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Abstract

Boring is an operation that converts a knot or two-component link Lα in
a 3–manifold M into another knot or two-component link Lβ . It general-
izes many classical operations in knot theory, such as rational tangle re-
placement and the Kirby band move. It is particularly interesting to ask
about the properties of Lβ if Lα is a split link or unknot. Boring is the
knot-theory version of an operation, called “refilling a meridian”, on a 3–
manifold M containing a genus two handlebody W . Refilling a meridian is,
in turn, an example of the well-known operation of adding a 2–handle to
the boundary of a 3–manifold. This dissertation develops sutured manifold
techniques which are useful for studying essential surfaces in 3–manifolds
obtained by adding a 2–handle to the boundary of a 3–manifold. Some
of the main results include criteria guaranteeing that a knot or link Lβ ob-
tained by boring a split link is hyperbolic, a solution for a large class of pairs
(M,W ) of a conjecture of Scharlemann concerning refilling meridians of a
genus two handlebody, and criteria guaranteeing that adding a 2–handle to
a genus two boundary component of a simple 3–manifold produces a sim-
ple 3–manifold. These results also give new proofs of classical theorems
concerning rational tangle replacement and Seifert surfaces of tunnel num-
ber one knots and links. For example, new proofs are given of the fact that
composite knots have unknotting number greater than one, that genus is
super-additive under band connect sum, and that tunnel number one knots
and links have a minimal genus Seifert surface disjoint from a given tunnel.
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PREFACE v
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Notation and Conventions

M usually a compact, orientable 3–manifold containing a genus
2–handlebody

W a genus 2 handlebody
N a compact, orientable 3–manifold; often M−W̊
F a boundary component, usually of genus 2, of N; often the

boundary of W
a an essential curve in F
α the core of a 2–handle attached to F along a
α the cocore of the 2–handle with core α

b an essential curve in F
β usually the core of a 2–handle attached to b; occasionally a

1–complex in a sutured manifold
β the cocore of the 2–handle with core β

b∗ if b is non-separating, a curve bounding a thrice-punctured
sphere with ∂η(b)⊂ F

β ∗ the core of a 2–handle attached to b∗

N[a] the 3–manifold obtained by attaching a 2–handle to the curve
a

M[α] the 3–manifold obtained by refilling the meridian α of W
∂X the boundary of a space X
∂1N[a] ∂N−F
∂0N[a] ∂N[a]−∂1N

viii



NOTATION AND CONVENTIONS ix

γ sutures on ∂N[a]
γ̂ sutures on ∂0N[a]; that is γ ∩∂0N[a]
η(X) a closed regular neighborhood of a space X
cl(X) the closure of a space X
X̊ , intX the interior of the space X
|X | the number of connected components of X
Q usually a parameterizing surface in a sutured manifold
Q usually a surface in N[b] whose intersection with N is a pa-

rameterizing surface.
q usually the number of components of ∂Q parallel to b
q∗ usually the number of components of ∂Q parallel to b∗

q̃ q+q∗

Sn the n–dimensional sphere.
D2 the 2–dimensional unit disc
I the unit interval
N the natural numbers

We work in the smooth or PL category; in particular, all surfaces in 3–
manifolds are tame. All homology and cohomology groups have integer
coefficients.



CHAPTER 1

Boring Knots and Refilling Meridians

1.1. Boring and Genus 2 Handlebodies

Given a genus two handlebody W embedded in a 3–manifold M, a knot or
two-component link can be created by choosing an essential disc α ⊂W
and boundary-reducing W along α . That is, W − η̊(α) is the regular neigh-
borhood of a knot or link Lα . We say that the exterior M[α] of this regular
neighborhood is obtained by refilling the meridian disc α [S5]. Similarly,
given a knot or link Lα ⊂ M we can obtain another knot or link Lβ by the
following process:

(1) Attach an arc to Lα forming a graph
(2) Thicken the graph to form a genus two handlebody W .
(3) Choose a meridian β for W and refill β .

The arc in step (1) and the handlebody in step (2) are called the boring
arc and the boring handlebody respectively. Refilling the meridian α of
the added arc returns Lα . Any two knots in S3 can be related by such a
move if we allow α and β to be disjoint; just let W be a neighborhood of
the wedge of the two knots. We’ll restrict attention, therefore, to meridians
of W which cannot be isotoped to be disjoint. If a knot or link Lβ can be
obtained from Lα by this operation say that Lβ is obtained by boring Lα .
Since the relation is symmetric we may also say that Lα and Lβ are related
by boring.

EXAMPLE. Every tunnel number 1 knot or link in S3 can be obtained by
boring a split link or unknot using an unknotted genus 2 handlebody W (i.e.
a handlebody which is half of a genus 2 Heegaard splitting for S3). Figure
1.1 shows how the trefoil knot can be obtained from the unknot by boring.

Boring generalizes several well-known operations in knot theory. These in-
clude rational tangle replacements such as band sums and crossing changes
and the Kirby band move [K1, FR]. Figures 1.2 and 1.3 show an exam-
ple of how a Kirby band move can be accomplished by boring. The band
move begins with a framed oriented link and creates another framed link

1
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FIGURE 1.1. Cutting along one of the pictured discs pro-
duces an unknot; cutting along the other produces a trefoil
knot.

by attaching a band which joints one component to a push-off of the other
component. (In the figures, the framing of the knot on the right is ±3, de-
pending on orientations.)

FIGURE 1.2. An example of a Kirby band move.

FIGURE 1.3. The Kirby band move from Figure 1.2 as bor-
ing. Cutting along one of the pictured disc produces the orig-
inal link; cutting along the other disc produces the link after
the band move.
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Figure 1.4 shows how a rational tangle replacement can be accomplished
with boring. One disc has boundary the equator of the ball. The other disc
is formed by banding two ends of the attached one-handles together by a
band which can be isotoped into the four-punctured sphere. In the figure,
only the core of the band is drawn.

FIGURE 1.4. A rational tangle replacement operation is boring.

By work of Bleiler, Eudave-Muñoz, Scharlemann, and others, rational tan-
gle replacements producing split links and unknots are fairly well under-
stood; this understanding motivates many of the results contained in this
thesis. Section 1.4 describes rational tangle replacements and their connec-
tion to the operations of boring and refilling. Many classical theorems are
reproved from this new perspective in Section 8.4. New information about
essential surfaces in the exterior of such a knot or link is also obtained.
Sections 8.2 and 8.3 carry out this study.

Shifting away from a knot-theoretic viewpoint to a 3-manifold-theoretic
viewpoint, we can view the operation of refilling meridians as a special
case of 2–handle attachment. The main question under consideration is,
“Given an essential curve in the boundary of a 3–manifold, what conditions
guarantee that attaching a 2–handle to that curve produces a 3–manifold
which is irreducible and boundary-irreducible?” Typically this question is
answered by placing elementary conditions on the original 3–manifold (e.g.
irreducible, boundary-irreducible, simple) and then bounding the intersec-
tion number between any two curves which produce reducible or boundary-
reducible 3–manifolds.

This thesis proves two new theorems about attaching 2–handles to non-
separating curves on a genus two boundary component. These are described
in the next section.



1.2. 2–HANDLE ADDITION 4

1.2. 2–handle addition

Let N be an orientable 3-manifold and F 6= S2 a non-empty boundary com-
ponent. If a ⊂ F is an essential simple closed curve, we can form a new
3-manifold N[a] by attaching a 2–handle to a. Let H = α×I where α is a 2–
disc and let f : ∂α× I → η(a) be a homeomorphism such that f (∂α) = a.
If F is not a torus, N[a] is defined to be N ∪ f H. If F is a torus, N ∪ f H has
an additional spherical boundary component which was obtained by cut-
ting F along a and attaching α × ∂ I to the boundary of F . Form N[a] by
gluing a 3–ball to this spherical boundary component. When F is a torus,
attaching a 2–handle to N along a in F is more conventionally known as
Dehn-filling N with slope a in F . For a genus 2 handlebody W embedded
in a 3–manifold M, refilling a meridian α of W is equivalent to attaching a
2–handle to M−W̊ along ∂α .

A fundamental result of Jaco [J] (generalizing a result of Przytycki) says
that if F is compressible in N but F−a is incompressible in N then N[a] has
incompressible boundary. Attempts to extend this result usually attempt to
to compare the manifolds obtained by attaching a 2–handle to a curve a⊂ F
and by attaching a 2–handle to a curve b⊂ F where a and b are curves that
cannot be isotoped to be disjoint. The goal is then to conclude something
about the geometry of the curves a and b based on the structures of N[a] and
N[b]. Much is known about the case when F is a torus. For example, if N is
a knot exterior in S3 and a is a meridian of F then if N[b] is reducible a and
b intersect exactly once [GLu1]. (The Cabling Conjecture asserts that, in
fact, the knot is a cable knot and the surgery slope the slope of the cabling
annulus. This is discussed more in Section 8.3). Other Dehn-surgery results
(e.g. [GW]) include (often sharp) upperbounds on the minimal intersection
number ∆(a,b) of a and b if N is hyperbolic but neither N[a] nor N[b] is
hyperbolic.

When F is not a torus, far less is known. Still, there are some important re-
sults. Scharlemann and Wu [SW], for example, prove that if N is hyperbolic
then if N[a] is reducible and N[b] is boundary-reducible, either a and b can
be isotoped into a common once-punctured torus or ∆ = 0. More recently,
Zhang, Qiu, and Li [ZQL] have shown that if N is hyperbolic, if a and b are
separating curves, and N[a] and N[b] are reducible then ∆ ≤ 4. They have
also shown [LQZ] that if N is hyperbolic and F has genus 2 then there is
at most one separating slope a so that N[a] is boundary-reducible. (In this
paper, hyperbolic will always mean the same thing as simple. That is, N
is simple if it is irreducible, boundary-irreducible, anannular, and atoroidal.
Since we are always studying compact orientable 3–manifolds with non-
spherical boundary, by Thurston’s geometrization theorem this is equivalent
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to having a finite volume hyperbolic structure on the manifold obtained by
removing torus boundary components. We do not use this fact.)

Here are two new results concerning 2–handle addition.

THEOREM 6.1. Suppose that F has genus 2, that N is compact, orientable,
and irreducible, that ∂N−F consists of tori, that N is boundary-irreducible,
and that there is no essential annulus in N with both boundary components
parallel to a⊂ F or both boundary components parallel to b⊂ F. If a and b
are non-isotopic separating non-parallel curves, then one of N[a] and N[b]
is irreducible.

THEOREM 6.2. Suppose that F has genus 2, and that N is simple. Suppose
that a and b are non-isotopic separating curves on F. Suppose that N[a] is
reducible. Then if N[b] is non-simple it contains an essential annulus with
boundary on non-torus components of ∂N[b] and ∆ = 4.

1.3. Scharlemann’s Conjecture

The remaining results concern the situation of refilling meridians α and β

of a genus 2 handlebody W embedded in a 3–manifold M. Scharlemann,
in the paper [S5] which introduces this idea, formulated a conjecture about
circumstances guaranteeing that M[α] or M[β ] would be irreducible and
boundary-irreducible. He proved the conjecture, or closely related state-
ments, in several situations, most prominently when ∂W compresses in
N = M − W̊ or when at least one of α or β is non-separating. He sug-
gests that sutured manifold theory might aid in the complete resolution of
the conjecture.

In this paper, a solution using sutured manifold theory is given for a number
of 3–manifolds M and a number of embeddings of W in M. Here is the result
which is most easily stated. More detail on Scharlemann’s conjecture and
other related results are given in Section 7.1.

THEOREM 7.4. Let M be a compact, orientable 3–manifold other than S1×
S2 or a lens space. Assume that any two curves of ∂M which compress in
M are on the same component of ∂M. Suppose that W is a genus two
handlebody embedded in M such that W intersects every essential sphere in
M at least three times and every essential disc at least two times. Suppose
also that N = M − W̊ is irreducible. Let α and β be essential discs in
W which cannot be isotoped to be disjoint. Assume that M[α] and M[β ]
contain no essential disc which is contained in N and that ∂α and ∂β do
not compress in N.
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Then one of M[α] and M[β ] is irreducible and if both are irreducible then
one is not a solid torus. Furthermore if ca ⊂ ∂M is a curve which com-
presses in M[α] and cb ⊂ ∂M is a curve which compresses in M[β ] then ca
and cb cannot be isotoped to be disjoint.

1.4. Rational Tangle Replacement

Returning to a knot-theoretic interpretation of refilling meridians of a genus
2 handlebody, we can use sutured manifold theory to learn a great deal
about knots or links which differ from an unknot or split link by a rational
tangle. For the definitions of various types of tangles, I follow Eudave-
Muñoz [EM2].

A tangle (B,τ) is a properly embedded pair of arcs τ in a 3–ball B. Two
tangles (B,τ) and (B,τ ′) are equivalent if they are homeomorphic as pairs.
They are equal if there is a homeomorphism of pairs which is the identity
on ∂B. The trivial tangle is the pair (D2 × I,{−.5, .5}× I). A rational
tangle is a tangle equivalent to the trivial tangle. Each rational tangle (B,r)
has a disc Dr ⊂ B separating the strands of r (each of which is isotopic into
∂B). The disc Dr is called a trivializing disc for (B,r). The distance d(r,s)
between two rational tangles (B,r) and (B,s) is simply the minimal inter-
section number |Dr ∩Ds|. We will often write d(Dr,Ds) instead of d(r,s).
A prime tangle (B,τ) is one without local knots (i.e. every meridional an-
nulus is boundary-parallel) and where no disc in B separates the strands of
τ .

Given a knot Lβ ⊂ M and a 3–ball B′ intersecting Lβ in two arcs such that
(B′,B′∩Lβ ) = (B′,rβ ) is a rational tangle, to replace (B′,rβ ) with a rational
tangle (B′,rα) is to do a rational tangle replacement on Lβ . Notice that
that η(Lβ )∪B is a genus 2 handlebody W . The knots or links Lβ and Lα can
be obtained by refilling the meridians β and α respectively. If M = S3 then
(B,τ) = (S3− B̊′,Lβ − B̊′) is a tangle. Figure 1.5 depicts a rational tangle
replacement converting the unlink to the Hopf link and how to achieve this
by boring. Notice that this rational tangle operation is simply a crossing
change. Since 2d(α,β ) = ∆(∂α,∂β ), for a crossing change d = 2. We
will use the notation of this paragraph whenever we consider rational tangle
replacement.

In [EM2], Eudave-Muñoz states the following related theorems. He proves
theorems (EM 1) - (EM 3). Theorems (BS 4), (S 5), and (EM 6) were
proven previously by Bleiler and Scharlemann [BS1, BS2], Scharlemann
[S1], and Eudave-Munoz [EM1], respectively. Gordon and Luecke [GLu2]
have given different proofs of Theorems (EM 1) - (EM 3).
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FIGURE 1.5. A rational tangle replacement converting the
unlink to the Hopf link.

THEOREM (Eudave-Muñoz). Suppose that a rational tangle replacement
of distance d on a knot or link Lβ produces a knot or link Lα . Let (B,τ),
(B′,rα) and (B′,rβ ) be as above.

(EM 1) If (B,τ) is prime and Lα and Lβ are composite then d ≤ 1.
(EM 2) If (B,τ) is prime, if Lα is a split link and if Lβ is composite then

d ≤ 1.
(EM 3) If (B,τ) is any tangle and if Lα and Lβ are split links, then rα = rβ .
(BS 4) If (B,τ) is a prime tangle and if Lα and Lβ are both unknots, then

rα = rβ .
(S 5) If (B,τ) is any tangle, if Lβ is a trivial knot and if Lα is a split link

then (B,τ) is a rational tangle and d ≤ 1.
(EM 6) If (B,τ) is prime, if Lβ is a composite knot or link and if Lα is the

unknot, then d ≤ 1.

The work in this paper can be used to give new proofs of all but the first. In
fact, we give two new proofs of Theorems (EM 2), (EM 3) and (S 5).

The histories of (S 5) and (EM 6) are interesting. Consider a split link L
in S3 with components L0 and L1 and an embedding b : I× I → S3 so that
b(I×{i}) is contained on Li for i ∈ ∂ I and so that b(I× I̊) is disjoint from
L. We can form a knot K = L0#bL1 by forming the band sum of L0 and L1
using the band b. K is defined to be

K =
(
L−b(I×∂ I)

)
∪b(∂ I× I).
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See Figure 1.6 for an example.

