked
horizontal disc.

Remark. We now embark on a study of the graphs Γ̃i for i ≤ k. We will
eventually conclude that all of the discs Di are splendiscs (that is, that k = n.)
A little more work will then show that Proposition 7.1 holds.

We begin with two definitions.

Suppose that τ is a component of Ts∩D embedded in a disc D′ of D. Recall
that τ is a tree and that ∂D′∩ τ ⊂ ∂τ and at most one point of ∂τ is in the
interior of D′. Let α be an arc in D′ joining distinct points of τ with interior
disjoint from τ . We say that α joins opposite sides of τ if the interior of
the disc in D′ bounded by α and a minimal path in τ contains the valence 1
vertex of τ in the interior of D′. If α does not join opposite sides of τ , we
say that α joins the same side of τ . See Figure 21.

Suppose that in R ⊂ ∂G there is an embedded disc E such that

• ∂E ∩T consists of a single arc t and, possibly, isolated points
• the arc ∂E− t in R⊂M does not join opposite sides of a component

of Ts∩D
• ∂E− t ⊂ (Γi∪F) for some component F of ∂−C1
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A. B.

FIGURE 21. Examples of arcs in a disc of D. Figure A de-
picts arcs joining the same side of T and Figure B depicts
arcs joining opposite sides of T .

• the interior of E is disjoint from T ∪Γi.

We call such a disc E, a container disc in Γi. Figure 22 shows some con-
tainer discs which we will make use of later.

Lemma 7.11. Suppose that, for some i ≤ k, there exists a container disc
E in Γi. Then E2 = E ∩C2 is a bridge disc for T2 and there exists a disc
Ev ⊂ η(v) where v ∈ ∂1Q lies on T0 such that one of the following occurs:

• {E2,Ev} is a perturbing pair for (M,T ). The interior of the arc
∂E ∩T contains a vertex of I∩T0.

• {E2,Ev} is a cancelling pair for (M,T ). T0 consists of a single loop,
Ts is connected, and M is a solid torus. The disc E is a subset of A.

Proof. Let v and w be the endpoints of t.

Case α: The arc t does not contain any vertices of ∂1Q on its interior.

In this case, the disc E2 is a bridge disc for t ∩C2. There are discs Ev ⊂
η(v) ⊂C1 and Ew ⊂ η(w) ⊂C1 so that the pairs {E,Ev} and {E,Ew} are
cancelling pairs for H as a splitting of (M,T ). See Figure 23.
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C1

C5

C7

C4 C6
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C8

FIGURE 22. Each example of a container disc is labelled E.
Diagrams C1 and C2 are in D. Diagrams C3 - C6 are in A.
Diagrams C7 and C8 are in B or P. In diagrams C7 and C8,
the dashed red lines mean that the component of ∂−M is in
C1. This list of container discs is by no means exhaustive.

Suppose first that v and w are identified in M, so that Ev = Ew and {E2,Ev} is
not a perturbing pair for H as a splitting of (M,T ). This implies that ∂E− t
is not in D since then ∂E − t would join opposite sides of a component of
Ts∩D. Since v and w are in the same component of the closure of R−T ⊂
∂G, ∂E−t lies in A, and v and w lie on a component of Ts∩A which appears
twice in the same component of A ⊂ ∂G. By hypothesis (A) and (B) this
implies that T0 consists of a single loop and Ts is connected. This implies
that M is a solid torus.
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E

Ev

∂Q

t

FIGURE 23. The disc E and the disc Ev are a cancelling pair
of discs.

Assume that this does not occur. Hence, v is not identified with w in M and
so both {E2,Ev} and {E2,Ew} are perturbing pairs for H as a splitting of
(M,T ).

Suppose that neither v nor w lie on T0. Then either t ⊂ Ts, t ⊂ Tv, or an
entire edge of T0−Ts (and hence an entire edge of T ) lies in t. This latter
possibility cannot occur since an edge of T with neither endpoint on ∂M
must intersect ∂1Q, and in Case α , we assume that t does not have any
vertices of ∂1Q in its interior. If t ⊂ Tv, then both v and w lie on Tv and
{E,Ev} and {E,Ew} are perturbing pairs for (M,T). Likewise, if t ⊂ Ts,
then either an edge of I is perturbed, or H is perturbed as a splitting of
(M,T). Thus, either v or w lies on T0 and the interior of t intersects the
interior of some edge e of T0. Without loss of generality, suppose v ∈ e. If v
is an endpoint of e, choose Ev so that it is a bridge disc for T0∩C1.

If w lies on e, then {E2,Ev} is a perturbing pair for (M,T), contrary to the
hypothesis. Thus, w lies on a component τ of Ts. If τ 6∈ I, then {E2,Ew} is
a perturbing pair for (M,T), contrary to the hypothesis. Thus, τ ∈ I. Since
w 6∈ e, t contains the vertex τ ∩T0 in its interior, as desired.

Case β : The arc t contains vertices of ∂1Q in its interior.

This case should be compared to [HS1, Lemma 4.4] and [HS2, Lemma 4.6].

Let v = v0,v1, . . . ,vm = w be the vertices of ∂1Q lying in order on t. Let t j
be the arc between v j−1 and v j, for 1 ≤ j ≤ m. Notice that each t j ∩T2 is
either a bridge edge or a bridge arc lying in a (possibly vertical) pod of T2.
For the former, choose a bridge disc E ′

j. For the latter, choose a pod disc E ′
j

containing t j. Choose the set {E ′
j} so that the discs are pairwise disjoint and

so that E =
⋃

j E ′
j intersects E in properly embedded arcs joining vertices

of ∂1Q.
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Isotope E along edges of Γi∩∂E so that no edge of E ∩E has an endpoint
at a vertex of ∂1Q∩ ∂E which is not on t. (See Figures 4.6 and 4.7 of
[HS1, Lemma 4.4].)

Out of all such collections of discs, choose E so that the number of edges
|E ∩E| is minimal.

Suppose that there is an edge of E ∩ E with both endpoints at the same
vertex v j. Let ρ be an outermost such edge. Let E ′ be the disc cut off from
E by ρ which is disjoint from all vertices v j′ 6= v j. Perform a surgery on E
along the disc E ′ and discard the component disjoint from T2. This reduces
the number |E ∩E|, contradicting the hypothesis that the number of edges
of E ∩E was minimal. Thus, no edge of E ∩E has both endpoints at the
same vertex.

