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ABSTRACT. We give a proof of Green’s theorem which captures the underlying
intuition and which relies only on the mean value theorems for derivatives and
integrals and on the change of variables theorem for double integrals.

1. INTRODUCTION

The counterpoint of the discrete and continuous has been, perhaps even since Eu-
clid, the essence of many mathematical fugues. Despite this, there are fundamental
mathematical subjects where their voices are difficult to distinguish. For example,
although early Calculus courses make much of the passage from the discrete world
of average rate of change and Riemann sums to the continuous (or, more accurately,
smooth) world of derivatives and integrals, by the time the student reaches the cen-
tral material of vector calculus: scalar fields, vector fields, and their integrals over
curves and surfaces, the voice of discrete mathematics has been obscured by the
coloratura of continuous mathematics. Our aim in this article is to restore the bal-
ance of the voices by showing how Green’s Theorem can be understood from the
discrete point of view.

Although Green’s Theorem admits many generalizations (the most important un-
doubtedly being the Generalized Stokes’ Theorem from the theory of differentiable
manifolds), we restrict ourselves to one of its simplest forms:

Green’s Theorem. Let S ⊂ R2 be a compact surface bounded by (finitely many)
simple closed piecewise C1 curves oriented so that S is on their left. Suppose that

F =

(
M
N

)
is a C1 vector field defined on an open set U containing S. Then

∫
∂S

F ·ds =
∫∫
S

∂N
∂x
− ∂M

∂y
dA

By a C1 curve we mean a curve which can be parameterized by a function γ : [a,b]→
R2 such that γ ′ is continuous and everywhere non-zero. A curve is piecewise C1

if it can be parameterized by a continuous function γ : [a,b]→ R2 such that the
interval [a,b] can be subdivided as

a = x0 < x1 < .. . < xn = b
1
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with the restriction of γ to each interval [xi,xi+1] being a C1 curve. When we say
that F is a C1 vector field, we mean that M,N : U →R are differentiable and have
continuous derivatives.

Although Green’s theorem has many important consequences (including its ver-
sions for regions in higher dimensions) in a first course on vector calculus the most
significant consequence is that it allows for the operator Curl to be given an eas-
ily understood geometric interpretation as the rate of rotation of an infinitessimal
paddlewheel in a vector field describing fluid flow. Indeed, it is fair to call the
integrand

scurlF =
∂N
∂x
− ∂M

∂y
of the integral on the right in the statement of Green’s theorem, the scalar curl of
the vector field F.

The proofs of Green’s theorem presented in most vector calculus books (e.g. in
[C, MT]) first use rather tedious and unenlightening calculations to prove Green’s
theorem in the case when S is a so-called Type III region (this is a region which con-
tains all vertical and horizontal line segments having endpoints in the region). The
standard proofs then use the Sum Property of regions satisfying the conclusion of
Green’s theorem to extend Green’s theorem to surfaces which can be decomposed
into Type III regions. A hand-waving appeal to “limit arguments” gives the version
of Green’s theorem stated above.

Apart from the hand-waving (which is often good pedagogy in introductory texts)
we object to the proofs on two other grounds. First, the unenlightening calculations
give no indication as to why Green’s theorem should hold. Second the approach
forces the logic lying behind the intuition of Curl to be delayed unacceptably long.
The classic text [S] and others attempt to rectify this by “proving” Green’s theorem
via arguments which are difficult to make rigorous in an appealing way for begin-
ning vector calculus students. (For example, although scalar curl can be defined as
a limit of certain integrals, it is not at all obvious that the limit exists.) Apostol, in
the first (but not second) edition of his classic book [A, Theorem 10.43] provides
one of the most complete treatments of Green’s Theorem. His version relies on
a rather difficult decomposition of the surface into finitely many so-called Type I
and Type II regions. Although our approach (unlike Apostol’s) does not give a
version of Green’s Theorem as general as that stated above, we do show how some
relatively simple combinatorics and linear algebra combine with the intuition of
Riemann Sums and the Change of Variables Theorem to give a very general ver-
sion of Green’s Theorem.

2. SCALAR CURL

Our proof of Green’s Theorem begins by using the traditional mean value theo-
rems for derivatives and integrals to formalize the intuition of scalar curl as an
infinitessimal rate of circulation.
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Mean Value Theorem for Rectangles. Suppose that F =

(
M
N

)
is a differentiable

vector field defined on a solid rectangle R⊂R2 of positive area with sides parallel
to the x and y axes. Then there exist points x,y ∈ R such that

1
area(R)

∫
∂R

F ·ds =
∂N
∂y

(y)− ∂M
∂x

(x).