FIGURE 1.6. A band sum creating the granny knot

We often ignore the distinction between the function b and its image. If the
band intersects a splitting sphere for L in a single arc then K is the connected
sum of L0 and L1 and b is a trivial band. By looking at a regular neighbor-
hood of b(I× [.25, .75]), K and L are easily seen to differ by rational tangles
distance 1 apart.

Matumoto [K2, Problem 1.2 A] asked: if K is the unknot, must L be the
unlink and b a trivial band? Scharlemann [S1] answered this in the affirma-
tive using a purely combinatorial argument. Later, Gabai and Scharlemann
independently and simultaneously proved that the genus of K is at least the
sum of the genera of L0 and L1, answering a question of Lickorish [K2,
Problem 1.1]. Gabai’s proof [G4] was a simple application of his sutured
manifold theory [G1, G2, G3] and a trick of Abby Thompson. Scharle-
mann’s proof [S3] was an application of combinatorial sutured manifold
theory, his de-foliated version of Gabai’s machinery. It is fairly easy to see
that the statement of (S 5) includes Scharlemann’s original band sum the-
orem (see Section 8.4). The methods of this paper also give a new proof
of Gabai and Scharlemann’s theorem on the superadditivity of genus under
band sum.

The unknotting number of a knot is the minimal number of crossing changes
necessary to convert the knot into the unknot. It has long been conjec-
tured that unknotting number is additive with respect to connected sum [K2,
Problem 1.69 B ]. A weaker conjecture (due to de Souza) is that the con-
nected sum of n knots has unknotting number at least n [K2, Problem 1.69
A]. For n = 2, this was proven by Scharlemann [S2] using a completely
combinatorial argument. It was later reproven by Scharlemann and Thomp-
son [ST1] using combinatorial sutured manifold theory. Theorem (EM 6)
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is a generalization of this fact that was proven completely combinatorially
(without sutured manifold theory). The present work continues the tradi-
tion of using sutured manifold theory to reprove and extend theorems orig-
inally proved combinatorially. The methods of this paper have the added
advantage that, in some circumstances, they significantly simplify previ-
ously existing sutured manifold theory proofs, for example the proof that
an unknotting number one knot is prime.

Generalized crossing changes (see Figure 1.7) are another type of rational
tangle replacment. These have been extensively studied by Scharlemann
and Thompson [ST1] and Lackenby [L1, L3] using a Dehn surgery de-
scription of generalized crossing changes. Since the inequalities I obtain
are similar to Lackenby’s, I will briefly summarize one of his results.

FIGURE 1.7. A generalized crossing change

A crossing disc D ⊂ S3 for a knot K ⊂ S3 is a disc which is intersected by
the knot exactly twice with intersection number zero. Let L = ∂D be the
crossing link. Performing ±1/n Dehn-surgery (n ∈ N) on L (using merid-
ian/longitude coordinates) produces a generalized crossing change of order
n using L. Notice that a generalized crossing change of order n can also be
described as a rational tangle replacement of one tangle by a tangle of dis-
tance d = 2n away. A Seifert surface for a knot or link L is an orientable
surface S without closed components for which ∂S = L. We will usually
work with the surface S− η̊(L) which we also refer to as a Seifert surface.

A consequence of Lackenby’s result [L1, Corollary 3.5] is:

THEOREM. Let K be a non-trivial knot in S3 and K′ a knot obtained by a
generalized crossing change of order d/2 > 1 using L. Suppose that the
genus of K′ is strictly less than that of K and that F is a properly embedded
orientable surface in the exterior of K. Then there is an ambient isotopy of
L in S3− η̊(K) so that after the isotopy

−χ(F)≥ (d−1)|F ∩L|
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Lackenby’s work actually applies to Dehn twists about knots other than
those bounding crossing discs. The results of this paper provide similar,
but more limited, information about knots and links obtained from a split
link or unknot by boring or rational tangle replacement. Here are simplified
versions of two theorems for boring operations more general then rational
tangle replacement. Section 1.5 describes some results pertaining to Dehn
Surgery.

The first theorem turns out to be related to two theorems of Scharlemann
and Thompson. The first [ST1] states that either a satellite torus for a knot
can be isotoped to be disjoint from a given crossing disc or there is a min-
imal genus Seifert surface for the new knot which intersects the crossing
link in no more than two points. (Lackenby’s previously mentioned result
is closely related to this fact.) The second related theorem of Scharlemann
and Thompson [ST2] states that a tunnel for a tunnel number one knot can
be isotoped and slid to be disjoint from a minimal genus Seifert surface.
These connections are explained more in Section 7.

THEOREM 7.5. Suppose that Lα is a knot or link in S3 obtained by bor-
ing a knot or link Lβ using handlebody W. Suppose that either α is non-
separating or ∂W − ∂α is incompressible in N. Suppose also that one of
the following holds:

• Lβ is an unknot
• Lβ is a split link and ∂W −∂β is incompressible in N.

Then there is a minimal genus Seifert surface for Lα which is disjoint from
α .

The second theorem, at the cost of putting more hypotheses on the embed-
ding of W in M = S3, studies circumstances guaranteeing that a knot or link
Lβ obtained by a split link (for example) is hyperbolic.

THEOREM 7.8. Suppose that Lβ is a knot or link obtained by boring the
link Lα using a handlebody W ⊂ S3 with N = S3−W̊ boundary-irreducible.
Suppose that Lα is a split link or that there is no minimal genus Seifert
surface for Lα disjoint from α . If the exterior of Lβ contains an essential
annulus or torus then one of the following holds:

(1) There is an essential torus in N
(2) There is an essential annulus in the exterior of Lβ which is dis-

joint from β and which is either disjoint from or has meridional
boundary on some component of Lβ .
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(3) ∆ = 2 and if there is an essential annulus then there is one which
is either disjoint from or has meridional boundary on some com-
ponent of Lβ .

Returning to rational tangle replacement here are two theorems similar to
Lackenby’s. The first is a restatement of Theorem 7.7 for rational tangle
replacement.

SIMPLIFIED COROLLARY 8.4. Suppose that Lβ ⊂ S3 is obtained by a ra-
tional tangle replacement of distance d ≥ 1 on a split link or unknot Lα .
Assume that (B,τ) is prime and that there does not exist an essential disc in
the exterior of Lα which is disjoint from α . Then Lβ has a minimal genus
Seifert surface Q disjoint from β such that one of the following holds:

• β is properly isotopic into Q
• −χ(Q)≥ d and Lα is a split link
• −χ(Q)≥ d−1 and Lα is an unknot.

An example is given which shows that the first possibility cannot be elimi-
nated.

We can also obtain an inequality similar to Lackenby’s for studying essen-
tial planar surfaces with meridional boundary in the exterior of a knot Lβ .

THEOREM 8.6. Suppose that the knot or link Lβ is obtained from a knot
or link Lα by a rational tangle replacement of distance d ≥ 1. Suppose
that (B,τ) is prime and that Lα is a split link or does not contain a minimal
genus Seifert surface disjoint from the arc α . If Lβ has an essential properly
embedded meridional planar surface with m boundary components, then it
contains such a surface Q with |∂Q| ≤ m such that either Q is contained in
B or

|Q∩β |(d−1)≤ |∂Q|−2.

1.5. Dehn Surgery Results

The results of this paper can be applied to surfaces other than essential
spheres, discs, meridional planar surfaces, and Seifert surfaces. Planar sur-
faces and punctured tori with non-meridional boundary are a particularly
interesting class of surfaces. Theorems about such surfaces can often be
translated into statements about the results of Dehn surgery on such a knot
or link.

The cabling conjecture postulates that surgery on a non-trivial knot in S3

produces a reducible manifold only if the knot is cabled and the surgery
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slope is the slope of the cabling annulus. Gordon and Luecke [GLu1] have
shown that if a knot has a reducing surgery then the surgery slope is an
integer. The answer to the question of what 2–component links have re-
ducing surgeries is likely much more complicated. Reducing surgeries on
2–component links are easy to create: most every surgery on a split link in
S3 produces a reducible manifold. If the surgery slopes are integers and a
Kirby band-move is performed, the resulting link is likely not a split link
but still has a surgery producing a reducible manifold. Another way of cre-
ating such a 2–component link is to take a knot with a reducing surgery as
one component and take any knot in its complement with the meridional
surgery as the other component. One could then perform a Kirby band-
move on these knots, producing a still more complicated 2–component link
with a reducing surgery.

More complicated than the cabling conjecture is the question of what Dehn
surgeries on what hyperbolic knots in S3 will produce a manifold containing
an essential torus. Gordon and Luecke [GLu3] have shown that such a Dehn
surgery slope must be either an integer or half an integer. Furthermore, they
have shown [GLu4] that the only hyperbolic knots with half integer surgery
slope producing a toroidal manifold are the knots and surgeries described
by Eudave-Muñoz [EM5].

If Dehn surgery on a hyperbolic knot or link K with slope r (if K is a link
with n components, r is an n-tuple of slopes, one on each component) pro-
duces a reducible or toroidal manifold it is not difficult to show that there
is, in the complement of K, an essential planar surface or punctured torus
whose slope on K is the the surgery slope. The final result we shall men-
tion here in the introduction concerns the possibilities for essential planar
surfaces and punctured tori in the exterior of a knot or link obtained by ra-
tional tangle replacement on a split link. The theorem is not sufficient for
understanding reducing and toroidal surgeries on such a knot or link due
to the possibility of the second conclusion. It may, however, be helpful for
understanding Dehn surgery on a strongly invertible knot or link. Hirasawa
and Shimokawa [HS], for example, proved that if attaching a band to a non-
trivial (2,2p) torus link produces an unknot then the band is “standard”, i.e.
can be isotoped into the essential annulus. This is used to prove that no
Dehn surgery on a strongly invertible knot can yield the lens space L(2p,1)
for any p ∈ Z.

SIMPLIFIED THEOREM 8.8. Suppose that Lβ is a knot or link obtained by
rational tangle replacement of distance d on a knot or link Lα . Suppose
that (B,τ) is prime and that Lα is a split link or does not contain a minimal
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genus Seifert surface disjoint from α . Then if Lβ contains an essential pla-
nar surface or punctured torus in its exterior there is such a surface Q such
that one of the following holds:

• Lβ is a link and ∂Q is disjoint from some component of Lβ .
• Q is disjoint from β and β is isotopic into Q.
• Q has meridional boundary on some component of Lβ .
• d ≤ 3.

In the non-simplified version of the theorem, much more information is
given concerning the last case.

1.6. Technical Advances

Other interesting aspects of the present work are certain technical advances
pertaining to sutured manifold theory and combinatorial methods in the
study of 2–handle addition. An overview of combinatorial sutured mani-
fold theory is given in Section 2; for the moment some familiarity with the
theory is assumed.

Vaguely speaking, the significance of the sutured manifold theory results in
this thesis is that they “relativize” previously existing methods in sutured
manifold theory. Combinatorial sutured manifold theory has often relied
on certain (non-empty) 1–complexes properly embedded in the manifold.
For all previous applications (that I am aware of) the 1–complex has been
either a knot [S3, S4], an edge with a loop at each vertex [S3, EM3, EM4],
or a single vertex with two loops attached [ST1, Ko, EM4]. Alternatively,
many other sutured manifold theory results [G4, S3, L2] have not used a
1–complex at all, but have instead taken a sutured manifold hierarchy to be
disjoint from a certain torus boundary component. At the end of the hier-
archy, a solid torus is attached to that torus component and the results are
analyzed. Both philosophies are present in the current work. The “first su-
tured manifold theorem” does not (in principle) use a 1–complex and stud-
ies hierarchies which are disjoint from a certain annulus in the boundary
of the manifold. (For technical reasons, however, the proof is best written
using a 1–complex.) At the end of the hierarchy the result of attaching a
2–handle to the annulus is analyzed. The “second sutured manifold theo-
rem” takes the 1–complex in the sutured manifold to be an arc. Theorem
9.1 of [S3] is adapted by replacing the knot in that theorem with the arc.
As part of that process, certain well-known combinatorial structures (e.g.
Scharlemann cycles) are adapted and reworked.
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The first sutured manifold result is usually more powerful, but the second
sutured manifold result does have its uses. Some of these uses are explored
in Section 9.

Before the first and second sutured manifold results are stated and proved,
a quick overview of combinatorial sutured manifold theory is given.



CHAPTER 2

Combinatorial Sutured Manifold Theory

2.1. Introducing Sutured Manifold Theory

In [S3], Scharlemann introduced a combinatorial version of Gabai’s sutured
manifold theory [G1, G2, G3]. A much fuller exposition of combinatorial
sutured manifold theory can be found in Scharlemann’s paper. In this intro-
duction, I focus only on those aspects which will be used in what follows.
The notation is chosen to correspond to that used by Scharlemann. It is not
necessarily the notation which will be used later. For example, in this sec-
tion β will be a 1–complex, but in later sections β will be a disc in a genus
2 handlebody.

DEFINITION. A sutured manifold (M,γ,β ) consists of a compact oriented
3–manifold M, a collection of oriented simple closed curves γ ⊂ ∂M, and a
finite 1–complex β ⊂ M. Either γ or β may be the empty set. Let A(γ) =
η(γ) and let T (γ) be a collection of tori in ∂M which are disjoint from
γ . If ∂M is non-empty we require cl(∂M− (γ ∪ T (γ)) to consist of two
(possibly disconnected) surfaces each with boundary equal to γ and whose
intersection is exactly γ . The intersection of one of these surfaces with
∂M−A(γ) is called R+ = R+(γ) and the intersection of the other surface
with ∂M−A(γ) is called R− = R−(γ). (See Figure 2.4.) We consider the
surfaces to be given normal orientations so that R+ has outward pointing
normal and R− has inward pointing normal.

We require the 1–complex β to be properly embedded in M; that is, ∂β =
β ∩ ∂M consists of the valence 1 vertices of β . We say that M has the
sutured manifold structure (M,γ,β ), often abbreviated to (M,γ) when β is
unambiguous. The notation R± will indicate R+(γ) or R−(γ) and R(γ) will
indicate R+∪R−. In this paper, β will either be empty or will be a properly
embedded arc.

Sutured manifold theory is most useful when H2(M,∂M) is non-trivial.
Note that this is always the case when ∂M 6= ∅. If ∂M consists entirely
of tori then M has a sutured manifold structure with γ = ∅.

15
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3–manifolds containing incompressible surfaces have long been studied by
using hierarchies. Sutured manifold theory studies hierarchies of sutured
3–manifolds. The theory is both more powerful, and more complicated
than, typical hierarchy arguments. The main tool for studying and using
hierarchies of sutured manifolds is the Thurston norm, or more generally, a
β -norm.

DEFINITION. For a compact connected surface S ⊂ M in general position
with respect to the 1–complex β , let

χβ (S) = max
(
0, |S∩β |−χ(S)

)
where χ(S) denotes the euler characteristic of S. For a disconnected com-
pact surface S let χβ (S) be the sum of χβ (Si) over all components Si of S.
For a class a ∈ H2(M,X) define

χβ (a) = inf{χβ (S) : S is an embedded representative of a}.

If β = ∅, then χβ : H2(M,X)→ Z+ is the Thurston norm, otherwise it is
called a β -norm.

Of utmost importance is the notion of β–tautness for both surfaces in a
sutured manifold (M,γ,β ) and for a sutured manifold itself.

DEFINITION. Let S be a properly embedded surface in M.

• S is β–minimizing in H2(M,∂S) if χβ (S) = χβ [S,∂S].
• S is β–incompressible if S−β is incompressible in M−β .
• S is β–taut if it is β–incompressible, β–minimizing in H2(M,η(∂S))

and each edge of β intersects S with the same sign. If β = ∅ then
we say either that S is ∅–taut or that S is taut in the Thurston norm.

DEFINITION. (M,γ,β ) is β–taut if

• ∂β is disjoint from A(γ)∪T (γ)
• T (γ), R+(γ), and R−(γ) are all β–taut.
• M is β–irreducible; that is, M−β is irreducible.

Notice that if (M,γ) is β–taut then χβ (R+) = χβ (R−) and no edge of β

has both endpoints in R±. If β = ∅ we will often abbreviate “∅–taut” to
simply “taut”. Figure 2.1 depicts several easy examples. In A) the manifold
is a 3–ball with a single suture on its boundary. It is ∅–taut. In B) (M,γ)
is a 3–ball with a single suture on ∂M and arcs β joining R+ to R−. It is
both β–taut and ∅–taut. Example C) is similar to B) except that there are
three sutures on ∂M. In this case (M,γ) is β–taut but not ∅–taut. Example
D) depicts a solid torus with two parallel sutures on the boundary. As long
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as the sutures are not meridians of the solid torus, the sutured manifold is
∅–taut.