Define an edge of E ∩E to be good if it joins adjacent vertices. Define a
vertex v j to be good if all edges adjacent to it are good.

Claim 1: No edge of E ∩E is a good edge.

Suppose that such an edge exists and let µ be an outermost good edge join-
ing vertices v j−1 and v j. Let E ′

l be the disc in E containing µ . Let ε1 be the
outermost disc in E which is bounded by µ . The arc µ divides E ′

l into two
discs, one of which, ε2, contains tl . Then a slight isotopy of ε1∪ε2 produces
a bridge disc for tl which intersects E in fewer arcs than does E ′

l . Notice
that the disc E ′

l is disjoint from all other discs in E . Thus, (E ∪E ′
l)−E ′

j′ is
a collection of bridge discs which contradicts the choice of E . �(Claim
1)

Claim 1 implies that a vertex is good if and only if there are no adjacent
edges of E ∩E.

Claim 2: There exists a good vertex of ∂1Q on t which is not an endpoint
of t. Furthermore, we can arrange that one of v or w, whichever we wish, is
also a good vertex.

If E ∩E has no edges, every vertex of ∂1Q on t is a good vertex. If such
is the case, then since v and w are not adjacent vertices of ∂1Q, there exists
a good vertex interior to t. Also, both v and w are good vertices. Suppose,
therefore, that E ∩E contains edges.

Choose an outermost edge µ of E ∩E on E and let t ′ be the subarc of t which
cobounds with µ an outermost disc E ′. Think of E ′ as being a polygon with
edges consisting of µ and those t j which lie on t ′. Since no edge of E ∩E
joins adjacent vertices, E ′ has at least one vertex v j which is not an endpoint
of µ . Such a vertex is a good vertex and cannot be an endpoint of t.
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Suppose, now, that we also wish for v, say, to be a good vertex. If e is
an edge of E ∩E adjacent to v, we can push the end of e on v across the
arc ∂E − t, to be an endpoint at w. After moving the endpoints at v of
all edges of E ∩E over to w, v is a good vertex. This maneuvre does not
change the fact that no edges are adjacent to v j and so v j is still a good
vertex. �(Claim 2).

Let v j be a good vertex which is not an endpoint of t. Let D′
j be the disc

E ∩η(v j). The pairs {E ′
j,D

′
j} and {E ′

j+1,D
′
j} are both perturbing pairs for

H as a splitting of (M,T ).

Suppose that t lies in a component τ of Ts. If τ 6⊂ I, then {E ′
j,D

′
j} and

{E ′
j+1,D

′
j} are both perturbing pairs for (M,T). Suppose, therefore, that

τ ⊂ I. If the point τ ∩T0 lies on t it must be an endpoint of t. Thus, v j is not
the point τ ∩T0. At least one of E ′

j or E ′
j+1 does not contain the point τ ∩T0

in its boundary. Suppose, without loss of generality, that it is E ′
j. Then

{E ′
j,D

′
j} is a perturbing pair for the edge τ . This also is a contradiction.

Hence t does not lie in Ts.

A similar argument shows that t does not lie in Tv. Hence, the interior of
t is not disjoint from T0. Let e be the edge of T0 − Ts which has interior
not disjoint from t. If v j does not lie on e, then one of t j−1 or t j is entirely
disjoint from e. Consequently, one of {E ′

j,D
′
j} or {E ′

j+1,D
′
j} is a perturbing

pair for either an edge of I or H as a splitting of (M,T). (Which it is depends
on whether or not the component of Ts on which t j or t j+1 lies is or is not in
I.) Both possibilities contradict our hypotheses. Thus, v j ∈ e.

If v j is an endpoint of e, then one of t1 or tm lies on Ts. Without loss of
generality, suppose it is t1. Then v is a point on Ts which is not also on T0.
By Claim 2, we may arrange for v to be a good vertex. Let D′

v = E ∩η(v).
Then {E ′

1,D
′
v} is a perturbing pair for H as a splitting of (M,T ). Since t1

is completely contained in Ts and since v does not lie on T0, {E ′
1,D

′
v} is

a perturbing pair for an edge of I, if the component of Ts containing t1 is
contained in I; otherwise, {E ′

1,D
′
v} is a perturbing pair for H as a splitting

of (M,T). Thus, v j is not an endpoint of e.

Since t does not lie in Tv∪Ts, E must lie in either A or B. Suppose that v j−1
or v j+1 lies on T0. If v j−1 lies on T0, then t j ⊂ T0; and if v j+1 lies on T0,
then t j+1 ⊂ T0. In the former case, {E ′

j,D
′
j} is a perturbing pair for H as

a splitting of (M,T). In the latter case, {E ′
j+1,D

′
j} is a perturbing pair for

H as a splitting of (M,T). Thus, neither t j−1 nor t j lies on T0, but v j does
lie on T0. This implies that E must lie in A, as every edge of T0∩B has an
endpoint on ∂−M.
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The arc ∂E ′
j ∩ T contains a vertex v′ of Ts ∩ T0, since v j is interior to e

and v j+1 lies on Ts. The disc E ′
j is a pod disc with at least two of the

edges of T2∩E ′
j incident to v′ belonging to T0. Let E ′′

j be the closure of the
component of E ′

j−T2 containing those two edges. Then E ′′
j is a bridge disc

for a component of T0∩C2. Thus, {E ′′
j ,D

′
j} is a perturbing pair for H as a

splitting of (M,T). This contradicts our hypotheses. Thus, Case β cannot
occur. �

We next present a sequence of lemmas, applying Lemma 7.11 to the graphs
Γ̃i in D, A, B, and P.

Lemma 7.12. For i ≤ k, any component of the intersection between Γ̃i and
D is either a single point or a single edge joining distinct points on opposite
sides of Ts∩D.

Proof. Suppose that the lemma is not true and let i be the smallest number
for which the lemma fails. If Γ̃i contains an edge joining a point of ∂1Q to
itself, then since Γ̃i can be achieved by deformations of Q of types (i) and
(ii), by Frohman’s trick, H would be stabilized. Similarly, Γ̃i∩D does not
contain a closed loop.

Consider the following two possible configurations in Γi. (See Figure 22.)

(C1) An edge of Γ̃i in a disc D′ of D joins two vertices on the same side
of Ts∩D′.