We observe that if either M or N is the zero function, then the term on the right is
the scalar curl of F. Also, if we take a sequence of rectangles Rn converging to a
point a then, if F is of class C1, the term on the right converges to scurlF(a). Hence,
we have shown that scalar curl is an infinitessimal rate of circulation without using
Green’s theorem. Of course, we wonder if we can dispense with requiring our
regions to be rectangles. The best way to do that does seem to be to first prove
Green’s theorem (which we do using this Mean Value Theorem).

Proof of the Mean Value Theorem for Rectangles. Suppose that R = [a,b]× [c,d].
Parameterize the top and bottom sides of ∂R as (t,c) and (t,d) for a ≤ t ≤ b,
respectively. Parameterize the left and right sides of ∂R as (a, t) and (b, t) for
c ≤ t ≤ d respectively. Note that our parameterizations of the top and left sides
of ∂R have the opposite orientations from that induced by ∂R. Using the standard
definition and properties of integrals over curves, we have:
(1)

1
area(R)

∫
∂R

F ·ds =
−1

b−a

∫ b

a

M(t,d)−M(t,c)
d− c

dt +
1

d− c

∫ d

c

N(b, t)−N(a, t)
b−a

dt

Since M and N are continuous, the integrands are continuous. By the Mean Value
Theorem for Integrals, there exists (x0,y0) ∈ R so that the right side of Equation
(1) equals

(2) −M(x0,d)−M(x0,c)
d− c

+
N(b,y0)−N(a,y0)

b−a
.

Since the functions M(x0, ·) and N(·,y0) are differentiable on the intervals [c,d]
and [a,b] respectively, by the Mean Value Theorem for Derivatives, there exists
(x1,y1) ∈ R so that Expression (2) equals

−∂M
∂y

(x0,y1)+
∂N
∂x

(x1,y0).

Letting x = (x0,y1) and y = (x1,y0), we have our mean value theorem. �

3. GREEN’S THEOREM FOR SUMS OF SURFACES

We say that the pair (S,F) satisfies Green’s theorem if∫
∂S

F ·ds =
∫∫

S
scurlFdA



APPROACHING GREEN’S THEOREM VIA RIEMANN SUMS 4

and that S satisfies Green’s Theorem if (S,F) satisfies Green’s theorem for all C1

vector fields F on S. In this section, we present standard material which allows
us to show that a surface satisfies Green’s Theorem if it can be decomposed into
pieces which do.

Recall that if κ is an oriented piecewise C1 curve and if −κ denotes κ with the
opposite orientation then

(3)
∫

κ

F ·ds =−
∫
−κ

F ·ds

We can use this simple observation to relate integrals over the boundary of a region
to sums of integrals over subregions. Suppose that that a compact surface S0 ⊂ R2

is subdivided by piecewise C1 curves into compact subsurfaces S1, . . . ,Sn. For each
i, orient ∂Si so that Si is on the left as ∂Si is traversed, as in Figure 1.

S1
S2

S3 S4 S5

S6

FIGURE 1. S0 is subdivided into surfaces Si for 1≤ i≤ 6

Consider a continuous vector field F on S0. For each i 6= 0, ∂Si is divided into
piecewise C1 curves. Let γ be one of them and observe that, by Equation (3),
either both

∫
γ

F · ds and −
∫

γ
F · ds show up in the sum ∑

n
i=1
∫

∂Si
F · ds or γ ⊂ ∂S0.

Consequently,

(4)
∫

∂S0

F ·ds =
n

∑
i=1

∫
∂Si

F ·ds

Since double integrals are additive over regions intersecting in a set of measure 0,
we have

Sum Property. Suppose that S0 is a compact surface with piecewise C1 boundary
and that it has been subdivided by piecewise C1 curves into subsurfaces Si for
1≤ i≤ n. If F is a C1 vector field on S0 such that for each 1≤ i≤ n, the pair (Si,F)
satisfies Green’s theorem, then the pair (S0,F also satisfies Green’s Theorem.
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4. GREEN’S THEOREM FOR RECTANGLES

With our mean value theorem for rectangles, we can establish Green’s Theorem
for rectangles. Let R = [a,b]× [c,d] be a rectangle in R2 with sides parallel to the

x and y axes and let F =

(
M
N

)
be a C1 vector field defined on R.

It is easiest to proceed by considering separately the i and j components of F. Let

Fi =

(
M
0

)
and let Fj =

(
0
N

)
, so that F = Fi +Fj. By the additivity properties of

scalar curl, integrals over curves, and double integrals if (R,Fi) and (R,Fj) satisfy
Green’s Theorem, then (R,F) does as well. Henceforth, let F∗ be either Fi or Fj.