γ

A.

C.

β

B.

D.

FIGURE 2.1. Four easy examples

This thesis is most interested in the situation when β is an arc properly
embedded in a 3–manifold. The following are, therefore, important exam-
ples of sutured manifolds. Their claims follow easily from the preceding
definitions.

EXAMPLE. Let M be a compact, oriented 3–manifold with toral boundary
and let T1 and T2 be distinct torus components of ∂M. Let β be a properly
embedded arc in M with an endpoint on each of T1 and T2 and let b be
a meridian curve on ∂η(β ). Suppose that M − η̊(β ) is irreducible and
that ∂ (M− η̊(β ))− b is incompressible in M− η̊(β ). Let γ = ∅, T (γ) =
∂M−(T1∪T2). Let R+ = T1 and R− = T2. Then (M,γ,β ) is β–taut (Figure
2.2.A) and (M− η̊(β ),b) is ∅–taut (Figure 2.2.B).

EXAMPLE. Let M be a compact, oriented 3–manifold with toral boundary.
Let T1 be a torus component of ∂M. Let β be a properly embedded arc in M
with endpoints on T1 and let b be a meridian curve on ∂η(β ). Suppose that
M− η̊(β ) is irreducible. Choose parallel curves γ ⊂ T1 which separate the
endpoints of β . If ∂ (M− η̊(β ))− (b∪ γ) is incompressible in M− η̊(β )
then (M,γ,β ) is a β–taut sutured manifold (Figure 2.3.A). Also, (M,γ ∪b)
is taut (Figure 2.3.B).

Since we are interested in hierarchies of sutured manifolds we need to spec-
ify the sorts of surfaces along which we will be decomposing our sutured
manifolds.
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R+ R− R+ R−
A. B.

FIGURE 2.2. When β is an arc joining two distinct bound-
ary components

R+ R− R+ R−

A. B.

FIGURE 2.3. When β is an arc joining a boundary compo-
nent to itself

DEFINITION. Suppose that (M,γ,β ) is a sutured manifold.

(1) A conditioned surface S ⊂ M is an oriented properly embedded
surface such that:
• If T is a component of T (γ) then ∂S∩T consists of coherently

oriented parallel circles.
• If A is a component of A(γ) then S∩A consists of either circles

parallel to γ and oriented the same direction as γ or arcs all
oriented in the same direction.

• No collection of simple closed curves of ∂S∩R(γ) is trivial
in H1(R(γ),∂R(γ)).

• Each edge of β which intersects S∪R(γ) does so always with
the same sign.
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(2) A product disc is a disc I × I ⊂ M− η̊(β ) such that I ×{0} ⊂
R+(γ), I×{1} ⊂ R−(γ), and {0,1}× I ⊂ A(γ). See Figure 2.4.

(3) A product annulus is an annulus S1×I⊂M−η̊(β ) such that S1×
{0} ⊂ R+, and S1×{1} ⊂ R−. A product annulus is β -nontrivial
if it cannot be extended to an embedding D2× I ⊂M− η̊(β ) with
D2×{0} ⊂ R+ and D2×{1} ⊂ R−. See Figure 2.5.

R+ R−

γ

FIGURE 2.4. A product disc.

R+ R−

γ

FIGURE 2.5. A product annulus.

If (M,γ,β ) is a sutured manifold and S⊂M is a conditioned surface, prod-
uct disc, or β -nontrivial product annulus, the manifold M′ = M− η̊(S) in-
herits a natural sutured manifold structure (M′,γ ′,β ′). The 1–complex β ′

is simply β − η̊(S); we will often continue to refer to β ′ as β . The sutures
γ ′ are obtained by taking the “oriented double-curve sum” of ∂S and γ . See
Figure 2.6 for an example and refer to [G1, S3] for more details. (The as-
sumption that S is a conditioned surface, product disc, or product annulus
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is not strictly necessary, the weaker assumption that S is a “decomposing
surface” [S3, Definition 2.3] will do, but this notion is not necessary for this
paper.) We say that (M,γ) S→ (M′,γ ′) is a sutured manifold decomposi-
tion. It is a β–taut sutured manifold decomposition if (M,γ) is β–taut and
(M′,γ ′) is β ′–taut.

R+ R−

γ γ ′

FIGURE 2.6. Forming γ ′ by decomposing along a surface

Conditioned surfaces and decompositions along them play an important role
in this paper, so it will be useful to note the following theorem and some
aspects of its proof.

THEOREM 2.1. Let (M,γ) be a β–taut sutured manifold and let y be a
non-trivial element of H2(M,∂M). Then there exists a conditioned surface
(S,∂S) ⊂ (M,∂M) containing no closed components such that [S,∂S] = y.
Furthermore, S is β–taut and the decomposition of M along S is β–taut.

PROOF. This is a combination of Theorems 2.5 and 2.6 of [S3]. The
surface S is formed by beginning with a surface σ in M, representing y,
such that ∂σ fulfills the requirements for the boundary of a conditioned
surface. (That such a surface exists is a consequence of [S3, Theorem 2.5].)
The required surface S is then formed by taking the oriented sum of S with
some number of copies of R+ and some number of copies of R−. �

DEFINITION. A β–taut sutured manifold hierarchy is a finite sequence of
β–taut sutured manifold decompositions

(M0,γ0)
S1→ (M1,γ1)

S2→ . . .
Sn→ (Mn,γn)

for which
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(1) each Si is a conditioned surface, product disc, or β -nontrivial prod-
uct annulus

(2) If either end of a product annulus Si+1 bounds a disk in R(γi) then
no component of β which intersects the disk is an edge isotopic
into the annulus

(3) H2(Mn,∂Mn) = 0, implying that ∂Mn is a union of spheres.

We now state the two fundamental theorems of combinatorial sutured mani-
fold theory. The first states that β–tautness can be carried down a hierarchy
and the second (perhaps, the more amazing) states that β–tautness can be
carried up a hierarchy.

THEOREM 2.2 (Theorem 4.19 of [S3]). Every β–taut sutured manifold ad-
mits a β–taut sutured manifold hierarchy. For a given a ∈ H2(M,∂M), the
hierarchy can be chosen so that the first surface in the hierarchy represents
a.

THEOREM 2.3 (Corollary 3.9 of [S3] ). Suppose that

(M0,γ0)
S1→ (M1,γ1)

S2→ . . .
Sn→ (Mn,γn)

is a sequence of sutured manifold decompositions in which

• no component of M0 is a solid torus disjoint from β and γ0
• each Si is either a conditioned surface, a product disc, or a β -

nontrivial product annulus.
• no closed component of any Si separates.

Then if (Mn,γn) is β–taut, every decomposition in the series is β–taut.

Typically these two theorems are used in conjunction. To illustrate this
here are rough outlines (including several serious imprecisions) of the main
sutured manifold theorems of this paper. For the first (Section 3.1), suppose
that (N,γ ∪a) is a ∅–taut sutured manifold and that a ⊂ ∂N is an essential
simple closed curve. Take a ∅–taut sutured manifold hierarchy of N

(N,γ ∪a) = (N0,γ0∪a) S1→ (N1,γ1∪a) S2→ . . .
Sn→ (Nn,γn∪a)

except instead of stopping when H2(Nn,∂Nn) = 0, stop when H2(Nn,∂Nn−
η̊(a)) = 0. That is, cut along conditioned surfaces, product discs, and prod-
uct annuli disjoint from a as much as possible, and then stop. It turns out
that such a modified notion of hierarchy exists. Attach a 2–handle to a in
∂Nn and examine what happens. In an ideal world, Theorem 2.3 would tell
us that if (Nn[a],γn) is ∅–taut then so is (N[a],γ) unless a component of
N[a] is a solid torus disjoint from γ . A moment’s thought however shows
that, as phrased, the hypotheses that the surfaces Si be conditioned surfaces,
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product discs, or product annuli in (Ni−1[a],γi) for Theorem 2.3 may not be
satisfied. In the proof of the first sutured manifold theorem, a more subtle
argument is used. The argument still relies on Theorem 2.3.

For the second sutured manifold theorem (Section 3.2), let (N,γ,β ) be a
β–taut sutured manifold with β a properly embedded arc. Take a β–taut
sutured manifold hierarchy of N

(N,γ) S1→ (N1,γ1)
S2→ . . .

Sn→ (Nn,γn)

stopping when H2(Nn,∂Nn) = 0. The sutured manifold (Nn,γn,βn) is βn–
taut. A combinatorial argument at this final stage will show that (in certain
circumstances) (Nn,γ) is also ∅–taut. Then Theorem 2.3 shows that, unless
a component of N is a solid torus disjoint from γ and β , (N,γ) is ∅–taut.

The main tools needed for making combinatorial arguments are parameter-
izing surfaces.

DEFINITION. A parameterizing surface Q in a sutured manifold (M,γ,β )
is a surface (Q,∂Q) ⊂ (M− η̊(β ),∂ (M− η̊(β ))) such that no component
of Q is a disc with boundary in R±.

We would like to be able to manage the the interactions between a param-
eterizing surface and a sutured manifold hierarchy. Fortunately, this can be
done, perhaps at the cost of slightly changing the hierarchy. The details are
slightly complicated and not terribly relevant for what follows, so we sum-
marize the main points. Suppose that (M,γ,β ) S→ (M′,γ ′,β ′) is a β–taut
sutured manifold decomposition. If S is a conditioned surface, then the de-
composition respects Q if Q∩M′ is still a parameterizing surface. This can
always be arranged by replacing S with the surface obtained by taking the
double curve sum of S and some number of copies of R+ and some number
of copies of R− [S3, Lemma 7.5]. If S is a product disk or β -nontrivial
product annulus we also want to arrange the decomposition so that it “re-
spects” Q. This can be done after isotoping S and Q, boundary-compressing
Q using discs contained in S, and then removing discs of Q with boundary
contained in R(γ). After such operations the surface Q′ = Q− η̊(S) is then a
parameterizing surface for M′. We say that a β–taut hierarchy respects Q if
at each stage Q′ is formed by the processes just described. By Theorem 7.8
of [S3] we may assume that a β–taut sutured manifold hierarchy respects a
given parameterizing surface. Even though the parameterizing surface Qn
at the end of a hierarchy may not be a subset of Q (due to product discs
and annuli), Lackenby [L1] notes that there is a collection of discs D ⊂ Qn
such that each disc in D is a regular neighborhood of a point in ∂Qn and
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Qn−D ⊂ Q. Thus it is easy to take information about Qn and translate it
into information about Q.

To a parameterizing surface Q we associate a number I(Q) called the index
of Q. Let ψ be a compact 1-manifold (possibly with boundary) embedded
(but not necessarily properly embedded) in ∂ (M− η̊(β )). Assume that ψ

is in general position with respect to γ . Define µ(ψ) to be the number of
essential arcs of ψ ∩η(E ) where E is the set of edges of β . (Notice that
if β is a single loop, then µ(ψ) = 0.) Define ν(ψ) to be the number of
essential arcs of ψ ∩A(γ). The index of Q is then defined to be I(Q) =
µ(∂Q)+ ν(∂Q)− 2χ(Q). In [S3], I(Q) has an additional term K . This
is a function, which can be chosen somewhat arbitrarily, on arcs passing
through vertices of β . Since in this work, we choose K to be zero, we
make no further mention of it.

EXAMPLE. Figure 2.7 depicts a portion of a sutured manifold with a pa-
rameterizing surface. In the figure, four pieces of sutures are shown and
β consists of four arcs. The surface Q is a twice-punctured torus. Each
boundary component of Q crosses the sutures four times and crosses arc
components of β twice. Thus I(Q) = 4+8−2(−2) = 16.

FIGURE 2.7. The parameterizing surface is a twice-
punctured torus.

The usefulness of the index comes from the following theorem.

THEOREM 2.4 ([S3, Lemmas 7.5 and 7.6]). Suppose that (M,γ,β ) S→ (M′,γ ′,β ′)
is a β–taut sutured manifold decomposition adapted to the parameterizing
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surface Q ⊂ M− η̊(β ) with Q′ the resulting parameterizing surface in M′.
Then I(Q′)≤ I(Q). In fact, if S is a conditioned surface then I(Q′) = I(Q).

There are two very simple types of parameterizing surfaces which are of
particular importance. Suppose that b is an arc component of β and that Q
is a disc with boundary consisting of two arcs, one an essential arc in ∂η(β )
and the other an arc on ∂M which crosses exactly one suture. Then Q is said
to be a cancelling disc for b. See Figure 2.8 for an example. Suppose that
b′ is also an arc component of β (possibly equal to b). If ∂Q consists of
four arcs, one an essential arc in ∂η(b), one an essential arc in ∂η(b′) and
two arcs in R(γ) then Q is said to be an amalgamating disc for b. If b′ 6= b
it is a (non-self) amalgamating disc for b. Figure 2.9 depicts both a (non-
self) amalgamating disc and a self-amalgamating disc. Notice that if Q is a
connected parameterizing surface with I(Q) = 0 then either Q is an annulus
or torus disjoint from γ ∪η(β ) or it is a disc disjoint from η(β ) or it is a
cancelling or amalgamating disc for some arc of β .

Q

FIGURE 2.8. Q is a cancelling disc.

Q Q

A. B.

FIGURE 2.9. A) Q is a (non-self) amalgamating disc. B) Q
is a self-amalgamating disc.
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2.2. Conversing with Sutured Manifold Theory

Although sutured manifold theory is interesting in its own right, we would
like to be able to translate conclusions about sutured manifolds and β–taut
conditioned surfaces into conclusions which do not need to use the language
of sutured manifold theory.

We will need two different methods for converting from a β -norm to the
Thurston norm. Here are two methods for doing so. The first converts an
arc component of β into a suture. When β consists of a single arc, we can
use tautness in the Thurston norm of M−η(β ) (with an additional suture)
to conclude that M is taut in the β -norm.

LEMMA 2.5 ([S4, Lemma 2.3]). Suppose that (M,γ,β ) is a sutured man-
ifold with b an arc component of β having one end in each of R±. Let
M′ = M− η̊(b). and let γ ′ be γ together with a meridional curve on the
boundary of the regular neighborhood of b. Then (M,γ,β ) is β–taut if and
only if (M′,γ ′,β −b) is (β −b)–taut.

The other method of converting from a β -norm to the Thurston norm is
most useful at the end of a β–taut hierarchy. We often hope to achieve ∅–
tautness by showing that β is a collection of arcs in the final stage of the
hierarchy and each arc can be cancelled using a cancelling disc or (non-self)
amalgamating disc.

LEMMA 2.6 ([S3, Lemmas 4.3 and 4.4]). Suppose that (M,γ,β ) is a β–taut
sutured manifold and that b is an arc component of β lying on a cancelling
disc or (non-self) amalgamating disc. Then (M,γ,β −b) is a (β −b)–taut
sutured manifold.

Torus components of ∂M which are disjoint from β may or may not have
sutures, as desired. Since, however, a higher genus component of ∂M may
not be β -minimizing, it may be necessary to place sutures on those compo-
nents in order to give M a β–taut sutured manifold structure. Techniques
for doing so are described in [S4] and [L2]. We will ultimately need a
slight variation of those results, but that discussion is deferred until we have
described the specific sutured manifolds of interest in this paper.
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Adding a 2–handle to a sutured manifold

This section describes two methods for proving that the manifold N[a] ob-
tained by adding a 2–handle to a curve a on a genus two or greater boundary
component F of a compact, connected, orientable 3–manifold N is taut. We
denote the core of the 2–handle by α so that ∂α = a. The cocore of the 2–
handle η(α) is an arc α . Suppose that sutures γ ⊂ ∂N disjoint from a have
been chosen so that (N,γ ∪ a) is a taut sutured manifold, or, equivalently
(Lemma 2.5), so that (N[a],γ) is an α–taut sutured manifold.