(C2) There are two edges e1 and e2 of Γ̃i sharing an endpoint and joining
distinct points on opposite sides of Ts∩D′.

One of these two configurations can be achieved by deformations of type (i)
and (ii). In each configuration, there is an obvious container disc (labeled
E in the figure). By Lemma 7.11, the arc component of ∂E ∩T contains a
vertex of I∩T0. But in neither configuration is this the case. �

Similarly,

Lemma 7.13. Suppose that M is not a solid torus with T a core loop and
single spoke. For i ≤ k2, any component of the intersection between Γ̃i and
A containing an edge of Γ̃i lies in the closure Ã of a component of A−T
which is adjacent to the interior of an edge of T0 and is one of the following:

(1) A single edge joining the edge T0∩ Ã to a component of I∩ Ã.
(2) An edge joining distinct components of Ts ∩ Ã. At least one of the

components of Ts∩ Ã is in I.
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(3) The union of two edges of type (1). The edges have their endpoints
on T0 in common, and this point is on the interior of the edge T0∩
Ã. The edges have their other endpoints on distinct components of
I∩ Ã.

(4) The union of two edges. One of the edges is of type (1) and the other
is of type (2). Both components of Ts∩ Ã belong to I.

Proof. Suppose that the lemma is not true and let i be the smallest number
for which it is not true. Let e be an edge of Γ̃i which lies in the closure Ã of
a component of A−T . Let v and w be its endpoints.

Suppose, first, that Ã is not adjacent to the interior of an edge of T0. This
could only happen if edges from Ts lie in the interior of a square of A. In
fact, the endpoints of e must be contained on a component τ of Ts not in I.
The disc Ã has one arc of its boundary on ∂+M and the complementary arc
lies in τ . In the disc Ã, e cuts off a subdisc E which is disjoint ∂+M. By our
choice of i, E is a container disc for Γi. By Lemma 7.11, E ∩C2 is a bridge
disc for a component of T2 and the interior of ∂E ∩ τ contains a vertex of
I∩T0. Ã contains at most one vertex x of Ts∩T0. Since x∈ I, the square of A
containing Ã cannot have an edge of Ts interior to the square with endpoint
x. Consequently, Ã must be adjacent to the interior of an edge of T0.

We think of the disc Ã as being a square with two edges lying in components
of Ts, one edge on ∂+M, and one on T0. Let τ1 and τ2 be the components
of Ts∩ Ã. The only way in which τ1 = τ2 is if M is a solid torus, and T is a
core loop with a single spoke. Thus, we assume that τ1 6= τ2.

The edge e cuts off a disc E ⊂ Ã with boundary disjoint from ∂+M. If the
disc E is a container disc for Γi, by Lemma 7.11, e is an edge of type (1). If
E is not a container disc, it contains other edges. If e′ is an edge of Γ̃i∩E
cutting off from E a disc E ′ disjoint from e, the disc E ′ is a container disc
and so e′ is an edge of type (1). One endpoint of e must be on the same
component of Ts∩ Ã as an endpoint of e′. This implies that one endpoint of
e lies on I and that e is of type (1) or (2). See (C3) and (C4) of Figure 22.

Suppose that Γ̃i∩ Ã has two edges e1 and e2 which share at least one end-
point. If these edges share both endpoints, then H is stabilized, a contra-
diction. Suppose that e1 and e2 share one endpoint v and that the other
endpoints, w1 and w2, respectively, are distinct. By the previous paragraph,
both e1 and e2 are of type (1) or (2).

Suppose that they are both of type (1), but that e1 ∪ e2 is not of type (3).
Then v lies on a component of Ts. The edges e1∪e2 cut off a disc E from Ã
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with ∂E∩T ⊂ T0. Since i is the smallest number for which the lemma fails,
E is a container disc. This contradicts Lemma 7.11. Thus, if e1 and e2 are
both of type (1), e1∪ e2 is of type (3). See (C5) of Figure 22.

Suppose that e1, say, is of type (1) and e2 is of type (2). The disc cut
off from E by e1 ∪ e2 which has boundary containing e1 ∪ e2 is either a
container disc or contains an edge e3 of Γ̃i∩ Ã of type (1) with an endpoint
on the component of Ts∩ Ã containing w2. Thus, both components of Ts∩ Ã
belong to I. This implies that e1∪ e2 is of type (4).

Suppose that both e1 and e2 are of type (2). Then, by our choice of i, they
cut off from Ã a container disc E having ∂E ⊂ Ts. This contradicts Lemma
7.11.

Thus, the union of two edges sharing an endpoint is either of type (3) or (4).

Finally, suppose that a component contains three edges, e1, e2, and e3. Let
E ⊂ Ã be a disc cut off by e1∪e2∪e3 which is disjoint from ∂+M and which
contains at least two of {e1,e2,e3}. If e1, e2, and e3 form a closed loop in
Ã, then since these are all distinct edges in Γi, a meridian for any of these
edges intersects ∂E in a single point, showing that H is stabilized. Thus, E
is a container disc for Γi. However, the arc component of ∂E∩T lies solely
in T0 or Ts. This contradicts Lemma 7.11. See (C6) of Figure 22. �

Lemma 7.14. Suppose that Ã⊂ A is in a component of G adjacent to ∂−M.
Suppose that Γ̃i ∩ Ã has a component which is either an edge of type (1)
with neither endpoint in D, or of type (4), with neither endpoint in D. Then
there exist bridge discs E1 ⊂ Ã and E2 ⊂ η(v) which form a perturbing pair
for H as a splitting of (M,T ). The vertex v of ∂1Q lies on T0. The interior
of the arc ∂E1∩T contains a vertex of I∩T0.

Proof. This follows directly from Lemma 7.11 and Lemma 7.13. �

The proof of the next lemma is similar to the proof of Lemma 7.13 and so
we omit it. The configurations (C7) and (C8) of Figure 22 are relevant for
its proof.

Lemma 7.15. For i≤ k2, any component of the intersection between Γ̃i and
B lies in the closure B̃ of a component of B−T adjacent to ∂−M and is one
of the following:

(1) an edge joining distinct components of T ∩ B̃
(2) an edge joining the edge I∩ B̃ to the adjacent edge of T0.
(3) the union of two edges, one of each of the above types.
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Finally we turn to P. Again the proof is similar to the proof of Lemma 7.13
and so we omit it. As in the previous lemma, configurations (C7) and (C8)
of Figure 22 are relevant for its proof.