Subdivide the intervals [a,b] and [c,d] like so:

a = x0 < x1 < .. . < xn = b
c = y0 < y1 < .. . < yn = d

so that all of the rectangles Ri j = [xi,xi+1]× [y j,y j+1] have the same length ∆x and
the same height ∆y. (This is not strictly necessary but makes the exposition easier.)
By Equation (4) ∫

∂R
F∗ ·ds = ∑

i, j

∫
∂Ri j

F∗ ·ds

The summands on the right each measure the circulation of F∗ around the boundary
of a rectangle and so by the mean value theorem for rectangles, in each Ri, j there
exists xi j such that

∫
∂Ri j

F ·ds = scurlF(xi j)∆x∆y. Consequently,∫
∂R

F ·ds = ∑
i, j

scurlF(xi j)∆x∆y

The sum on the right hand side is a Riemann sum (see Figure 2 for an example).
Since F is C1 and scurlF is continuous,∫

∂R
F ·ds = lim

(∆x,∆y)→(0,0)
∑
i, j

scurlF(xi j)∆x∆y =
∫∫

R
scurlFdA.

We’ve established:

Green’s Theorem for Rectangles. If R is a rectangle with sides parallel to the x
and y axes then R satisfies Green’s Theorem.

By the Sum Property, we also deduce that Green’s Theorem holds for any compact
surface S⊂R2 whose boundary is the union of finitely many horizontal and vertical
line segments. Such surfaces are not necessarily Type III surfaces, although they
are, of course, finite unions of Type III surfaces.

Taking stock of where we are: we’ve done more work than is traditional but accom-
plished less since we do not even have Green’s Theorem for all Type III surfaces.
In the next section we use the Change of Variables Theorem and some linear alge-
bra to rectify this. On the other hand, our proof of Green’s Theorem incorporates
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FIGURE 2. A rectangle with the points xi j in each subrectangle Ri j
.

both the intuition behind scalar curl and the sum property and is not burdened with
overly tiresome calculations.

5. BENDING OUR SURFACES

The derivative of a differentiable vector field F =

(
M
N

)
is the 2×2 matrix

DF =

(
∂M/∂x ∂M/∂y
∂N/∂x ∂N/∂y

)
Noting that the terms of scurlF can be found in this matrix, we define the scalar
curl of any 2×2 matrix to be

scurl
(

a b
c d

)
= c−b

In particular, scurlF= scurlDF. An easy computation shows that, for 2×2 matrices
A and B,

(5) scurl(BT AB) = (scurlA)detB,

where BT is the transpose of B and and detB is the determinant of B.

Equation (5) allows us to study the relationship between surfaces related by certain
kinds of distortions. Consider compact, connected surfaces Ŝ and S in R2, each
bounded by piecewise C1 curves. Suppose that H : Ŝ→ S is a continuous bijection
of class C2 (i.e. all second partial derivatives exist and are continuous) and with
the property that detDH is non-zero on Ŝ. We call H a diffeomorphism from Ŝ
to S. Since H is C2, the entries of DH are continuous. Thus, the sign ε of detDH
is either always positive or always negative. If it is the former, we say that H is
orientation-preserving; and if the latter, that H is orientation-reversing.
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Example 5.1. Let f ,g : R→R be C2 functions with the property that f (x)< g(x)
for all x. Let a < b and c < d be real numbers. Define

H(x,y) =
(

x,
g(x)− f (x)

d− c
(y− c)+ f (x)

)
.

Then H : R2→ R2 is a C2 function with the property that detDH(x,y)> 0 for all
(x,y). Let Ŝ = [a,b]× [c,d] and let S = H(Ŝ). Then the restriction of H to Ŝ is an
orientation preserving diffeomorphism from the rectangle Ŝ to S.

If we choose

f (x) =
{ x3 sin(1/x) x 6= 0

0 x = 0

and g(x) = f (x)+1, then H is a diffeomorphism from the square Ŝ = [0,1]× [0,1]
to a region whose boundary has infinitely many oscillations (Figure 3). This region
cannot be subdivided into finitely many Type III regions.

Ŝ S
H

FIGURE 3. The square Ŝ is on the left and the distorted surface S
is on the right. The oscillations in ∂S have been exaggerated for
effect.

Given a C1 vector field F on S, we can “pull” it back to a C1 vector field F̂ on Ŝ
defined by

F̂ = DHT (x)F(H(x))
for all x ∈ Ŝ. The vector field F̂ is essentially the vector field F moved to the
surface Ŝ and adjusted to account for the distortion caused by DH. Figure 4 shows
an example where the surfaces are related by a rotation.