Suppose that B = {b1, . . . ,b|B|} are pairwise disjoint, pairwise nonparallel
essential curves in F each of which intersects a∪ γ minimally. Suppose
that Q⊂N is a surface with qi boundary components parallel to bi. Let ∂0Q
denote the boundary components of Q which are not parallel to any curve in
B. Assume that ∂Q intersects γ∪a minimally. Suppose also that |∂Q∩a|>
0 and that no component of Q is a sphere or disc disjoint from a∪ γ . We
think of Q as being Q∩N where Q is a surface in the manifold obtained
from attaching 2–handles along the curves of B and filling in any 2–sphere
boundary components with 3–balls. Q is obtained from Q by attaching discs
to the components of ∂Q parallel to curves in B. We then have ∂0Q = ∂Q.
Define ∆i = |bi∩a|, ∆∂ = |∂0Q∩a|, νi = |bi∩ γ|, ν∂ = |∂0Q∩ γ| and

K(Q) =
|B|

∑
i=1

qi(∆i−νi−2)+(∆∂ −ν∂ ).

3.1. The first sutured manifold theorem

We begin with a definition.

DEFINITION. An a–boundary compressing disc for Q is a boundary com-
pressing disc D with ∂D consisting of two arcs δ ∪ε so that δ ∩ε = ∂δ = ∂ε

and δ is an essential arc in Q and ε is a subarc of some essential simple
closed curve in η(a)⊂ F .

EXAMPLE. See Figure 3.1. In that figure, we are looking down α , the
cocore of the 2–handle α . The parameterizing surface Q runs along α twice,

26
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that is |∂Q∩a|= 2. An a–boundary compressing disc D for Q is shown at
the far end of α .

D Q

α

FIGURE 3.1. An a–boundary compression

THEOREM 3.1. Let (N,γ ∪a) and Q be as described above. If either of the
following holds:

• (N[a],γ) is not taut
• There exists a surface S in N[a] which is disjoint from α , is a con-

ditioned surface in N[a], and is taut in N but is not taut in N[a].

then one of the following holds:

(1) N[a] contains an essential separating sphere intersecting α exactly
twice and which cannot be isotoped to intersect that arc any fewer
times. Furthermore, this sphere bounds a non-trivial homology
ball in N[a].

(2) There is an a–boundary compressing disc for Q
(3) −2χ(Q)≥ K(Q).

The remainder of this section proves the theorem. The proof was inspired
by Lackenby’s work [L1] on Dehn surgery on linking number zero knots in
sutured manifolds.

We begin by creating a sequence of taut sutured manifold decompositions
of (N,γ ∪ a). In order to effectively apply the main theorems of combi-
natorial sutured manifold theory, this sequence will need to be constructed
in a particular fashion. The next lemma will provide the surfaces that are
essential for creating a useful sutured manifold hierarchy.
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LEMMA 3.2. Suppose that (X ,Γ∪ a) is a taut sutured manifold and that
H2(X [a],∂X [a]) 6= 0. Then, in X [a], there is a conditioned surface S which
is disjoint from α . S is a taut conditioned surface in X and ∂S∩η(a) = 0.

PROOF. By the proofs of Theorems 2.5 and 2.6 of [S2], given a non-
trivial homology class z ∈ H2(X [a],∂X [a]) there exists a taut conditioned
surface S′ in the α–taut sutured manifold (X [a],Γ,α). After possibly re-
placing z with −z we may assume that α has algebraic intersection number
i ≥ 0 with S′. By the choice of orientation of the arc α , α has algebraic in-
tersection number −1 with R+(Γ). The surface S′′ which is the the double
curve sum of S′ with i copies of R+(Γ) has algebraic intersection num-
ber zero with α . Notice that ∂S′′ satisfies the necessary criteria for S′′ to
be conditioned in (X ,Γ∪ a). Tube together points of opposite intersec-
tion number to create from S′′ a surface S which is disjoint from α and for
which ∂S = ∂S′′. The surface S is a conditioned surface in (X ,Γ∪ a). We
may therefore replace S with a taut surface in (X ,Γ∪ a) having the same
boundary. �

To create a taut sutured manifold decomposition that is adapted to the pa-
rameterizing surface Q, we may need to take the double curve sum of
our favorite conditioned surface S in a sutured manifold (X ,Γ∪ a) with
some number k of copies of R+(Γ∪ a) and some number l of copies of
R−(Γ∪a), creating the surface Sk,l . We then decompose using the surface
Sk,l instead of S. The conditioned surfaces that we use will be the ones pro-
vided by Lemma 3.2. Performing the double curve sums creates boundary
components of Sk,l which are located in η(a). Attaching discs to each of
those boundary components creates a surface Sa

k,l ⊂ X [a]. The surface Sa
k,l

can also be created by taking the double curve sum of S with k copies of
R+(Γ)⊂ X [a] and l copies of R−(Γ)⊂ X [a].

The next lemma guarantees that if we use such a surface to perform a de-
composition of the sutured manifold (X [a],Γ,α) then all but one arc of
α −η(Sa

k,l) can be cancelled. Let ∗a denote the point on α to which the
curve a retracts under the standard retraction of η(α) to α . If (X [a],Γ,α)
is a sutured manifold which is decomposed along a surface Σ which is dis-
joint from ∗a, call any component of α − η̊(Σ) which doesn’t contain ∗a a
residual arc. If such an arc is converted into a suture (Lemma 2.5), call the
resulting suture a residual suture.

LEMMA 3.3. Suppose Sa
k,l ⊂ X [a] be a surface created from the S provided

by Lemma 3.2. Then after decomposing X [a] along Sa
k,l there exists a can-

celling disc or a self-amalgamating disc for each residual arc.
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PROOF. Suppose that α
′ is a residual arc. Since S is disjoint from a,

each endpoint of α
′ is on R±(Γ) or on a pushed off copy of R±(Γ). In other

words, since α
′ is a residual arc both endpoints are on different copies of

R+(Γ) or on different copies of R−(Γ). Let P be the product region R±× I
between these copies. Then each component of S∩P is an (arc)× I or an
S1× I. The arc α

′ = α ∩P is a copy of (point)× I.

If the component of (R±×{0})− S containing the endpoint of α
′ has any

part of its boundary intersecting ∂ (R±×{0}) choose a path p in that com-
ponent from ∂α

′ to ∂ (R±×{0}). If not, then there is an essential closed
curve p in that component which passes through the endpoint of α

′ and is
isotopic to a component of ∂S. In the first case, p× I is a cancelling disc
for α

′ and in the second case, p× I is a self-amalgamating disc for α
′. �

In creating a hierarchy of (N,γ ∪a) it may be necessary to eliminate index
zero discs. Certain index-zero discs need to be treated carefully. To that
end, suppose that (X [a],Γ,α) is a sutured manifold with α a collection
of arcs. Suppose that D ⊂ X [a] is a cancelling disc for a component α

′

of α . A regular neighborhood of D is a 3–ball B containing α
′. Cutting

open X [a] along the disc E = cl(∂B∩ X̊) produces a sutured manifold, one
component of which is a 3–ball containing α

′. The 3–ball has a single
suture in its boundary. We may then remove the arc α

′ without affecting α-
tautness. The other component is the sutured manifold we would obtain by
cancelling the arc α

′ in X [a]. By converting all arcs to sutures we obtain a
decomposition of (X ,Γ∪a) which eliminates the index zero disc D. Indeed,
by decomposing along E but not the disc D we can eliminate an index-zero
disc in X without cutting along a or a residual suture. This is at the cost
of introducing a component which is a solid torus having two longitudinal
sutures in its boundary. Exactly one of those sutures is either a or a residual
suture. If it is a residual suture call the component a residual torus.

Suppose that D ⊂ X [a] is a self-amalgamating disc for a component α
′ of

α . Then slightly enlarging it produces a non-trivial product annulus A in
X . There is a parallelism of α in X [a] into A. After decomposing X [a]
along A there is a cancelling disc for α

′ which may then be eliminated as
above. Notice that since each component of ∂S is essential in ∂X [a] (by
the construction of S in Lemma 3.2) the product discs created by the self-
amalgamating discs of Lemma 3.3 have ends which are essential in ∂X [a].
Thus, if a product annulus created from a self-amalgamating disc has both
ends inessential in ∂X [a] it must have arisen from a self-amalgamating disc
for the suture a. But it is easy to see that in this case all such product annuli
must have both ends essential in ∂X [a]. This observation will be useful in
the proof of Lemma 3.5 below.



3.1. THE FIRST SUTURED MANIFOLD THEOREM 30

LEMMA 3.4. There is a taut sequence of sutured manifold decompositions

(†) (N,γ ∪a) = (N0,γ0∪a) S1→ (N1,γ1∪a) S2→ . . .
Sn→ (Nn,γn∪a)

adapted to the parameterizing surface Q such that

(1) each decomposition is either a decomposition along an product
disc or product annulus or along a surface Sk,l given by Lemma
3.3. If the product disc intersects a residual suture then the de-
composition is performed as described above. All decompositions
along product annuli arise from this method of eliminating product
discs, as described above.

(2) H2(Nn[a],∂Nn[a]) = 0 where a is the curve a together with all the
residual sutures.

(3) If a component of Nn does not contain a, it is either a residual torus
or a 3–ball containing a single suture in its boundary.

Another formulation of (2) is that if we convert a and all residual sutures to
arcs, the resulting manifold has trivial homology relative to its boundary.

PROOF. This is essentially the proof that taut sutured manifold hierar-
chies exist (Theorem 2.2). The proof of that theorem makes the hierarchy
stop when H2(Nn,∂Nn) = 0. By Lemma 3.2, we can instead stop the hier-
archy when H2(Nn[a],∂Nn[a]) = 0. If it is necessary to eliminate a product
disc which intersects twice a residual suture or the suture a then the de-
composition should be performed as described previously. By Lemma 3.3,
there exists such a product disc for all residual sutures. Hence, all resid-
ual sutures end up in residual tori. Any component of Nn which does not
contain a residual suture or a must be a 3–ball with a single suture in its
boundary since (Nn,γn∪a) is taut and H2(Nn[a],∂Nn[a]) = 0. �

Let N′ denote the component of Nn which contains a. We can now use the
hypotheses of the theorem we are trying to prove to conclude that (N′[a],γn∩
N′) is not taut.

LEMMA 3.5. (N′[a],γn∩N′) is not taut.

PROOF. Since a component of Nn−N′ is either a 3–ball with a single
suture in its boundary or a residual torus, all components of Nn[a]−N′[a]
are ∅–taut. Thus, if (N′[a],γn∩N′) is taut, so is (Nn[a],γn−a).

Convert the hierarchy (†) into a sequence of sutured manifold decomposi-
tions of the sutured manifold (N[a],γ,α) by converting the suture a into an
arc α and any surface Sk,l into Sa

k,l as described previously. Let Sa
1 denote
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the result of applying this conversion to S1. Then each surface in the hier-
archy is either a product disc, non-trivial product annulus (by the remarks
preceding Lemma 3.4), or conditioned surface. Thus, if (Nn[a],γn − a) is
∅-taut, by Theorem 2.3, (N[a],γ) is taut and Sa

1 is taut. The surface Sa
1 is

obtained by taking the double curve sum of S with k copies of R+(γ) and l
copies of R−(γ). If S is not ∅–taut, then it does not minimize the Thurston
norm (in H2(N[a],∂S)). But in this case, the double curve sum of S with k
copies of R+ and l copies of R− is not Thurston norm minimizing either,
implying that Sa

1 is not taut, a contradiction. Thus, if (N′[a],γn∩N′) is taut
so is (Nn[a],γn−a). In which case, we can also conclude that (N[a],γ) and
S are taut. But this contradicts the hypotheses of our theorem. �

REMARK. Here is a brief aside to explain the route taken for the proof up
until this point. Psychologically, it would be easier to have taken an α–taut
hierarchy of (N[a],γ). However, would need that at the end of the hierarchy
there is at most one arc which cannot be cancelled. This requires that the
conditioned surfaces be taken to be disjoint from α (except for the result
of double curve summing with R±. A priori decompositions along such
surfaces may not be α–taut. There is then no clear way to guarantee that
the sutured manifold at the end is α–taut, in other words that it has the
structure that we will now be making use of. Furthermore, it is unclear
whether or not such a sequence of decompositions can be guaranteed to
terminate. The proof given here avoids these difficulties by constructing
taut decompositions of (N,γ ∪a).

Carefully examining N′ will enable us to conclude the proof of the theorem.

LEMMA 3.6. ∂N′ is a torus and N′[a] is an integer homology ball.

PROOF. The proof is similar to [L2, Lemma A.4]. Let A = ∂N′− η̊(a).
By construction of the hierarchy, H2(N′,A) = 0. Thus, by duality for man-
ifolds with boundary H1(N′,η(a)) = 0. By the Universal Coefficient The-
orem, H1(N′,η(a)) = 0. From the exact sequence for the homology of the
pair (N′,η(a)), H1(η(a)) surjects onto H1(N′). Thus, H1(N′) is cyclic.
Since H2(N′,A) = 0, by the long exact sequence for the pair (N′,A), H1(A)
injects into H1(N′). Since A is a surface and ∂η(a) has two components, A
is a collection of spheres and either an annulus or two discs. Since a does
not compress in N, A does not contain a disc. The existence of a sphere
would contradict tautness of N′, and so A is an annulus.

Since H1(A) is isomorphic to Z and it injects into the cyclic group H1(N′),
H1(N′) is also isomorphic to Z. Since η(a) is an annulus and since H1(η(a))
surjects H1(N′), the inclusion of η(a) into N′ induces an isomorphism on
first homology. Since A is an annulus and H2(N′,A) = 0, the exact sequence
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for the pair (N′,A) shows that H2(N′) = 0. It is then easy to see that N′[a]
is a homology ball. �

Since (N′,(γn∪a)∩N′) is a sutured manifold and ∂N′ is a torus containing
the suture a there must be an odd number r of other sutures. The proof of
the theorem concludes by examining two cases. The first case is when r = 1
and the second case is when r ≥ 3.

Suppose that r = 1. Then ∂N′[a] is a sphere containing a single suture.
Since (N′[a],γn∩N′) is an integer homology ball (Lemma 3.6) which is not
taut, the integer homology ball is not a 3–ball. Push ∂N′[a] slightly into
N[a]. Then, ∂N′[a] must be a reducing sphere for N[a] which is intersected
exactly twice by α and which bounds a non-trivial integer homology ball.
If α could be isotoped to intersect the sphere ∂N′[a] fewer times, it could be
isotoped to be disjoint from that sphere and N′ would be reducible, contrary
to the hypothesis that (N,γ ∪a) is taut. Hence, conclusion (1) holds.

Suppose, therefore, that r ≥ 3. Let Qn be the parameterizing surface in Nn
obtained from Q. Since index does not increase during a hierarchy Theorem
2.4, the index of Qn is no more than the index of Q. No component of Qn
is a sphere or a disc disjoint from γn, hence each component of Qn has non-
negative index. Suppose that ζ is a component of ∂Qn which crosses a at
least once. Let A = ∂N′− η̊(a). If ζ ∩A contains an arc inessential in A
then either there is an isotopy of Q reducing |∂Q∩η(a)| or an outermost
such arc in A bounds an a–boundary compressing disc D for Q in N. The
former is forbidden by our hypothesis that ∂Q intersects η(a) minimally
and the latter is the second of our conclusions. We may, therefore, assume
that ζ is an essential loop in the torus ∂N′ which intersects η(a) minimally
a positive number of times. Hence, ζ intersects all r +1 sutures on ∂N′.

Let Q′ be a component of Qn such that at least one component of ∂Q′ inter-
sects η(a). Notice that −2χ(Q′) ≥ −2. Let zQ′ = |∂Q′∩η(a)|. Then ∂Q′

has at least zQ′(r +1) intersections with the sutures γn. Hence,

I(Q′)≥ zQ′(r +1)−2χ(Q′)≥ zQ′(r +1)−2≥ zQ′(r−1).

Then,

I(Qn)≥∑ I(Q′)≥ (r−1)∑zQ′

where the sums are taken over all components Q′ of Q which have at least
one boundary component intersecting η(a). By the construction of Qn from
Q, we have that ∑zQ′ = |∂Q∩a|. Thus,

|∂Q∩ γ|+ |∂Q∩a|−2χ(Q) = I(Q)≥ I(Qn)≥ (r−1)|∂Q∩a|.
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Consequently,

|∂Q∩ γ|−2χ(Q)≥ (r−2)|∂Q∩a| ≥ |∂Q∩a|

since r ≥ 3.

Recalling that Q is obtained from Q by removing qi discs with boundary
parallel to bi, that |∂Q∩ γ| = ∑qiνi + ν∂ , that |∂Q∩a| = ∑qi∆i + ∆∂ , and
that χ(Q) = χ(Q)−∑qi we obtain:

∑qiνi +ν∂ −2χ(Q)+2∑qi ≥∑qi∆i +∆∂ .