Lemma 7.16. For i≤ k2, any component of the intersection between Γ̃i and
P lies in the closure P̃ of a component of P−T adjacent to ∂−M and is an
edge joining distinct components of Tv∩ P̃.

We assemble the previous results to produce:

Lemma 7.17. For i ≤ k, if σ is a cycle in Γ̃i then either:

• σ bounds a horizontal disc in G, or
• M is a solid torus, T consists of a core loop T0 and a single spoke

Ts, and σ consists of a single edge in A joining the vertex of T to
itself.

Proof. Suppose, first, that M is a solid torus, and T consists of a core loop
and a single spoke. Let j be the smallest such number such that Γ̃ j contains
a container disc. The existence of an edge in A is enough to guarantee
that there exists a container disc. By Lemma 7.12, the container disc E is
contained in A. By Lemma 7.11, ∂E−T is an edge joining the vertex of T
to itself. This edge appears twice in ∂G, and so j = i and σ is the union of
both copies of this edge. Henceforth, we assume that this does not occur.

Let G′ be the component of G containing σ . Let E be a disc in G′ with
boundary σ . By sliding and isotoping Q, we may assume that Q is disjoint
from the interior of E. (See the proof of the Claim in [HS2, Lemma 4.3].)
Suppose that in Γi, σ runs across an edge e exactly once. Then E and a
meridian of the arc e form a stabilizing pair for H. Since we are assuming
that H is not stabilized, σ cannot run across any edge of Γi exactly once.

Suppose that at least one edge of σ lies in D. By Lemma 7.12, each such
edge joins distinct points on opposite sides of Ts∩D and no two edges have
endpoints in common. Choose e0 to be an edge of σ lying in a component
D′ of D, chosen so that among all such edges e0 is outermost. Let v and w
be the endpoints of e0. Since no component of Γ̃i ∩D has more than one
edge, there exist edges e−1 and e+1 in A∪B so that v∈ ∂e−1, w∈ ∂e+1, and
e−1∪e0∪e+1 lies in σ . Since v 6= w in Γi, the edges e−1 and e+1 are distinct
in Γi. Furthermore, the components Ã1 and Ã2 of (A∪B)−T containing
e−1 and e+1 are identified in M. Each component of (A∪B)−T appears
exactly twice in ∂G. Let e j ∈ {e−1,e+1} be the edge which is closest to the
edge Ã1∩ Ã2. The cycle σ runs exactly once across e j in M. Thus, E and a
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meridian of e j form a stabilizing pair of discs for H, a contradiction. Thus,
D contains no edge of σ .

Suppose that A contains an edge of σ . Since D contains no edge of σ , σ

must be contained in a component of G′ adjacent to ∂−M. The cycle σ has
a subpath ρ contained in two adjacent components Ã and Ã′ of A−T ⊂ ∂G
which are not identified in M. Thus, ρ ∩ Ã and ρ ∩ Ã′ are components of
Γ̃i∩A satisfying the hypothesis of Lemma 7.14. Let {E1,E2} and {E ′

1,E
′
2}

be the bridge discs in Ã and Ã′ respectively provided by Lemma 7.14. See
Figure 24. Notice that since E ′

1 ⊂ Ã′, ∂E ′
1 is disjoint from E2. Let E =

E1∪E ′
1 and push E slightly off I, so that E is a bridge disc for T0∩C2. Then

{E,E2} is a perturbing pair of discs for (M,T), contrary to our hypothesis.

E ′
1

AÃ

E1

BB

D D
Ã′A

FIGURE 24. The bridge discs E1 and E ′
1. The arc ρ is in red.

Thus, no edge of σ is contained in A∪D. Suppose that B⊂ ∂G contains an
edge of σ . Let ρ ⊂ σ be a path in some component B̃ of B−T . By Lemma
7.15, ρ appears as in Figure 19 or Figure 20. By Lemma 7.16, σ bounds a
horizontal disc in G. �

The next lemma is a slightly rephrased version of an amalgamation of The-
orems 1.1 and 3.1 of [HS1, Theorems 1.1 and 3.1]. Its proof (in the spirit
of [HS1]) follows easily from the technology developed so far.

Lemma 7.18. If M is a solid torus and T is a core loop with a single spoke,
then either H is perturbed as a splitting of (M,T) or T has a removable
cycle.

Henceforth we assume that if M is a solid torus, T is not a core loop with a
single spoke.
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Lemma 7.19. For i ≤ k, if σ is a cycle in Γ̃i then σ bounds a horizontal
disc of QGi.

This proof of this lemma should be compared to [HS2, Lemma 4.3]. (Note
the typographical error in the statement of that lemma: “vertical” should be
“horizontal”.) In particular, we refer the reader to that lemma for some of
the details of the argument.

Proof. By the proof of Lemma 7.17, σ bounds a horizontal disc E in G′

which has interior disjoint from Q1
G. Since H is not stabilized, σ does not

run across any edge of Γi exactly once. Let F be the component of ∂−M
adjacent to the component of G containing E. If F 6= S2, in M, E glues up
to be a surface F∗ parallel to F . If F = S2, then in another component of G,
there is a horizontal disc E ′ such that E ∪E ′ is a 2–sphere F∗ in M parallel
to F . Let M′ be the closure of the component of M −F∗ containing F .
Notice that M′ is homeomorphic to F × I. If E is not a crooked horizontal
disc, then T ∩M′ consists of vertical edges which are subsets of Tv. If E
is a crooked horizontal disc, then T ∩M′ is the union of vertical edges and
bridge edges. Each bridge edge is a subset of I ⊂ T .

Perform surgery on H, using E. This cuts H into two surfaces. One of these
surfaces H ′ lies in M′ and is a Heegaard splitting for (M′,T ∩M′). If E is not
a crooked horizontal disc, then by [HS2], H ′ is either stabilized or trivial.
If E is a crooked horizontal disc, then by [HS2], H ′ is either stabilized or
trivial as a splitting of (M′,T∩M′).

If H ′ is stabilized as a splitting of (M′,T ∩M′) or (M′,T∩M′) then H is
stabilized as a splitting of (M,T ) or (M,T). If H ′ is trivial of type II as a
splitting of (M′,T ∩M′) or (M′,T∩M′), then H is stabilized as a splitting
of (M,T ) or (M,T). If H ′ is trivial of type I as a splitting of (M′,T ∩M′)
or (M′,T∩M′) then H is boundary stabilized as a splitting of (M,T ) or
(M,T). Each of these possibilities contradicts our hypotheses. �

Corollary 7.20. k = n. That is, every disc Di is a splendisc.