We seek to show that S satisfies Green’s Theorem if and only if Ŝ does. We begin
by examining the relationship between the line integrals.

Let γ̂ : [a,b]→ S be a C1 curve, and let γ = H ◦ γ̂ . By definition, we have∫
γ̂

F̂ ·ds =
∫ b

a

(
DHT (γ(t))F(γ(t))

)
· γ̂ ′(t)dt.
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FIGURE 4. The square Ŝ (on the left) and the diamond S (on the
right) and their vector fields (1,0) and (1/

√
2,1/
√

2) respectively
are related by the diffeomorphism which rotates the plane by π/4
radians clockwise.

By the chain rule [B, Theorem 8.15],

γ̂
′(t) =

d
dt

H−1(γ(t)) = DH−1(γ(t))γ ′(t).

Since for any two vectors v,w ∈R2, v ·w = vT w and since for any two 2×2 matri-
ces A and B, (AB)T = BT AT , we have(

DHT (γ(t))F(γ(t))
)
· γ̂ ′(t) = F(γ(t)) · γ ′(t).

Consequently,

(6)
∫

γ̂

F̂ ·ds =
∫

γ

F ·ds.

If γ̂ : [a,b]→ R2 is a C1 parameterization of a portion of ∂ Ŝ, then γ = H(γ̂) is
a C1 parameterization of a portion of ∂S, possibly with the wrong orientation. It
will have the wrong orientation if and only if H is orientation-reversing. Applying
Equation (6) to the C1 portions of ∂ Ŝ, we see that

(7)
∫

∂ Ŝ
F̂ ·ds = ε

∫
∂S

F ·ds.

We now consider the relationship between the scalar curl of F̂ and the scalar curl
of F. Suppose that H(x,y) = (H1(x,y),H2(x,y)) and let

Q1 =

(
∂ 2H1
∂x2

∂ 2H1
∂y∂x

∂ 2H1
∂x∂y

∂ 2H1
∂y2

)
and Q2 =

(
∂ 2H2
∂x2

∂ 2H2
∂y∂x

∂ 2H2
∂x∂y

∂ 2H2
∂y2

)
.

Notice that by the equality of mixed second partial derivatives [B, Theorem 8.24],
scurlQ1 = scurlQ2 = 0.
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A computation shows that DF̂ is equal to

M(H)Q1 +N(H)Q2 +
(
DHT )D(F(H))

The scalar curl for matrices is linear and so

scurl F̂ = scurl
(
DHT D(F(H))

)
= scurl

(
DHT DF(H)DH

)
,

where we’ve used the chain rule to obtain the second equality. Thus, by Equation
(5), scurl F̂ =

(
scurlF

)
detDH and so

(8) scurl F̂ = ε
(

scurlF
)∣∣detDH

∣∣,
We are now in a position to apply the change of variables theorem from multi-
variable calculus. Without loss of generality, we may assume that S and Ŝ are
connected (if not, do what follows for each component). By the change of vari-
ables theorem [M, Theorem 17.1] (applied to the interiors of S and Ŝ), for any C1

function f : S→ R: ∫∫
S

f dA =
∫∫

Ŝ
f ◦H |detDH|dA

Letting f = scurlF and applying Equation (8), we obtain:

(9) ε

∫∫
S

scurlFdA =
∫∫

Ŝ
scurl F̂dA.

Combining Equations (7) and (9) results in:

Equivalence under Diffeomorphism. The pair (S,F) satisfies Green’s theorem if
and only if the pair (Ŝ, F̂) does. In particular, if Ŝ satifies Green’s Theorem then S
also does.

Together with Green’s Theorem for Rectangles and the Sum Property, this shows
that if S is any surface which can be decomposed by piecewise C1 curves into sub-
surfaces each of which is diffeomorphic (by a C2 diffeomorphism) to a rectangle
then S satisfies Green’s Theorem. By the classification of surfaces up to piece-
wise C2 diffeomorphism, it follows that Green’s theorem holds for all compact
surfaces S ⊂ R2 with piecewise C2 boundary (i.e. surfaces with boundary having
parameterizations with continuously differentiable and non-vanishing first deriva-
tives) and all C1 vector fields F. Rather than delving into these details, however,
we content ourselves with noticing that the surface S from Example 5.1 satisfies
Green’s Theorem. Since S cannot be decomposed into Type III regions we have
finally succeeded in surpassing the traditional approach.
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