It is easy to rearrange this to obtain

−2χ(Q)≥ K(Q)

as desired. �

3.2. The second sutured manifold theorem

In this section we show how to extend the argument of Theorem 9.1 of [S3]
to allow non-planar parameterizing surfaces Q and how to replace the knot
in that theorem with the arc α .

DEFINITION. An a–torsion 2g–gon is a disc D ⊂ N− η̊(Q) such that ∂D
is divided into 2g subarcs δ1,ε1, . . .δg,εg. Each subarc δi is an essential arc
in Q. The subarcs εi are mutually parallel arcs in η(a)− ∂Q all with the
same orientation and all subarcs of essential circles in η(a). Since they are
mutually parallel they are contained in a rectangle R⊂ (F−∂Q), with two
edges of R subarcs of ∂Q. We require that the surface obtained by attaching
R to Q be orientable.

EXAMPLE. Figure 3.2 shows a hypothetical example. The surface outlined
with dashed lines is Q. It has boundary components on F . There are two
such boundary components pictured. The curve running through Q and F
could be the boundary of an a–torsion 4–gon. Notice that the arcs ε1 and
ε2 are parallel and oriented in the same direction. Attaching the rectangle
containing those arcs as two of its edges to Q produces an orientable surface.

REMARK. The reason for the name a–torsion 2g–gon will be clear in Sec-
tion 5. In that section |B| ≤ 2. It will be shown that if Q is a sphere or disc
and there is an a–torsion 2g–gon for Q = Q∩N with g ≥ 2 then H1(N[b1])
is not torsion-free (in fact, N[b1] will contain a lens space summand). In
general, however, the existence of an a–torsion 2g–gon does not guarantee
that H1(N[b1]) has torsion.
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δ1

Q

δ2

ε2 ε1

F

FIGURE 3.2. The boundary of an a–torsion 4–gon.

Notice that an a–torsion 2–gon is an a–boundary compressing disc. The
main result of this section is similar to the first sutured manifold theorem
except that instead of considering conditioned taut surfaces in N we con-
sider conditioned α–taut surfaces in N[a]. The possible existence of an
a–torsion 2g–gon is weaker then the corresponding conclusion in the first
sutured manifold theorem. We do not need to worry about an essential
sphere in N[a] intersecting α twice, but we do need to worry that N[a] may
have torsion in first homology.

THEOREM 3.7 (cf. [S3, Theorem 9.1] and [S4, Proposition 4.1]). Suppose
that (N[a],γ) is α–taut and that either

• N[a] is not ∅–taut
• there is a conditioned α–taut surface S⊂N[a] which is not ∅–taut.
• N[a] is homeomorphic to a solid torus S1 ×D2 and α cannot be

isotoped so that its projection to the S1 factor is monotonic.

Then at least one of the following holds:

• There is an a–torsion 2g–gon for Q for some g ∈ N
• H1(N[a]) contains non-trivial torsion
• −2χ(Q)≥ K(Q).
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REMARK. If α can be isotoped to be monotonic in the solid torus N[a] then
it is, informally, a “braided arc”. The contrapositive of this aspect of the
theorem is similar to the conclusion in [G2] and [S4] that if a non-trivial
surgery on a knot with non-zero wrapping number in a solid torus produces
a solid torus then the knot is a 0 or 1-bridge braid.

The remainder of this section proves the theorem. Following [S4], define a
Gabai disc for Q to be an embedded disc D⊂ N[a] such that

• |α ∩ D̊| > 0 and all points of intersection have the same sign of
intersection

• |Q∩∂D|< |∂Q∩η(a)|

The next proposition points out that the existence of a Gabai disc guarantees
the existence of an a–boundary compressing disc or an a–torsion 2g–gon.

PROPOSITION 3.8. If there is a Gabai disc for Q then there is an a–torsion
2g–gon.

PROOF. Let D be a Gabai disc for Q. The intersection of Q with D
produces a graph Λ on D. The vertices of Λ are ∂D and the points α ∩D.
The latter are called the interior vertices of Λ. The edges of Λ are the arcs
Q∩D. A loop is an edge in Λ with initial and terminal points at the same
vertex. A loop is trivial if it bounds a disc in D with interior disjoint from
Λ.

To show that there is an a–torsion 2g–gon for Q, we will show that the
graph Λ contains a “Scharlemann cycle” of length g. The interior of the
Scharlemann cycle will be the a–torsion 2g–gon. In our situation, Scharle-
mann cycles will arise from a labelling of Λ which is slightly non-standard.
Traditionally, when α is a knot instead of an arc, the labels on the endpoints
of edges in Λ, which are used to define “Scharlemann cycles”, are exactly
the components of ∂Q. In our case, since each component of ∂Q likely
intersects ∂α more than once we need to use a slightly different labelling.
After defining the labelling and the revised notion of “Scharlemann cycle”,
it will be clear to those familiar with the traditional situation that the new
Scharlemann cycles give rise to the same types of topological conclusions
as in the traditional setting. The discussion is modelled on Section 2.6 of
[CGLS].

A Scharlemann cycle of length 1 is defined to be a trivial loop at an interior
vertex of Λ. We now work toward a definition of Scharlemann cycles of
length g > 1. Without loss of generality, we may assume that |α ∩D| ≥ 2.
Recall that the arc α always intersects the disc D with the same sign. There



3.2. THE SECOND SUTURED MANIFOLD THEOREM 36

is, in F , a regular neighborhood A of a such that D∩F ⊂ A. We may choose
A so that ∂A⊂ D∩F . Let ∂±A be the two boundary components of A. The
boundary components of Q all have orientations arising from the orientation
of Q and β . We may assume by an isotopy that all the arcs ∂Q∩A are fibers
in the product structure on A. Cyclically around A label the arcs of ∂Q∩A
with labels c1 . . .cµ . Let C be the set of labels. Being a submanifold of ∂Q,
each arc is oriented. Say that two arcs are parallel if they run through A in
the same direction (that is, both from ∂−A to ∂+A or both from ∂+A to ∂−A).
Call two arcs antiparallel if they run through A in opposite directions. Note
that since the orientations of D̊∩∂W in A are all the same, an arc intersects
each component of D̊∩∂W with the same algebraic sign.

Call an edge of Λ with at least one endpoint on ∂D a boundary edge and
call all other edges interior edges. As each edge of Λ is an arc and as all
vertices of Λ are parallel oriented curves on ∂W , an edge of Λ must have
endpoints on arcs of C = {c1, . . . ,cµ} which are antiparallel. We call this
the parity principle (as in [CGLS]). Label each endpoint of an edge in Λ

with the arc in C on which the endpoint lies.

We will occasionally orient an edge e of Λ; in which case, let ∂−e be the tail
and ∂+e the head. A cycle in Λ is a subgraph homeomorphic to a circle. An
x–cycle is a cycle which, when each edge e in the cycle is given a consistent
orientation, has ∂−e labelled with x ∈ C . Let Λ′ be a subgraph of Λ and let
x be a label in C . We say that Λ′ satisfies condition P(x) if:

P(x): For each vertex v of Λ′ there exists an edge of Λ′ incident to v with
label x connecting v to an interior vertex.

LEMMA 3.9 ([CGLS, Lemma 2.6.1]). Suppose that Λ′ satisfies P(x). Then
each component of Λ contains an x–cycle.

PROOF. The proof is the same as in [CGLS]. �

A Scharlemann cycle is an x–cycle σ where the interior of the disc in D
bounded by σ is disjoint from Λ. See Figure 3.3. Since each intersection
point of D∩α has the same sign, the set of labels on a Scharlemann cycle
contains x and precisely one other label y, a component of C adjacent to x
in A. The arc y and the arc x are antiparallel by the parity principle. The
length of the Scharlemann cycle is the number of edges in the x–cycle.

LEMMA 3.10 ([CGLS, Lemma 2.6.2]). If Λ contains an x–cycle, then it
contains a Scharlemann cycle.

PROOF. The proof is again the same as in [CGLS]. �



3.2. THE SECOND SUTURED MANIFOLD THEOREM 37

x
δ1

x

δ2

x
δ3

x

δ4 E

FIGURE 3.3. A Scharlemann cycle of length 4 bounding an
a–torsion 8-gon.

REMARK. In [CGLS], there is a distinction between x–cycles and, so-
called, great x–cycles. We do not need this here because all components
of D∩F are parallel in η(∂α) as oriented curves.

The next corollary explains the necessity of considering Scharlemann cy-
cles.

COROLLARY 3.11 ([CGLS]). If ∂D intersects fewer than |∂Q∩A| edges
of Λ then Λ contains a Scharlemann cycle.

PROOF. As ∂D contains fewer than |∂Q∩A| endpoints of boundary-
edges in Λ there is some x ∈ C which does not appear as a label on a
boundary edge. As every interior vertex of Λ contains an edge with label x
at that vertex, none of those edges can be a boundary edge. Consequently, Λ

satisfies P(x). Hence, by Lemmas 3.9 and 3.10, Λ contains a Scharlemann
cycle of length g (for some g). �

In A there is a rectangle R with boundary consisting of the arcs x and y and
subarcs of ∂A. See Figure 3.4. Because α always intersects D with the
same sign, ∂D always crosses R in the same direction. This shows that the
arcs εi are all mutually parallel in F . The arcs x and y are antiparallel, so
attaching R to Q produces an orientable surface. Hence, the interior of the
Scharlemann cycle is an a–torsion 2g–gon. �
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A

R
x

y

FIGURE 3.4. The rectangle R.

We now proceed with proving the contrapositive of the theorem. Suppose
that none of the three possible conclusions of the theorem hold. Let

(N[a],γ) S1→ (N1,γ1)
S2→ . . .

Sn→ (Nn,γn)

be an α–taut sutured manifold hierarchy for (N[a],γ) which is adapted to
Q. The surface S1 may be obtained from the surface S by performing the
double-curve sum of S with k copies of R+ and l copies of R− (Theorem
2.1).

Since −2χ(Q) < K(Q), simple arithmetic shows that I(Q) < 2|∂Q∩η(a)|.
Since there is no a–torsion 2g–gon for Q, by the previous proposition, there
is no Gabai disc for Q. The proof of [S3, Theorem 9.1] shows that (Nn,γn) is
also ∅–taut, after substituting the assumption that there are no Gabai discs
for Q in N wherever [S3, Lemma 9.3] was used (as in [S4, Proposition
4.1]). In claims 3, 4, and 11 of [S3, Theorem 9.1] use the inequality I(Q) <
2|∂Q∩A| to derive a contradiction rather than the inequalities stated in the
proofs of those claims.

The sutured manifold hierarchy above is a sequence of sutured manifold
decompositions satisfying the requirements of Theorem 2.3 (with empty
1–complex). Hence, the hierarchy is ∅–taut, (N[a],γ) is a ∅–taut sutured
manifold and S1 is a ∅–taut surface. Suppose that S is not ∅–taut. Then
there is a surface S′ with the same boundary as S but with smaller Thurston
norm. Then the double-curve sum of S′ with k copies of R+ and l copies
of R− has smaller Thurston norm than S1, showing that S1 is not ∅–taut.
Hence, S is ∅–taut.
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The proof of [S3, Theorem 9.1] concludes by noting that at the final stage
of the hierarchy, there is a cancelling or (non-self) amalgamating disc for
each remnant of α . When N[a] is a solid torus the only ∅–taut conditioned
surfaces are unions of discs. If S is chosen to be a single disc then S1 is
isotopic to S. To see this, notice that R± is an annulus and so the double-
curve sum of S with R± is isotopic to S. Hence, the hierarchy has length
one and the cancelling and (non-self) amalgamating discs show that α is
braided in N[a]. �



CHAPTER 4

Placing Sutures

Let N be a compact, orientable, irreducible 3–manifold with F ⊂ ∂N a
component containing an essential simple closed curve a. Suppose that
∂N −F is incompressible in N. For effective application of the first and
second sutured manifold theorems, we need to choose curves γ on ∂N[a]
so that (N[a],γ) is α–taut and (N,γ ∪ a) is ∅–taut. With our applica-
tions in mind, we restrict our attention to the situation when the bound-
ary component F containing a has genus 2. Define ∂1N[a] = ∂N−F and
∂0N[a] = ∂N[a]−∂1N[a].

For the moment, we consider only the choice of sutures γ̂ on ∂0N[a]. If a
is separating, so that ∂0N[a] consists of two tori joined by the arc α , we
do not place any sutures on ∂0N[a], i.e. γ̂ = ∅. (Figure 4.1.A.) If a is
non-separating, choose γ̂ to be a pair of disjoint parallel loops on F −η(a)
which separate the endpoints of α . (Figure 4.1.B.)

A.

B.

γ̂

α

α

FIGURE 4.1. Choosing γ̂ .

If we are in the special situation of “refilling meridians”, we will want to
choose the curves γ̂ more carefully. Recall that in this case N ⊂ M and F

40
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bounds a genus 2 handlebody W ⊂ (M− N̊). The curves a and b bound in
W discs α and β respectively.

Assuming that the discs β and α have been isotoped to intersect minimally
and non-trivially the intersection α ∩ β is a collection of arcs. An arc of
α ∩β which is outermost on β cobounds with a subarc ψ of b a disc with
interior disjoint from α . This disc is a meridional disc of a (solid torus)
component of ∂W − η̊(α). The arc ψ has both endpoints on the same com-
ponent of ∂η(a) ⊂ F . We, therefore, define a meridional arc of b− a to
be any arc of b− η̊(a) which together with an arc in ∂η(α)∩W̊ bounds a
meridional disc of W − η̊(α). If a is non-separating, then the existence of
meridional arcs shows that every arc of b− η̊(a) with endpoints on the same
component of ∂η(a) ⊂ F is a meridional arc of b− a. An easy counting
argument shows that if a is non-separating then there are equal numbers of
meridional arcs of b− a based at each component of ∂η(a) ⊂ F . Hence,
when a is non-separating, the number of meridional arcs of b−a, denoted
Ma(b) is even. Some meridional arcs are depicted in Figure 4.2.

FIGURE 4.2. Some meridional arcs on ∂W

Returning to the definition of the sutures γ̂ , we insist that when “refilling
meridians” and when α is non-separating, the curves γ̂ be meridional curves
of the solid torus W − η̊(α) which separate the endpoints of α and which
are disjoint from the meridional arcs of b−a for a specified b.

We now show how to define sutures γ̃ on non-torus components of ∂1N[a].
Let T (γ) be all the torus components of ∂1N[a]. If ∂1N = T (γ) then γ̃ = ∅.
Otherwise, the next lemma demonstrates how to choose γ̃ so that, under
certain hypotheses, (N,γ ∪a) is taut, where γ = γ̂ ∪ γ̃ .

LEMMA 4.1. Suppose that F−(γ∪a) is incompressible in N. Suppose also
that if ∂1N[a] 6= T (γ) then there is no essential annulus in N with boundary
on γ̂ ∪ a. Then γ̃ can be chosen so that (N,γ ∪ a) is ∅–taut and so that
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(N[a],γ) is α–taut. Furthermore, if c ⊂ ∂1N[a] is a collection of disjoint,
non-parallel curves such that:

• |c| ≤ 2
• All components of c are on the same component of ∂1N[a]
• No curve of c cobounds an essential annulus in N with a curve of

γ̂ ∪a
• If |c|= 2 then there is no essential annulus in N with boundary c
• If |c|= 2 and a is separating, there is no essential thrice-punctured

sphere in N with boundary c∪a.

then γ̃ can be chosen to be disjoint from c.

The main ideas of the proof are contained in Section 5 of [S4] and Theorem
2.1 of [L2]. In [S4], Scharlemann considers “special” collections of curves
on a non-torus component of ∂N. These curves cut the component into
thrice-punctured spheres. Exactly two of the curves in the collection bound
once-punctured tori. In those tori are two curves of the collection which are
called “redundant”. The redundant curves are removed and the remaining
curves form the desired sutures. Scharlemann shows how to construct such
a special collection which is disjoint from a set of given curves and which
gives rise to a taut-sutured manifold structure on the manifold under con-
sideration. Lackenby, in [L2], uses essentially the same construction (but
with fewer initial hypotheses) to construct a collection of curves cutting the
non-torus components of ∂N into thrice-punctured spheres, but where all
the curves are non-separating. We need to allow separating curves in the
sutures as c may contain separating curves. By slightly adapting Scharle-
mann’s work, in the spirit of Lackenby, we can make do with the hypotheses
of the lemma, which are slightly weaker than what a direct application of
Scharlemann’s work would allow.