Proof. Suppose that k < n so that Dk+1 is not a splendisc. Then δk+1 con-
tains an arc σ such that σ is a cycle in Q. By an isotopy of δk+1, we can
assume that σ does not bound a horizontal disc or crooked horizontal disc
in Q2

G. Thus, by Lemma 7.19, the cycle σ must contain an edge e of Q1
G.

Then, by the proof of [HS1, Lemma 4.2], H is stabilized. �

For the remainder, we assume that the nth deformation of Q has been per-
formed, so that R∩C2 is T2–∂–incompressible.
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Lemma 7.21. D contains no edges of Γn.

Proof. Let D′ be a disc in D and let x = D′∩T0. Let τ = Ts∩D′. By Lemma
7.12, each edge of Γn joins distinct points on opposite sides of τ . If x is not
of valence 1 in τ , then no edge in D joins opposite sides of τ . Thus, we may
assume that x is a vertex of valence 1 in τ .

Case α: Suppose that x 6∈ ∂1Q.

If τ is not disjoint from ∂1Q, then the component of τ −Γn which contains
x must be a pod leg in C2. This implies that the component of τ −Γn which
contains x is a single edge of T2. Hence, the component of D′∩C2 contain-
ing x does not contain an adjacent pod handle. Thus, by Proposition 5.3,
the component is a surface of type (3). This implies that there is an edge of
Γn in D′ joining one point to itself. This, however, contradicts Lemma 7.12.
Thus, τ and D′ are disjoint from ∂1Q. But D′ is an essential disc in M and
Q is a spine for M and so this is also an impossibility.

Case β : Suppose that x ∈ ∂1Q.

If D′ contains an edge e of Γn, such an edge joins distinct points of τ .
Choose e so that no point of ∂1Q on τ which is an endpoint of an edge of Γn
in D′ is closer to x than an endpoint of e. Let q 6= x be a point of ∂1Q which
can be joined by a minimal path ρ ⊂ τ to x with interior disjoint from ∂1Q.
Let D′′ be the closure of the component of D′− (T ∪Γn) which contains
ρ . The surface D′′∩C2 has at least one boundary component (∂η(x)) lying
completely on H. The other boundary component has one arc on T2 and one
arc on H. Such a surface does not appear in the conclusion to Proposition
5.3, and so D′ does not contain an edge of Γn. �

We are now in a position to conclude the proof of Proposition 7.1.

By Lemma 7.21, D contains no edges of Γn. Hence, before any deforma-
tions of Q, D∩C2 is T2–∂–incompressible. If T0 has an edge, D contains a
disc D′ with boundary essential on ∂+M. By Corollary 7.4, D′ is a vertical
cut disc. This contradicts the hypotheses of the Proposition. Thus, T0 has no
edges and so either M = B3 or M = ∂−M× I. If M = B3, then R = D and so
we are not in Case 2, but rather Case 1 which has already been completed.
Hence, M = ∂−M× I, T = Tv and R = P.

Let P̃ be the closure of a component of P− Tv. By Lemma 7.16, each
component of P̃∩Γn containing an edge is a single edge joining distinct
components of Tv∩ P̃. Suppose that e is such an edge, chosen so that out of
all such edges it is the closest to ∂−M. Let P̃0 be the component of P̃−Γn
between e and ∂−M. Consider, P̃0∩C2. If ∂−M ⊂C1, P̃0∩C2 is a surface
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which we can think of as a square having two edges on Tv and two edges
on H. This surface is supposed to be T2–∂–incompressible, but it does not
appear in the conclusion of Proposition 5.3. Thus, if ∂−M ⊂C1, P contains
no edges of Γn and so before any deformations of Q, P∩C2 = R∩C2 is
T2–∂ -incompressible. This was Case 1, which has already been completed.
Consequently, we may assume that ∂−M ⊂C2.

Suppose that P̃ has a portion of its boundary on ∂+M. Since ∂+M∪∂−M ⊂
C2, by Proposition 5.3, P̃ must contain an edge of Γn. In fact, the argument
of the previous paragraph applied to a component P̃0 between two adjacent
edges in P̃ shows that P̃ contains exactly one edge of Γn. Examining the
surfaces in the conclusion of Proposition 5.3, shows that, in fact, Γn∩ P̃ is
that unique edge. (In other words, apart from the endpoints of the edge,
there are no other vertices of ∂1Q on P̃.)

We will now show that Γ̃n is a cycle in P if ∂−M 6= S2 and two cycles in P
(one in each component of P ⊂ ∂G) if ∂−M = S2.

Suppose that a component τ of Tv has a vertex. Let v be a vertex of τ

adjacent to the closure P̃ of a component of P−T with boundary on ∂+M.
Since P̃ contains a single edge of Γn, and since every edge of T2 has at least
one vertex on ∂C2, v is the unique vertex of τ ∩ P̃. Let h be the edge of Tv
with one endpoint on ∂−M and the other endpoint at v. Let e be the edge
Γn∩ P̃.

By assumption (NPH), h is not a pod handle of T2. Thus, h must contain
a vertex of ∂1Q. Since h ⊂ ∂ P̃, h contains an endpoint of e. This implies
that if P′ 6= P̃ is the closure of a component of P−T containing h, then the
edge Γn∩P′ and the edge e ⊂ P̃ share an endpoint. Notice also that if two
components of P−T are adjacent along a vertical edge of Tv, then the edges
of Γn in those two components must also share an endpoint. Hence, Γn
consists of a cycle and, possibly, vertices of ∂1Q which lie in the boundaries
of components of P−T not adjacent to ∂−M.

We return to the consideration of the vertex v ∈ P̃. Let P′ be the closure
of a component of P− T containing v which is not adjacent to ∂−M. P′

cannot contain an edge of Γn and P′∩C2 must appear in the conclusion of
Proposition 5.3. Thus, ∂P′ contains a single point of ∂1Q. Choosing P′ so
that it is adjacent to P̃ shows that that point must be v.

Let D′ ⊂ P be a disc such that ∂D′ is the union of an arc in ∂+M and an arc
in P which intersects h once and is otherwise disjoint from T . Construct D′

so T ∩D′ ⊂ τ . Then T ′ = τ ∩D′ satisfies the hypotheses of Lemma A.1 (in
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the appendix), with P = ∂1Q. Thus, by Lemma A.1, ∂1Q∩ τ = v. Thus,
Γ̃n∩P is a single cycle if ∂−M 6= S2 and two cycles if ∂−M = S2.

By Lemma 7.19, each cycle of Γ̃n bounds a non-crooked horizontal disc in
G. Since ∂−M ⊂C2, C1 is the regular neighborhood of a surface parallel to
∂−M. This implies that H is not connected. This is not possible since H is
a Heegaard surface. Thus, M 6= ∂−M× I. �

8. THE PROOF OF THEOREM 3.1

Proof of Theorem 3.1 By Lemma 5.1, we can continue to assume that
condition (NPH) is satisfied. The proof is by induction on −χ(∂+M).

Case 1: M does not have a vertical cut disc.

If T satisfies (A)-(C) in Section 6, then the result follows from Proposition
7.1 by letting I = ∅. Suppose, therefore, that T does not satisfy at least one
of (A)-(C).

Let F be the union of the components of ∂−M which are disjoint from Tv.
Let V be the union of vertices of T0 which are disjoint from Ts. Let E be the
union of edges of T0 with zero or two endpoints on ∂−M which are disjoint
from Ts.

Lemma 8.1. Either it is possible to form a new graph T̂ by adding disjoint
edges to T so that (M, T̂ ) satisfies the hypotheses of Theorem 3.1 and also
assumptions (NPH) and (A) - (C), or T has a monotonic interior edge.

Proof. For each component F of F , let eF be a vertical arc joining F to
∂+M. For each edge ε of E let eε be an edge joining ε to ∂+M which is
vertical in the product structure on M− η̊(T ). For each vertex v of V , let
ev be an edge joining v to ∂+M which is vertical in the product structure on
M− η̊(T ). Let T ′ be the union of all the eF ,eε , and ev and let T̂ = T ∪T ′.
We need to show that T ′ can be chosen so that T ′ can be isotoped in the
complement of T so that (M, T̂ ) is in bridge position with respect to H. The
isotopy is not allowed to move T .

The “Proof of Theorem 1.1 given Theorem 3.1” from [HS1], shows that
this is possible for the edges eF and ev (with F ⊂F and v ⊂ V ). Suppose,
therefore, that ε is an edge in E . If ε ∩C1 or ε ∩C2 contains a bridge arc,
then attach eε to a bridge arc so that eε is not a perturbed edge. The arc eε

can then be isotoped to be in bridge position. If ε does not contain a bridge
arc, then it must be a monotonic interior edge. All the edges of E belong to
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T0, so the edge ε is an edge of T0 with distinct endpoints and with neither
endpoint on ∂M.

If T̂ is defined, it is obvious that the hypotheses of Theorem 3.1 and as-
sumptions (A) - (C) hold. Assumption (NPH) also holds, since no edge of
T̂ −T has an endpoint on ∂−M. �

We also need to know that adding edges does not create any new vertical
cut discs.

Lemma 8.2. Let T̂ be the graph formed from T by Lemma 8.1. If (M, T̂ )
has a vertical cut disc, then so does (M,T ).

Proof. Suppose that D is a vertical cut disc for (M, T̂ ). Let I be the edges
of T̂ which are not subsets of T . If D intersects an edge of T , then D is
a vertical cut disc for (M,T ). If D intersects an edge of I, then D is a
compressing disc for ∂+M, intersecting H in a single simple closed curve,
which is disjoint from T . However, T contains a spine T0 for M, and so T
is not disjoint from any boundary compressing disc for ∂+M. �

Let (M′,T ′) be obtained from (M,T ) by puncturing all interior monotonic
edges. (See Section 5.2.) It is obvious that M′ does not have any vertical
cut discs, since M had no vertical cut discs. It is equally easy to see that
since (M,T ) satisfies (NPH), (M′,T ′) does as well. Since T ′ has no interior
monotonic edges, the graph T̂ from Lemma 8.1 is defined. Assume that
(M, T̂ ) is in bridge position with respect to H. Assume also that no edge
of T̂ − T ′ is perturbed and that (M, T̂ ) satisfies the hypotheses (A)-(C) in
Section 6. Applying Proposition 7.1 with I = T̂ −T ′, T̂ in place of T , and
T ′ in place of T, we conclude that Theorem 3.1 holds for H as a splitting of
(M′,T ′). Hence, by Lemma 5.2, Theorem 3.1 holds for H as a splitting of
(M,T ).

This concludes Case 1. In the next case we will apply the inductive hypoth-
esis.

Case 2: There exists a vertical cut disc for ∂+M.

Let ∆ be a vertical cut disc for ∂+M. Let M′ be obtained from M by
boundary-reducing using ∆. Let T ′ = T ∩M′ and notice that |T ′∩∂+M′|=
|T ∩ ∂+M|+ 2 . Let H ′ be obtained from H by compressing along ∆∩C1
and a slight isotopy to make it properly embedded.

Lemma 8.3. There exists a vertical cut disc ∆ such that H ′ is a Heegaard
surface for (M′,T ′) and assumption (NPH) is satisfied. Furthermore the
disc component of ∆−H intersects T .
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Proof. Let ∆i = ∆∩Ci for i = 1,2 so that ∆2 is an annulus and ∆1 is a
disc. Let C′

i = Ci ∩M′ for i = 1,2. It is well-known that C′
i is a (possibly

disconnected) compressionbody for i = 1,2.

Claim: We may assume that ∆1∩T 6= ∅.

Suppose that ∆2∩T 6= ∅. Let τe be the edge of T2 which intersects ∆2. Let
τ be the component of T2 containing τe.

Case (a): τ is a bridge edge, bridge pod, or vertical pod and τe is not a pod
handle.

In this case, let E be a bridge disc containing τe in its boundary. Choose E
so that out of all such bridge discs, |E ∩∆| is minimal. An easy innermost
disc/outermost arc argument shows that ∆2 ∩E consists of a single arc γ

joining the puncture τe∩∆2 to ∆∩H. Let E ′ be a subdisc of E cut off by
γ . If τ is a pod, choose E ′ so that it does not contain the vertex of the pod
handle in its boundary. An isotopy of ∆ across E ′ carries ∆ to a disc ∆′

intersecting H in a single simple closed curve. Furthermore, ∆′ intersects T
exactly once, in a point contained in C1.