PROOF. Let τ be the number of once-punctured tori in ∂N with bound-
ary some component of c∪ a. Since all components of c are on the same
component of ∂N, τ ≤ 4 with τ ≥ 3 only if a is separating.

Say that a collection of curves on ∂N is pantsless if, whenever a thrice-
punctured sphere has its boundary a subset of the collection, all components
of the boundary are on the same component of ∂N. If a is non-separating,
then τ ≤ 2. Hence, either τ ≤ 2 or c∪a∪ γ̂ is pantsless.

Scharlemann shows how to extend the set c to a collection Γ, such that
there is no essential annulus in N with boundary on Γ∪a∪ γ̂ and the curves
Γ cut ∂N into tori, once-punctured tori, and thrice-punctured spheres. Fur-
thermore, if c∪ a∪ γ̂ is pantsless, then so is Γ∪ a∪ γ̂ . An examination of
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Scharlemann’s construction shows that all curves of Γ− c may be taken to
be non-separating. Thus, the number of once-punctured tori in ∂N with
boundary on some component of Γ∪ a is still τ . If Γ cannot be taken to
be a collection of sutures on ∂N, then, by construction, |c| = 2, one curve
of c bounds a once-punctured torus in ∂N containing the other curve of c.
The component of c in the once-punctured torus is “redundant” (in Scharle-
mann’s terminology). If no curve of c is redundant, let γ̃ = Γ; otherwise,
form γ̃ by removing the redundant curve from Γ. Let γ ′ = γ̃∪a∪ γ̂ . We now
have a sutured manifold (N,γ ′). Notice that the number of once-punctured
torus components of ∂N− γ ′ is equal to τ .

We now desire to show that (N,γ ′) is ∅–taut. If it is not taut, then R±(γ)
is not norm-minimizing in H2(N,η(∂R±)). Let J be an essential surface in
N with ∂J = ∂R± = γ ′. Notice that χ∅(R±) = −χ(∂N)/2 and that |γ ′| =
−3χ(∂N)/2− τ .

Recall that either τ ≤ 2 or γ ′ is pantsless. Suppose, first, that τ ≤ 2. Since
no component of J can be an essential annulus, by the arguments of Scharle-
mann and Lackenby, χ∅(J)≥ |∂J|/3 = |γ ′|/3. Hence, χ∅(J)≥−χ(∂N)/2−
τ/3. Since τ ≤ 2 and since χ∅(J) and−χ(∂N)/2 are both integers, χ∅(J)≥
|∂N|/2 = χ∅(R±). Thus, when τ ≤ 2, (N,γ ′) is a ∅–taut sutured manifold.

Suppose, therefore that γ ′ is pantsless. Recall that τ ≤ 4. We first examine
the case when each component of J has its boundary contained on a single
component of ∂M. Let J0 be all the components of J with boundary on a
single component T of ∂N. Let τ0 be the number of once-punctured torus
components of T − γ ′. Notice that τ0 ≤ 2. The proof for the case when
τ ≤ 2, shows that χ∅(J0) ≥ χ∅(R±∩T ). Summing over all component of
∂N shows that χ∅(J)≥ χ∅(R±), as desired.

We may, therefore, assume that some component J0 of J has boundary on at
least two components of ∂N. Since γ ′ is pantsless, χ∅(J0)≥ (|∂J0|+2)/3.
For the other components of J we have, χ∅(J− J0)≥ |∂ (J− J0)|/3. Thus,

χ∅(J)≥ |γ ′|+2
3

≥−χ(∂N)
2

+
2− τ

3

Since τ ≤ 4 and since χ∅(J) and−χ(∂N)/2 are both integers, we must have
χ∅(J) ≥ −χ(∂N)/2 = χ∅(R±), as desired. Hence, (N,γ ′) = (N,γ ∪ a) is
∅–taut. Consequently, by Lemma 2.5, (N[a],γ) is α–taut. �

REMARK. The assumption that all components of c are contained on the
same component of ∂M can be weakened to a hypothesis on the number τ .
For what follows, however, our assumption suffices.
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We will be interested in when a component of ∂N−F becomes compress-
ible upon attaching a 2–handle to a ⊂ F and also becomes compressible
upon attaching a 2–handle to b ⊂ F . If such occurs, the curves c of the
previous lemma will be the boundaries of the compressing discs for that
component of ∂N. Obviously, in order to apply the lemma we will need to
make assumptions on how that component compresses.



CHAPTER 5

Constructing Q

The typical way in which we will apply the two main theorems is as follows.
Suppose that a and b are simple closed curves on a genus two component
F ⊂ ∂N and that there is an “interesting” surface R⊂ N[b]. We will want to
use this surface to show that either−2χ(R)≥K(R) or N[a] is taut. A priori,
though, the surface R = R∩N may have a–boundary compressing discs or
a–torsion 2g–gons. The purpose of this section is to show how, given the
surface R we can construct another surface Q which will, hopefully, have
similar properties to R but be such that Q = Q∩N does not have a–boundary
compressing discs or a–torsion 2g–gons. This goal will not be entirely
achievable, but Theorem 5.1 shows how close we can come. Throughout we
assume that N is a compact, orientable, irreducible 3–manifold with F ⊂ ∂N
a component having genus equal to 2. Let a and b be two essential simple
closed curves on F so that a and b intersect minimally and non-trivially.
As before, let ∂1N = ∂1N[b] = ∂N− ∂F and let ∂0N[b] = ∂N[b]− ∂1N[b].
∂0N[b] has one or two components, depending on whether b is separating
or non-separating. Let T0 and T1 denote these components, with T0 = T1 if
b is non-separating.

Before stating the theorem, we make some important observations about
N[b] and surfaces in N[b]. If b is non-separating, there are multiple ways to
obtain a manifold homeomorphic to N[b]. Certainly, attaching a 2–handle
to b is one such way. If b∗ is any curve in F which cobounds in F with
∂η(b) a thrice-punctured sphere, then attaching 2–handles to both b∗ and
b creates a manifold with a spherical boundary component. Filling in that
sphere with a 3–ball creates a manifold homeomorphic to N[b]. We will
often think of N[b] as obtained in this fashion. Say that a surface Q ⊂ N[b]
is suitably embedded if each component of ∂Q−∂Q is a curve parallel to
b or to some b∗. We denote the number of components of ∂Q−∂Q parallel
to b by q = q(Q) and the number parallel to b∗ by q∗ = q∗(Q). If b is
separating, define b∗ = ∅. Let q̃ = q+q∗. Define ∆ = |b∩a|, ∆∗ = |b∗∩a|,
ν = |b∩ γ|, and ν∗ = |b∗∩ γ|. We then have

K(Q) = (∆−ν−2)q+(∆∗−ν
∗−2)q∗+∆∂ −ν∂ .

45
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Define a slope on a component of ∂N[b] to be an isotopy class of pairwise
disjoint, pairwise non-parallel curves on that component. The set of curves
is allowed to be the empty set. Place a partial order on the set of slopes
on a component of ∂N[b] by declaring r ≤ s if there is some set of curves
representing r which is contained in a set of curves representing s. Notice
that ∅≤ r for every slope r. Say that a surface R⊂N[b] has boundary slope
∅ on a component of ∂N if ∂Q is disjoint from that component. Say that a
surface R ⊂ N[b] has boundary slope r 6= ∅ on a component of ∂N if each
curve of ∂R on that component is contained in some representative of r and
every curve of a representative of r is isotopic to some component of ∂R.

Define a surface to be essential if it is incompressible, boundary-incom-
pressible and has no component which is boundary-parallel or which is a
2–sphere bounding a 3–ball. The next theorem takes as input an essential
surface R⊂N[b] and gives as output a surface Q such that Q = Q∩N can (in
many circumstances) be effectively used as a parameterizing surface in the
first and second sutured manifold theorems. The remainder of the section
will be spent proving it.

THEOREM 5.1. Suppose that R ⊂ N[b] is a suitably embedded essential
surface and suppose either

(I) R is a collection of essential spheres and discs, or
(II) N[b] contains no essential sphere or disc.

Then there is a suitably embedded incompressible and boundary-incom-
pressible surface Q ⊂ N[b] with the following properties. (The properties
have been organized for convenience. The properties marked with a “*”
are optional and need not be invoked.)

• Q is no more complicated than R:
(C1) (−χ(Q), q̃(Q))≤ (−χ(R), q̃(R)) in lexicographic order
(C2) The sum of the genera components of Q is no bigger than the

sum of the genera of components of R
(C3) Q and R represent the same class in H2(N[b],∂N[b])

• The options for a–boundary compressions and a–torsion 2g–gons
are limited:

(D1) Either there is no a–boundary compressing disc for Q or q̃ =
0.

(*D2) If no component of R is separating and if q̃ 6= 0 then there is
no a–torsion 2g–gon for Q.
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(D3) If Q is a disc or 2–sphere then either N[b] has a lens space
connected summand or there is no a–torsion 2g–gon for Q
with g≥ 2.

(D4) If Q is a planar surface then either there is no a–torsion 2g–
gon for Q with g ≥ 2 or attaching 2–handles to ∂N[b] along
∂Q produces a 3–manifold with a lens space connected sum-
mand.

• The boundaries are not unrelated:
(*B1) Suppose that (II) holds, that we are refilling meridians, that no

component of R separates, and that ∂R has exactly one non-
meridional component on each component of ∂0N[b]. Then Q
has exactly one boundary component on each component of
∂0N[b] and the slopes are the same as those of ∂R∩∂0N[b].

(B2) If ∂R∩ ∂1N is contained on torus components of ∂1N or if
neither (D2) or (B1) are invoked, then the boundary slope of Q
on a component of ∂1N[b] is less than or equal to the boundary
slope of R on that component.

(B3) If (D2) is not invoked and if the boundary slope of R on a
component of ∂0N[b] is non-empty then the boundary slope of
Q on that component is less than or equal to the boundary
slope of R.

Property (B1), which is the most unpleasant to achieve, is present to guar-
antee that if R is a Seifert surface for Lβ then Q (possibly after discarding
components) is a Seifert surface for Lβ . This is not used subsequently in this
dissertation, but future work is planned which will make use of it. However,
achieving property (D2) which is used here, requires similar considerations.

The only difficulty in proving the theorem is keeping track of the listed
properties of Q and R. Eliminating a–boundary compressions is psycholog-
ically easier than eliminating a–torsion 2g–gons, so we first go through the
argument that a surface Q exists which has all but properties (D2) - (D4).
The argument may be easier to follow if, on a first reading, R is considered
to be a sphere or essential disc. The proof is based on similar work in [S5],
which restricts R to being a sphere or disc.

The main purpose of assumptions (I) and (II) is to easily guarantee that
the process for creating Q described below terminates. We will show that
if q̃(R) 6= 0 and there is an a–boundary compressing disc or a–torsion 2g-
gon for R = R∩N then there is a sequence of operations on R each of
which reduces a certain complexity but preserves the properties listed above
(including essentiality of R). If (I) holds, the complexity is simply q̃. If (II)
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holds, the complexity is (−χ(R), q̃(R)) (with lexicographic ordering). If
(II) holds, it is clear that−χ(R) is always non-negative. Thus each measure
of complexity has a minimum. The process stops either when q̃ = 0 or when
the minimum complexity is reached.

5.1. Eliminating a–boundary compressions

Assume that q̃ 6= 0 and that there is an a–boundary compressing disc D for
R with ∂D = δ ∪ ε where ε is a subarc of some essential circle in η(a).
There is no harm in considering ε ⊂ a−∂R.

Case 1: b separates W. In this case, η(β )− intR consists q−1 copies
of D2 × I labelled W1, . . . ,Wq−1. There are two components T0 and T1 of
∂0N[b] = ∂N[b]− ∂N, both tori. The frontiers of the Wj in η(β ) are discs
β1, . . . ,βq, each parallel to β , the core of the 2–handle attached to b. Each
1-handle Wj lies between β j and β j+1. The torus T0 is incident to β1 and
the torus T1 is incident to βq. See Figure 5.1.

T0 W1 Wq−1 T1

β1 βq

FIGURE 5.1. The tori and 1-handles Wj

The interior of the arc ε ⊂ F is disjoint from ∂R. Consider the options for
how ε could be positioned on W :

Case 1.1: ε lies in ∂Wj∩F for some 1≤ j ≤ q−1. In this case, ε must
span the annulus ∂Wj ∩F . The 1-handle Wj can be viewed as a regular
neighborhood of the arc ε . The disc D can then be used to isotope Wj

through ∂D∩ R reducing |R∩ β | by 2. See Figure 5.2. This maneuver
decreases q̃(R). Alternatively, the disc E describes an isotopy of R to a
surface Q in N[b] reducing q̃. Clearly, Q satisfies the (C) and (B) properties.
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R
δ

Wj

FIGURE 5.2. The disc D describes an isotopy of R.

Suppose, then, that ε is an arc on T0 or T1. Without loss of generality, we
may assume it is on T0.

Case 1.2: ε lies in T0 and has both endpoints on ∂R. This is impossible
since R was assumed to be essential in N[b] and q̃ > 0.

Case 1.3: ε lies in T0 and has one endpoint on ∂β1 and the other on
∂R. The disc D guides a proper isotopy of R to a surface Q in N[b] which
reduces q̃. See Figure 5.3. Clearly, the (C) and (D) properties are satisfied.

T0
∂R

D

R

β1

FIGURE 5.3. The disc D describes an isotopy of R.

Case 1.4: ε lies in T0 and has endpoints on ∂β1. Boundary-compressing
R− β̊1 produces a surface J with two new boundary components on T0, both
of which are essential curves. They are oppositely oriented and bound an
annulus containing β1. If ∂R∩ T0 6= ∅ then these two new components
have the same slope on T0 as ∂R, showing that property (B4) is satisfied. It
is easy to check that χ(J) = χ(R) and that q̃(J) = q̃(R)−1, so that (C1) is
satisfied. Clearly, (C2), (C3), and (B3) are also satisfied.

If J were compressible, there would be a compressing disc for R by an outer-
most arc/innermost disc argument. Thus, J is incompressible. Suppose that
E is a boundary-compressing disc for J in N[b] with ∂E = κ ∪λ where κ
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is an arc in ∂N[b] and λ is an arc in J. Since R is boundary-incompressible,
the arc κ must lie on T0 (and not on T1). Since T0 is a torus, either some
component of J is a boundary-parallel annulus or J (and, therefore, R) is
compressible. We may assume the former. If J has other components apart
from the boundary-parallel annulus, discarding the boundary-parallel an-
nulus leaves a surface Q satisfying the (C) and (B) properties. We may,
therefore, assume that J in its entirety is a boundary-parallel annulus.

Since χ(R) = χ(J), since J is a boundary-parallel annulus and since ∂J has
two more components then ∂R, R is an essential torus. However, using D
to isotope η(δ ) ⊂ R into T0 and then isotoping J into T0 gives a homotopy
of R into T0, showing that it is not essential, a contradiction.

Thus, after possibly discarding a boundary-parallel annulus from J to obtain
L we obtain a non-empty essential surface in N[b] satisfying the first five
required properties. If we do not desire property (B1) to be satisfied, take
Q = L. Notice that this step may, for example, convert an essential sphere
into two discs or an essential disc with boundary on ∂1N[b] into an annulus
and a disc with boundary on ∂0N[b]. This fact accounts for the delicate
phrasing of the (B) properties.

Suppose, therefore, that we wish to satisfy (B1). Among other properties,
we assume that R has a single boundary component on T0.

There is an annulus A⊂ T0 which is disjoint from β1 ⊂ T0, which has interior
disjoint from ∂L, and which has its boundary two of the two or three com-
ponents of ∂L. See Figure 5.4. In the figure, the dashed line represents the
arc ε . The two circles formed by joining ε to ∂β1 are the two new bound-
ary components of L. Since, they came from a boundary-compression, they
are oppositely oriented. If ∂R has a single component on T0 (indicated by
the curve with arrows in the figure) then it must be oriented in the oppo-
site direction from one of the new boundary components of ∂L. Attaching
A to L creates an orientable surface and does not increase negative euler
characteristic or q̃.

Thus, if |∂R∩ T0| ≤ 1, L∪A is well-defined. It may, however, be com-
pressible or boundary-compressible. Since it represents the homology class
[R] in H2(N[b],∂N[b]), as long as that class is non-zero we may thoroughly
compress and boundary-compress it, obtaining a surface J. Discard all null-
homologous components of J to obtain a surface Q. By assumption (II), we
never discard an essential sphere or disc. Notice that since ∂R has a single
boundary component on T1, the surface Q will also have a single bound-
ary component on T1. I.e. discarding separating components of J does not
discard the component with boundary on T1. Boundary-compressing J may
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T0

β1

FIGURE 5.4. The annulus A lies between ∂R and one of the
new boundary components of L.

change the slope of ∂J on non-torus components of ∂1N[b]. Discarding sep-
arating components may convert a slope on a torus component to the empty
slope. Nevertheless, properties (B2) and (B3) still hold.

If a component of J is an inessential sphere then either LA contained an
inessential sphere or the sphere arose from compressions of LA. Suppose
that the latter happened. Then after some compressions LA contains a solid
torus and compressing that torus creates a sphere component. Discarding
the torus instead of the sphere shows that this process does not increase
negative euler characteristic. If LA contains an inessential sphere, this com-
ponent is either a component of L and therefore of R or it arose by attaching
A to two disc components, D1 and D2, of L. The first is forbidden by the as-
sumption that R is essential and the second by (II). Consequently, negative
euler characteristic is not increased.

Notice that, in general, compressing LA may increase q̃, but because−χ(Q)
is decreased, property (C1) is still preserved and complexity is decreased.
Since we assume (II) for the maneuvre, if (I) holds at the end of this case
we can still conclude that q̃ was decreased. (This is an observation needed
to show that the construction of Q for the conclusion of the theorem termi-
nates.)

Case 2: b is non-separating and q∗ 6= 0. This is very similar to Case 1.
In what follows only the major differences are highlighted.

Since q∗ 6= 0, the cocore β
∗

of the 2–handle attached to b∗ and the cocore
β form an arc with a loop at one end. Let U = η(β ∗ ∪ β ). Then U −R
consists of a solid torus q∗−1 copies of D2× I labelled W ∗

1 , . . . ,W ∗
q∗−1 with

frontier in U consisting of discs β ∗
1 , . . . ,β ∗

q∗ parallel to β ∗ (the core of the 2–
handle attached to b∗), a 3–ball P with frontier in U consisting of 3 discs:
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β ∗
q∗, β1, and βq, q−1 copies of D2× I labelled W1, . . . ,Wq−1 with frontiers

β1, . . . ,βq consisting of discs parallel to β . See Figure 5.5. ∂0N[b] consists
of a single torus T0.

T0

β ∗
1

W ∗
1 W ∗

q∗−1 P

βq

Wq−1

W2

β2

W1
β1

FIGURE 5.5. The torus, pair of pants, and 1-handles.

Case 2.1 : ε is not located in P . This is nearly identical to Case 1. To
achieve (B1), an “annulus attachment” trick like that in Case 1.4 is neces-
sary.

Case 2.2: ε is located in P . Since ∂R is essential in N[b] and since R
is embedded, ∂R is disjoint from P . The arc ε has its endpoints on exactly
two of {∂β ∗

q∗,∂β1,∂βq}. Denote by x and y the two discs containing ∂ε and
denote the third by z. That is, {∂x,∂y,∂ z}= {∂β ∗

q∗,∂β1,∂βq}. Boundary-
compressing cl(Q− (x∪ y)) along D removes ∂x and ∂y as boundary com-
ponents of R and adds another boundary-component parallel to ∂ z. Attach
a disc in F parallel to z to this new component, forming J. J is isotopic in
N[b] to R (Figure 5.6) and is, therefore, essential and satisfies the (C) and
(B) properties.

Case 3: b is non-separating and q∗ = 0. Since b is non-separating,
η(β )−Q consists of copies of D2× I labelled W1, . . . ,Wq−1 which are sep-
arated by discs β1, . . . ,βq each parallel to β so that each Wi is adjacent to
βi and βi+1 where the indices run mod q. ∂0N[b] is a single torus T0. See
Figure 5.7.

We need only consider the following cases, as the others are similar to prior
cases.
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z

x

y

P

D

R

FIGURE 5.6. The disc D in Case 2.2

T0

βq

Wq−1

W2

W1
β1

β2

FIGURE 5.7. The solid torus and 1-handles Wj

Case 3.4: ε is located on T0 and either both endpoints are on ∂β1 or
both are on ∂βq. The arc ε is a meridional arc. Suppose, without loss of
generality, that ∂ε ⊂ ∂β1. Boundary-compress R− β̊1 along D. This creates
a surface J with boundary on T0. After possibly discarding a boundary-
parallel annulus J is essential and the (C) properties hold as well as (B2)
and (B3). We need to show that (B1) can be achieved, if desired.
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Suppose that we are in the situation of “refilling meridians” so that N ⊂ M
and F bounds a genus 2 handlebody W in M−N with a and b bounding
discs in W . Then since the endpoints of ε are on the same component of
∂η(a)⊂ F , ε is a meridional arc of b−a. If ∂R is not meridional on T0 this
case, therefore, cannot occur. Thus, the (C) and (B) properties hold.

Case 3.5: ε is located on T0 and has one endpoint on β1 and the other
on βq. The disc D guides an isotopy of R to a surface Q which is suitably
embedded in M[β ] and has q∗(Q) = 1. We have q̃(Q) = q̃(R)− 1. The
surface Q can also be created by boundary-compressing R− (β1∪βq) with
D and then adding a disc β ∗ to the new boundary component. See Figure
5.6. Clearly, the (C) and (B) properties hold.

The previous cases have each described an operation on R which produces
an essential surface Q having the (C) and (B) properties. Furthermore, the
maneuvre described in each case strictly decreases complexity. Thus, after
repeating the operation enough times either the surface Q will have q̃(Q) =
0 or there will be no a–boundary compressions for Q. That is, the (C) and
(B) properties hold and, in addition, (D1) holds.

5.2. Eliminating a–torsion 2g–gons

We may now assume that there is an a–torsion 2g–gon D for Q with g ≥ 2
(since an a–torsion 2–gon is an a–boundary compressing disc). For ease of
notation, relabel and let R = Q and R = Q. By the definition of a–torsion
2g–gon, there is a rectangle E containing the parallel arcs ∂D∩F which,
when attached to R, creates an orientable surface. Two opposite edges of
∂E lie on ∂R and the other two are parallel (as un-oriented arcs) to the arcs
of ∂D∩F . Denote the components of ∂R containing the two edges of ∂E
by ∂x and ∂y. It is entirely possible that ∂x = ∂y. If ∂x is a component of
∂R−∂R, let βx denote the disc in R−R which it bounds. Similarly define
βy.

Suppose that R is a planar surface or 2–sphere. Let N̂ be the 3–manifold
obtained from N[b] by attaching 2–handles to ∂N[b] in such a way that each
component, but one, of ∂J bounds a disc in N̂. Attach these discs to R
forming a surface R̂. Since R was a planar surface or 2–sphere, R̂ is a disc
or 2–sphere. A regular neighborhood of R̂∪E is a solid torus and the disc D
is in the exterior of that solid torus and winds longitudinally around it n≥ 2
times. Thus η(R̂∪E ∪D) is a lens space connected summand of N̂. Hence,
redefining Q = J we satisfy the (C), (B), and (D) properties.
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We may, therefore, assume that R is not a planar surface or 2–sphere. We
need to show that we can achieve (D2) in addition to the (C), (B), and (D1)
properties. The surface R′ = (R− (βx∪βy))∪E is compressible by the disc
D. Compress it to obtain an orientable surface J. Notice that

(−χ(J), q̃(J)) < (−χ(R), q̃(R)).

Analyzing the position of E as we did the position of ε in the previous sec-
tion and possibly performing the “annulus attachment trick”, we can guar-
antee that the (C) and (B) properties are satisfied. If the ends of E are both
on ∂R then the boundary of J may have different slope from the boundary
of R. Whether or not we perform the annulus attachment trick, the surface
J may be inessential. Compressing, boundary compressing, and discard-
ing null-homologous components produces a non-empty essential surface
Q satisfying properties (B) and (C). Considerations similar to those nec-
essary for achieving (B1) in case 1.4 explain why (B2) is phrased as it is.
(B3) is incompatible with (D2) since discarding components may discard
∂R∩ ∂0N[b] converting a non-empty slope to an empty slope. A future at-
tempt to eliminate an a–boundary compressing disc or a–torsion 2g–gon
may then introduce new boundary components on ∂0N[b] of different slope.

As before, complexity has been strictly decreased for both assumptions (I)
and (II). Of course, we may now have additional a–boundary compressing
discs or a–torsion 2g–gons to eliminate as in the previous section. Since all
these operations lower complexity, the process terminates with the required
surface Q. �

The surface Q produced by the previous theorem may be disconnected. (For
example, if b is separating it is possible we could start with R being a disc
with boundary on T0 and end up with Q the union of an annulus with bound-
ary on T0∪T1 and a disc with boundary on T1.) The next corollary puts our
minds at rest by elucidating when we can discard components to arrive at a
connected surface Q.

COROLLARY 5.2. The following statements are true:

• If R is a collection of spheres or discs then after discarding com-
ponents of the surface Q created by Theorem 5.1 we may assume
that Q is an essential sphere or disc such that q̃(Q) ≤ q̃(R) and
conclusions (B2), (B3), (D1), (D3), and (D4) hold.

• If N[b] does not contain an essential disc or sphere, then we may
assume the Q produced by Theorem 5.1 to be connected and Con-
clusions (C1), (C2), (B2), and (D1) - (D4) hold. Furthermore, if R
is non-separating, so is Q.
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PROOF. Suppose that R is a collection of spheres or a discs and let Q̃
be the surface produced by Theorem 5.1. Since −χ(R) < 0, by conclusions
(C1) and (C2) of that theorem, −χ(Q̃) < 0 and each component of Q̃ is a
planar surface or Q̃ is a sphere. Indeed, at least one component Q of Q is
a sphere or disc. By conclusion (D1), either Q̃ is disjoint from β or there
is no a–boundary compressing disc for Q̃∩N. If there is an a–boundary
compressing disc for Q∩N then an outermost arc argument shows that there
would be one for Q̃∩N. Thus, either Q is disjoint from β or there is no
a–boundary compressing disc for Q. As argued in the proof of Theorem
5.1, if there is an a–torsion 2g–gon for Q, then N[b] contains a lens-space
connected summand. It is clear, therefore, that the required conclusions
hold.

Suppose that N[b] contains no essential disc or sphere. Let Q̃ be the surface
produced by Theorem 5.1 and notice that Q̃ contains no disc or sphere com-
ponents. Choose a component Q̃0 of Q̃ and discard the other components.
Neither negative euler charactistic nor q̃ are raised. If R was non-separating,
choose Q̃0 to be non-separating. Either Q̃0 satisfies the conclusion of the
Corollary or q̃(Q̃0) > 0 and there is an a–boundary compressing disc or
a–torsion 2g–gon for Q̃0 ∩N. Apply the theorem with R = Q̃0 and notice
that the surface Q̃1 produced has strictly smaller complexity. Thus, repeat-
ing this process, each time discarding all but one component, we eventually
obtain the connected surface Q promised by corollary. �



CHAPTER 6

Degenerating Handle Additions

Most of the applications of the main results will concern refilling meridians
of genus 2 handlebodies, but first we prove some fairly general results about
2–handle addition to a genus 2 boundary component. These theorems will
be proved without using the second sutured manifold theorem. The proofs
are very similar, with the second being more difficult.

THEOREM 6.1. Suppose that F has genus 2, N is compact, orientable,
and irreducible, ∂N −F is empty or consists of tori, that N is boundary-
irreducible and that there is no essential annulus in N with both boundary
components parallel to a ⊂ F or both boundary components parallel to
b ⊂ F. If a and b are separating non-parallel curves, then one of N[a] and
N[b] is irreducible.

PROOF. Suppose that N[b] is reducible. Since there is no essential an-
nulus in N with boundary parallel to a, there is no essential 2-sphere in N[a]
minimally intersecting α twice. By Lemma 4.1, (N,a) is a taut sutured
manifold. Let R be an essential sphere or disc in N[b] and apply Theorem
5.1 to obtain a surface Q. By Corollary 5.2, we may assume that Q is a
sphere or disc. Since N is irreducible and boundary-irreducible, q̃(Q) > 0.
Furthermore, there is no a–boundary compressing disc for Q.

Since b is separating, q∗ = 0 and since a is separating ν = ν∂ = 0. Since a
and b are both separating ∆≥ 2. Hence,

K(Q) = q(∆−2)+∆∂ ≥ 0.

In particular, −2χ(Q) < K(Q). There is no essential annulus in N with
boundary parallel to a. Hence, α does not intersect an essential sphere in
N[a] exactly twice without being able to be isotoped to be disjoint from it.
By the first sutured manifold theorem, (N[a],∅) must be taut. Therefore,
N[a] is irreducible. �

Our second theorem is similar, but has stronger assumptions and conclu-
sions.

57
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THEOREM 6.2. Suppose that F has genus 2, and that N is simple. Suppose
that a and b are non-isotopic separating curves on F. Suppose that N[a] is
reducible. Then if N[b] is non-simple, it contains an essential annulus with
boundary on non-torus components of ∂N[b] and ∆ = 4.

PROOF. Notice, first, that since a and b are separating, ∆ is even and
positive. If ∆ were equal to two then a− b would have a single arc on
each once-punctured torus component of F − b, implying that a was non-
separating. Thus, ∆≥ 4.

Now suppose that N[b] contains a surface R which is an essential sphere,
disc, torus, or annulus. Let Q be the surface obtained by applying Corollary
5.2 to R. The surface Q is still an essential sphere, disc, annulus, or torus. It
is not disjoint from a since N is simple and ∆ > 0. Furthermore, there is no
a-boundary compressing disc for Q. We may assume that out of all such Q,
q has been minimized. If Q is an annulus, suppose for the time being that
∂Q does not have all its boundary components on non-torus components of
∂N−F . Since a and b are separating, γ̂ = ∅ and b∗ = ∅.

If Q has a boundary component on a non-torus component of ∂N−F , let c
be that component of ∂Q. Since N is simple, c satisfies the requirements for
an application of Lemma 4.1. Let γ be the sutures provided by that lemma.

Notice that q > 0 since N is simple. We may now apply the first sutured
manifold theorem. Since N does not contain an essential annulus, conclu-
sion (1) does not occur. By the construction of Q, there is no a–boundary
compressing disc for Q. Thus,

(∆−2)q+∆∂ ≤−2χ(Q).

Hence,

∆≤ 2+(−∆∂ +−2χ(Q))/q≤ 2−∆∂ /q.

Since ∆∂ is non-negative, we have ∆ = 2. This contradicts our initial obser-
vation that ∆≥ 4.

We may, therefore, assume that Q is an annulus with both boundary com-
ponents on non-torus components of ∂N−F . Let G be the components of
∂N −F containing ∂Q. Let N′ be the manifold obtained by doubling N
along G. That is, N′ is formed by gluing a copy N2 of N to N1 = N along
G. Let Fi, ai, bi, Qi be the copy of F , a, b, and Q lying in Ni. The gluing
should be performed so that Q′ = Q∪Q2 is a punctured torus in N′[b1] with
punctures on F2 parallel to b2. It is easy to show that N′ is simple. Notice
that N′[a] is reducible.
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Let Q′ = Q′∩N′. Suppose that D is an a1–boundary compressing disc for Q′

with ε = ∂D∩F1. Since N1 and N2 are simple, we may assume that D∩G
consists of arcs which are essential in Q′. Since there is no a–boundary
compressing disc for Q in N, this collection of arcs is non-empty. Since G
is disjoint from F1, there is some arc of D∩G which is outermost on D and
does not contain ε in the outermost disc it bounds. Let E be the outermost
disc containing that arc. Then E is a boundary compressing disc for Q1 or
Q2. Without loss of generality, suppose it to be Q1. Since Q is essential
in N1[b1], the arc ∂E ∩Q must be inessential in Q. Cutting Q along ∂E
produces a surface with an annulus component and a disc component. Since
N1[b1] contains no essential discs, the disc component must be inessential.
But this implies that there is an isotopy of Q reducing q, contradicting our
choice of Q. Hence, there is no a1–boundary compressing disc for Q′.