Case (b): Either τ is a vertical edge or τ is a vertical pod, τe is the handle,
and τe is adjacent to ∂+M.

In this case, ∆ is a compressing disc for ∂+M which is disjoint from the
spine T0 of M, an impossibility.

Thus, if ∆2∩T 6= ∅ then ∆2 intersects a pod handle of T2 adjacent to ∂−M.
This contradicts assumption (NPH). �(Claim)

By the claim, ∆1∩T 6= ∅. Let C′
i be the compressionbodies into which H ′

separates M′. Since T ′
2 is disjoint from ∆2 it is not hard to see that T ′

2 is
trivially embedded in C′

2. We show, therefore, that T ′
1 is trivially embedded

in C′
1.

Let D be a complete collection of bridge discs and pod discs in C1, chosen
so as to minimize |D ∩∆1|. It is not hard to see that if D is a bridge disc
in D then either D∩∆1 = ∅, or D runs along the edge τe of T1 intersecting
∆1. In this latter case, D∩∆1 consists of a single arc and D−∆1 consists of
two discs, each a bridge disc for an arc in T ′

1. Thus, each arc in T ′
1 with both

endpoints on H ′ has a bridge disc. A similar argument using vertical discs
in C1 in place of D shows that if τ is the component in T1 intersecting ∆1
then ∆1 cuts τ into two components, one of which is a vertical arc and one
of which is a bridge edge or bridge pod. Any vertical edge or vertical pod
disjoint from ∆1 remains a vertical edge or vertical pod in C′

1. Hence, T ′
1 is

trivially embedded in C′
1.
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Finally, we need to show that (M′,T ′) satisfies (NPH). Consider an edge e
of T1 or T2 adjacent to ∂−M. Such an edge is not a pod handle of T since
(M,T ) satisfies (NPH). Every non-boundary vertex of T ′ is a vertex of T ,
and so if a component of e− of T ∩M′ is a pod handle, e− contains a vertex
of T , implying that e− is a pod handle of T ′, a contradiction. Suppose,
therefore, that e− is an edge of T1 or T2 with an endpoint on H. If e is
disjoint from ∆, then e does not become a pod handle in T ′. If e intersects
∆, each component of e−H ′ has an endpoint on H ′ and so no new pod
handles are introduced. �

Notice that if M′
0 is a component of M′, then (M′

0,T
′

0) satisfies the hypothe-
ses of Theorem 3.1 and −χ(∂+M′

0) <−χ(∂+M). By the inductive hypoth-
esis, since −χ(∂+M′

0) <−χ(∂+M), we may assume that (M′
0,T

′) satisfies
one of Conclusions (1) - (6) of Theorem 3.1. Without loss of much gener-
ality, from now on we assume that M′ is connected and consider H ′ to be a
splitting of (M′,T ′). H can be reconstructed from H ′ by attaching a tube to
the ends of two vertical arcs ψ1 and ψ2 in C′

2.

Lemma 8.4. If H ′ is stabilized or boundary-stabilized, then H is stabilized
or boundary-stabilized.

Proof. This is obvious from the construction. �

Lemma 8.5. Either T has a removable path disjoint from ∂+M or, if H is
not perturbed, it is possible to rechoose ∆ so that H ′ is not perturbed.

Proof. Let {D1,D2} be perturbing discs with D1 ⊂C′
1 and D2 ⊂C′

2. Let ψ1
and ψ2 be the arcs in T ∩C′

2 which are glued together in M. Let τ j be the
component of T ∩C′

1 adjacent to ψ j for j = 1,2.

If D1 is disjoint from ψ1∪ψ2 then H is perturbed. Assume, therefore that
∂D1 ∩H has one endpoint at ψ1 ∩H. Notice that at least one of τ1 or τ2
must not contain a vertex of T as otherwise, an interior of edge of T would
be disjoint from H, contradicting bridge position.

Claim (a): Suppose that τ2 is a bridge edge or pod. Furthermore, suppose
that there is a bridge disc D containing the edge of τ2 adjacent to ψ2 such
that ∂D∩H has disjoint interior from ∂D2∩H. Then either H is perturbed
or T has a removable cycle.

In this case, the union of D with D1 in M is a bridge disc for T2 which
intersects D2 only at points of T ∩H. Thus, H is cancellable. In fact,
if H is not perturbed, then the loop which is the closure of the union of
(∂D∪ ∂D1 ∪ ∂D2)−H is a removable cycle with the disc ∆ playing the
role of E in (RP3). �(Claim (a)).
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Claim (b): If τ2 is a bridge edge or pod and if τ1 is a bridge edge, then the
hypotheses of Claim (a) hold.

By the proof of [ST4, Lemma 3.1] (cf. [TT, Lemma 8.6]) there exists a pod
disc for τ2 which is disjoint from D2−T . �(Claim (b))

Claim (c): If τ2 is a bridge edge or pod then either H is perturbed, or T has
a removable cycle, or there exists a vertical cut disc ∆ such that H ′ is not
perturbed.

Suppose that H is not perturbed and that no cycle of T is removable. Sup-
pose that E is a bridge disc containing e in C2. Isotope E so that it intersects
∆ minimally. Then E ∩∆ consists of a single arc. Since H is not perturbed
and since no cycle of T is removable, the interiors of the arcs ∂E ∩H and
∂D2 ∩H intersect. Assume that E has been chosen so as to minimize the
number of intersection points. The process of converting M to M′ cuts E
into two bridge discs, one of which is D1. Call the other one D. Assume
that {D1,D2} are a perturbing pair for H ′.

Isotope ∆ along the edge D∩H so that ∂∆ is moved past one intersection
point of the interior of D∩H with the interior of D2 ∩H. See Figure 25.
Then after using this new ∆′ to create M′, the pair {D1,D2} is no longer
a perturbing pair for H ′. By the choice of E to minimize |∂E ∩ ∂D1|, we
are done unless {D,D2} is now a perturbing pair. This can only happen
if the closure of (∂D2 ∪ ∂E)−H is a cycle. Since by Claims (a) and (b),
τ1 contains a vertex of T , τ2 does not contain a vertex. Then applying
Claims (a) and (b) with τ1 and τ2 reversed completes the proof of Claim
(c). �(Claim (c))

Thus, we may assume that τ2 is not a bridge edge or pod. That is, τ2 is a
vertical edge.

Claim (d): Either H is perturbed or the component σ of T2 adjacent to the
point ∂D2∩H ∩T −∂D1 is a vertical edge.

First, notice that τ1 cannot contain a vertex of T , since then e would be a pod
handle for T2 adjacent to ∂−M, contradicting assumption (NPH). Thus, τ1
is a bridge edge. Suppose that σ is a pod or bridge edge. Then by the proof
of Claim (b), there is a bridge disc E for σ such that {D2,E} is a perturbing
pair for H ′. Since E is disjoint from ψ2, {D2,E} is also a perturbing pair
for H. Thus, σ must be a vertical edge. �(Claim (d))
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E

∆

ψ1

DD1

C′
1

σ

C′
2

D2

τ2

τ1

ψ2

FIGURE 25. Isotope the disc ∆ so that it envelopes one of
the intersections between ∂D∩H and ∂D2 ∩H. The inter-
section point is the hollow circle and the disc ∆′ is formed
from ∆ by the dashed green isotopy.

We conclude by noticing that if H is not perturbed then ζ = e∪σ ∪ (∂D2−
H) is a removable edge. Since ψ1 and ψ2 lie in C′

2, σ and τ2 lie in C′
1. In

particular, the endpoints of ζ lie on ∂−M and so ζ is disjoint from ∂+M, as
desired. �

Lemma 8.6. If T ′ contains a removable path, then that path is also remov-
able in T .

Proof. By the definition of removable path, the path is disjoint from ψ1 ∪
ψ2. Therefore, it continues to be a removable path in T . �

Lemma 8.7. (M′,T ′) and H ′ do not satisfy conclusions (5) or (6) of Theo-
rem 3.1.

Proof. Case a: M′ is a 3–ball, T ′ is a connected graph with at most one
vertex, and H ′ is the boundary of a regular neighborhood of that vertex.

In this case, a cycle of T would be disjoint from H, contradicting the defi-
nition of bridge position. �(Case
a)

Case b: M′ = ∂−M′× I, and H− η̊(T ) is isotopic in M− η̊(T ) to ∂+M−
η̊(T ).

In this case, there would be a non-backtracking path in T starting and ending
at ∂−M and remaining entirely inside C1. This contradicts the definition of
bridge position. �(Case b) �

Combining the two previous lemmas we immediately obtain:
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Corollary 8.8. If (M,T ) contains a vertical cut disc, then H and (M,T )
satisfy one of conclusions (1) - (4) of Theorem 3.1.

APPENDIX A. COMBINATORIAL LEMMA

Lemma A.1. Suppose that T ′ is a finite tree containing at least one edge
that is properly embedded in a disc D′. Suppose that P is a finite nonempty
collection of points on T ′−∂T ′ such that the following conditions hold:

• If D̃ is the closure of a component of D′−T ′ then D̃ contains exactly
one point of P in its boundary.

• Each edge of T ′ without an endpoint on ∂D′ contains at least one
point of P , possibly at one or both of its endpoints.

• If e1 and e2 are edges in T ′, each with a single endpoint on ∂D and
which share the other endpoint, then e1 ∪ e2 contains at least one
point of P .

Then |P| = 1 and T ′ is either a single edge or has a single vertex not in
∂T ′. Furthermore, in the latter case, the point in P is the single vertex of
T ′−∂T ′.

Proof. We induct on |∂T ′|. If |∂T ′| = 2, then T ′ is a single edge and the
lemma is obvious. We suppose, therefore, that |∂T ′| ≥ 3. We will use the
term face to denote the closure of a component of D′−T ′. We begin with a

Key Observation: Suppose that p1 and p2 are distinct points in P and that
β ⊂ T ′ is a path with interior disjoint from P joining them. Then, since
every edge of T ′ with neither endpoint on ∂D′ contains a point of P , the
interior of β can contain at most one vertex of P .

Since |∂T ′| ≥ 3, there are at least 3 distinct edges of T ′ with an endpoint on
∂D′ and no edge of T ′ has both endpoints on ∂D′. Consequently, every face
of T ′ contains in its boundary at least two edges of T ′ having an endpoint
on ∂D′. Since each face contains exactly one point of P in its boundary,
the must be an edge α of T ′ that has one endpoint on ∂D′ and that does not
contain a point of P in its interior. Let ∂0α be the endpoint of α not on
∂D′.

Claim: The point ∂0α is in P .

Suppose not. Let D̃1 and D̃2 be the two faces of D′−T ′ adjacent to α . Since
T ′ is properly embedded in D′, D̃1 6= D̃2. Let p1 and p2 be the points of P
contained in the boundaries of D̃1 and D̃2 respectively. These are distinct
points. Let β be the path in T ′ joining them and notice that the interior of
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β is disjoint from P . By the key observation, ∂0α is the sole vertex of T ′

contained in the interior of β . Push the interior of β off T ′ away from α

to create a path β ′. If the interior of β ′ is disjoint from T ′ then we have
contradicted the hypothesis that each face of D′−T ′ is adjacent to exactly
one point of P . Thus the interior of β ′ must intersect T ′. As we travel from
p1 to p2 along β ′, let e be the first edge of T we encounter on the interior
of β ′. Notice that e has an endpoint at ∂0α but that e 6= α . See Figure 26.

α

D̃2

D̃1

p2

e

p1

FIGURE 26. The edge e.

One face D̃3 of D′−T ′ contains both p1 and e. Since p1 is not in e and since
D̃3 contains exactly one point of P , e does not contain a point of P . Thus,
e has one endpoint on ∂D′ and the other at ∂0α . Since α is disjoint from
P , α ∪ e contradicts our assumption about P . This contradiction shows
that ∂0α ∈P . �(Claim)

Let T ′′ be the result of removing α from T ′. If ∂0α is a trivalent vertex of
T ′, it is no longer a vertex of T ′′. T ′′ is a tree with |∂T ′′|< |∂T ′| since one
endpoint of α is on ∂D′. By the claim, T ′′ and P satisfy the hypotheses
of the lemma. Hence, by induction, |P|= 1 and T ′′ is either a single edge
or T ′′ has a single interior vertex and that vertex is the sole point in P .
Since ∂0α ∈ P, reattaching α to produce T ′ shows that T ′ also satisfies the
conclusions of the lemma. �
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