Let c = b2 and apply Lemma 4.1 to construct sutures γ on ∂N′ which are dis-
joint from c so that (N′,γ∪a1) is a taut sutured manifold. Since all boundary
components of Q′ are parallel to b2, ∆∂ = ν∂ = 0. Also,−2χ(Q′) = 2q since
Q′ is a punctured torus with q boundary components. If −2χ(Q) < K(Q)
then the first sutured manifold theorem shows that N′[a1] is irreducible, a
contradiction. Hence, −2χ(Q)≥ K(Q). Thus,

2q≥ q(∆−2).

Solving for ∆, we observe ∆≤ 4. Since ∆≥ 4, we conclude ∆ = 4. �

REMARK. A separating curve in ∂N is an example of what Scharlemann
and Wu [SW] call a basic curve. They prove that if N is simple and one
of a and b is basic, then if N[a] is reducible and N[b] is boundary-reducible
then a and b can be isotoped to be disjoint. They conjecture that if both a
and b are basic and neither N[a] nor N[b] is simple then ∆≤ 5. Theorem 6.2
gives some evidence for their conjecture.



CHAPTER 7

Refilling Meridians

We now turn to applying the sutured manifold theorems to “refilling merid-
ians”. For the remainder, suppose that M is a 3–manifold containing an
embedded genus 2 handlebody W . Let N = M−W̊ . Let α and β be two
essential discs in W isotoped to intersect minimally and non-trivially. Let
a = ∂α , b = ∂β , b∗ = ∂β ∗, M[α] = N[a], and M[β ] = N[b]. Recall that
Lα and Lβ are the cores of the solid tori produced by cutting W along α

and β respectively. If we need to place sutures γ̂ on F = ∂W we will do
so as described in Section 4. We begin by briefly observing that for any
suitably embedded surface Q⊂M[β ], with boundary disjoint from γ ∩∂M,
K(Q)≥ 0.

If α is separating,

K(Q) = q(∆−2)+q∗(∆∗−2)+∆∂ .

Since b, b∗, and a all bound discs in W , ∆ is at least two. If q∗ 6= 0, then ∆∗

is also at least two. Thus, K(Q)≥ 0.

Recall (Section 4) that if α is non-separating, any arc of b− η̊(a) with
endpoints on the same component of ∂η(a) is a meridional arc of b− a.
The number of these meridional arcs is denoted Ma(b) and it is always
even and always at least two since there are the same number of meridional
arcs based at each component of ∂η(a)⊂F . The sutures γ̂ are disjoint from
these meridional arcs. Since any arc of b−a which is not a meridional arc
intersects exactly one suture exactly once, we have

∆−ν = Ma(b)≥ 2

and

∆
∗−ν

∗ ≥Ma(b∗)≥ 2.

Since ∂Q is disjoint from b∪b∗, it is also disjoint from the meridional arcs
of b−a. Consequently, each arc of ∂Q−a intersects γ̂ at most once. Hence,
∆∂ −ν∂ ≥ 0. When α is non-separating, we, therefore, have

K(Q)≥ q(Ma(b)−2)+q∗(Ma(b∗)−2)+∆∂ −ν∂ ≥ 0.

60
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Before proceeding to more interesting results, we need to know that there
are taut conditioned Seifert surfaces.

LEMMA 7.1. Suppose that M = S3. Then there is a Seifert surface S for Lα

which is disjoint from α (i.e. lies in N) and is a taut conditioned surface in
N with boundary disjoint from a.

PROOF. First we show that Lα does contain a conditioned Seifert sur-
face disjoint from α . Choose a Seifert surface Σ0 ⊂ N[a] for Lα . If Lα is
a link, Σ0 may not be connected. Since ∂Σ0 is a longitudinal on ∂N[a], we
may assume (when α is non-separating) that it intersects γ exactly twice.

Calculate the algebraic intersection number between α and each component
of Σ0. If it is n 6= 0, an endpoint of α may be isotoped around ∂S3[α]
creating n intersections of sign −n/|n|. Perform the isotopy so that ∂α is
always disjoint from γ . Rather than isotoping α , we may instead isotope Σ0.
We take this latter viewpoint. The requirement, from the former viewpoint,
that ∂α be disjoint from γ guarantees that, from the latter viewpoint, if α is
non-separating then ∂Σ0 still intersects each component of γ exactly once.

We may, therefore, assume that the intersection number of α with each
component of Σ0 is zero. Choosing an arc σ of α − Σ0 with endpoints
creating intersections of opposite sign on the same component of Σ0, we
attach a tube containing σ to Σ0, decreasing |Σ0 ∩α| (but increasing the
genus of Σ0). The algebraic intersection number of α and Σ0 is still zero.
Continuing in this manner, we may construct a conditioned Seifert surface
Σ for Lα which is disjoint from α . Out of all Seifert surfaces for Lα which
are disjoint from α and which have boundary ∂Σ choose one of minimal
genus and call it S. Then S is a taut conditioned surface in N. �

REMARK. Notice that even though ∂S (where S is the surface created by
the previous lemma) is a longitude on ∂0N[a] (when α is separating) it may
intersect meridional arcs of b− a more than once. It must, however, inter-
sect them at least once. See Figure 7.1 for a depiction of the “spiralling ∂α”
viewpoint.

An easier proof, which is omitted, gives:

LEMMA 7.2. Suppose that M = S3. Then there is a Seifert surface S⊂ N[a]
for Lα which is an α–taut conditioned surface.

7.1. Scharlemann’s Conjecture

Studying the operation of refilling meridians, Scharlemann [S5] was led to
the following definitions and conjecture.



7.1. SCHARLEMANN’S CONJECTURE 62

γ

∂η(a)

∂η(a)

γ

∂S

FIGURE 7.1. The result of spiralling ∂α around ∂0N[a]

Define (M,W ) to be admissible if

(A0) every sphere in M separates
(A1) M contains no lens space connected summands
(A2) Any two curves in ∂M which compress in M are isotopic in ∂M
(A3) M−W is irreducible
(A4) ∂M is incompressible in N.

He conjectured

CONJECTURE. If (M,W ) is admissible then one of the following occurs

• M = S3 and W is unknotted (i.e. N is a handlebody)
• At least one of M[α] and M[β ] is irreducible and boundary-irreducible
• α and β are “aligned” in W .

The definition of “aligned” is rather complicated and is not needed for what
follows, so I will not define it here. I will only remark that it is a notion
which is independent of the embedding of W in M.

Scharlemann proved the following:

THEOREM (Scharlemann).
• If ∂W compresses in N then the conjecture is true.
• If ∆≤ 4 then the conjecture is true.
• If α is separating and M contains no summand which is a non-

trivial rational homology sphere then one of M[α] and M[β ] is
irreducible and boundary-irreducible.

• If both α and β are separating then the conjecture is true. If, in ad-
dition, ∆ ≥ 6 one of M[α] and M[β ] is irreducible and boundary-
irreducible.
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With a slight variation on the notion of “admissible”, Scharlemann’s Con-
jecture can now be completed for a large class of manifolds.

Define the pair (M,W ) to be licit if the following hold:

(L0) H2(M) = 0.
(L1) H1(M) is torsion-free.
(L2) No curve on a non-torus component of ∂M which compresses in

M bounds an essential annulus in N with a meridional curve of ∂W
(that is, a curve on ∂W which bounds a disc in W ).

(L3) N is irreducible
(L4) ∂M is incompressible in N.

The major improvement provided by the next theorem is that the case of
non-separating meridians can be effectively dealt with. The theorem com-
pletes Scharlemann’s conjecture for pairs (M,W ) which are both licit and
admissible.

THEOREM 7.3 (Modified Scharlemann Conjecture). Suppose that (M,W )
is licit and that α and β are two essential discs in W. Make the following
incompressibility assumptions:

• If α is separating, then ∂W −a is incompressible in N.
• If β is separating, then ∂W −b is incompressible in N.
• If α is non-separating, then there is no essential disc in M[α]

which is disjoint from α .
• If β is non-separating, then there is no essential disc in M[β ] which

is disjoint from β .

Then either α and β can be isotoped to be disjoint or all of the following
hold:

• One of M[α] or M[β ] is irreducible
• If one of M[α] or M[β ] is reducible then no curve on ∂M com-

presses in the other.
• No curve on ∂M compresses in both M[α] and M[β ].
• If ∂M = ∅ then one of M[α] or M[β ] is irreducible and boundary-

irreducible (i.e. not a solid torus).

The theorem would certainly be easier to state if we replaced the incom-
pressibility assumptions with the assumption that ∂W was incompressible
in N. However, we require the stated assumptions later. Conditions (L0) and
(L1) are stronger than Conditions (A0) and (A1) but are used to guarantee
that H1(M[α]) and H1(M[β ]) are torsion-free; this is required for the appli-
cation of the second sutured manifold theorem. Condition (L2) is neither
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stronger nor weaker than Condition (A2) since we allow multiple curves on
∂M to compress in M but forbid the existence of certain annuli. To show
that some condition like (A2) was required, Scharlemann points out the fol-
lowing example:

EXAMPLE. Let M be a genus 2–handlebody and let W ⊂M so that M−W̊
is a collar on ∂W . (That is, M is a regular neighborhood of W .) Then con-
ditions (A0), (A1), (A3), (A4), (L0), (L1), (L3), and (L4) are all satisfied.
But given any essential disc α ⊂W , M[α] is obviously boundary-reducible.
Both (A2) and (L2) rule out this example.

PROOF. Suppose, without loss of generality, that M[β ] is reducible or
boundary-reducible. We begin by showing that H1(M[α]) is torsion-free.
Consider M as the union of V = W − η̊(α) and M[α]. Using assumption
(L0) that H2(M) = 0, we see that the Mayer-Vietoris sequence gives the
exact sequence:

0→ H1(∂V )
φ→ H1(M[α])⊕H1(V )

ψ→ H1(M)→ 0.

Suppose that x is an element of H1(M[α]) and that n∈N is such that nx = 0.
Then nψ(x,0) = ψ(nx,0) = 0. Since H1(M) is torsion-free, ψ(x,0) = 0.
Thus, by exactness, (x,0) is in the image of φ . Let y ∈ H1(∂V ) be in the
preimage of (x,0). Also, φ(ny) = nφ(y) = (nx,0) = (0,0). From exactness,
we know that φ is injective. Hence, ny = 0 ∈ H1(∂V ). The boundary of V
is a collection of tori and, therefore, H1(∂V ) is torsion-free. Consequently,
y = 0. Therefore, x = 0 and H1(M[α]) is torsion-free.

Assume that ∆ > 0. We will now show that M[α] is irreducible and that if
a curve on ∂M compresses in M[β ] then it does not compress in M[α] and
that if M[β ] is reducible then no curve of ∂M compresses in M[α]. If ∂M is
compressible in M[β ], let cβ be a curve on ∂M which compresses in M[β ].
If cβ = ∅, let c be any curve on ∂M which compresses in M, otherwise let
c = cβ .

By Lemma 4.1 and our incompressibility assumptions, we may choose su-
tures γ on ∂M[α] so that γ̂ = γ ∩ ∂0M[α] is chosen as usual and so that
γ ∩ c = ∅ and (M[α],γ) is an α–taut sutured manifold. Let R be either
an essential sphere, an essential disc with boundary cβ = c, or an essen-
tial disc with boundary on ∂0M[β ]. Let Q be the result of applying Corol-
lary 5.2 to R. Q is an essential sphere, an essential disc with boundary cβ ,
or an essential disc with boundary on ∂0M[β ]. By the irreducibility of N
and the incompressibility assumptions, q̃(Q) > 0. Consequently, by Corol-
lary 5.2, there are no a–boundary compressing discs or a–torsion 2g–gons.
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Since K(Q) ≥ 0 and −2χ(Q) < 0, by the second sutured manifold theo-
rem (M[α],γ) is ∅–taut. In particular, M[α] is irreducible and c does not
compress in M[α] since otherwise R±(γ) would not be taut in M[α].

Thus, either the theorem is true or both M[α] and M[β ] are irreducible but
have boundary-compressing discs on ∂W . Suppose the latter. Since ∂0M[α]
and ∂0M[β ] are both collections of tori, the presence of a compressing disc
implies either reducibility or that M[α] and M[β ] are solid tori. Thus, we
may assume both are solid tori. This implies that M = S3. By the first su-
tured manifold theorem and Lemma 7.1, there is a taut conditioned Seifert
surface for Lα which is disjoint from α . Since M[α] is a solid torus, this
surface must be a disc lying in N. This, however, contradicts the incom-
pressibility assumptions. Thus, M[α] is not a solid torus, and the theorem
is true. �

REMARK. At the cost of adding hypotheses on the embedding of W in M,
the conditions for being “licit” can be significantly weakened. For example,
the hypotheses on the curves c, a, and b of Lemma 4.1 can be substituted
for (L2). An examination of the homology argument at the beginning of the
proof shows that (L0) can be be replaced with the assumption that Lα and
Lβ are null-homologous in M. Another way of changing assumptions would
be to make greater use of the first sutured manifold theorem which does
not require that M[α] be torsion-free in first homology. The next theorem
provides an example.

THEOREM 7.4. Suppose that any two curves of ∂M which compress in M
are on the same component of ∂M. Suppose that W is a genus two handle-
body embedded in M such that W intersects every essential sphere in M at
least three times and every essential disc at least two times. Suppose also
that N = M−W̊ is irreducible. Let α and β be essential discs in W which
cannot be isotoped to be disjoint. Assume that M[α] and M[β ] contain no
essential disc which is contained in N and that ∂α and ∂β do not compress
in N. Then the following hold:

• One of M[α] and M[β ] is irreducible and is not a solid torus
• If one of them is reducible the other is boundary-irreducible.
• If ca ⊂ ∂M is a curve which compresses in M[α] and if cb ⊂ ∂M

is a curve which compresses in M[β ] then ca and cb cannot be
isotoped in ∂M to be disjoint.

PROOF. Without loss of generality, assume that M[β ] is reducible or
boundary-reducible and let Q be an essential sphere or disc obtained by
applying Corollary 5.2, as before. If ∂Q is on ∂M then we may assume that
∂Q = cb. Let T = T (γ) be the torus components of ∂M.
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We need to place sutures on ∂M. To do this, we’ll define curves c that can be
used in Lemma 4.1. If Q is a sphere or disc with boundary on ∂0M[β ]∪T ,
define cβ = ∅. Otherwise, let cβ = cb. If no curve of ∂M disjoint from cb
compresses in M[α], then let cα = ∅. If cb compresses in M[α], let cα = cb.
If cb does not compress in M[α] but a curve ca disjoint from cb does, let
cα = ca. Define c = cα ∪ cβ and notice that if |c| = 2, there is no essential
annulus in N with boundary equal to c. Also, if a component of c bounds an
essential annulus with a curve of γ̂ ∪a then, because, the components of γ̂ ∪
a bound discs in W , W would intersect a compressing disc for ∂M exactly
once. This is forbidden by our hypotheses. Furthermore, if |c|= 2 then one
component, cα , of c bounds a disc in M[α] and the other component cβ = cb
does not. If a is separating, |c| = 2, and c∪ a bounds an essential thrice-
punctured sphere in M[α], then attaching discs to cα and to a shows that
cβ = cb = c− cα compresses in M[α], but this contradicts the construction
of cα . Thus c satisfies the criteria for an application of Lemma 4.1. Let
γ = γ̃ ∪ γ̂ be the sutures on ∂M[α] provided by that Lemma.

If M[α] is reducible or if cα 6= ∅ then (M[α],γ) is not taut. If M[α] is a
solid torus, then, by our hypotheses, every taut conditioned surface with
boundary on ∂0M[α], of which there is one (Lemma 7.1), intersects α . We
can, therefore, apply the first sutured manifold theorem. Since Q is a disc or
sphere, −2χ(Q) < K(Q). By the construction of Q, there is no a–boundary
compressing disc for Q in N = M−W̊ . Thus, M[α] contains an essential
separating sphere S intersecting α twice and which cannot be isotoped to
intersect α fewer times.

Because W intersects every essential sphere in M at least three times, S can-
not be an essential sphere for M. Let B be the ball in M which S bounds.
Notice that this implies that M is a non-trivial homology sphere. Since S
is separating and B is not contained in M[α], ∂0M[α]⊂ B. Attaching η(α)
to B produces a solid torus V containing W , with ∂V compressible in V [α]
and V −W̊ irreducible. Notice that (V,W ) is licit. Thus, we may apply the
Modified Scharlemann Conjecture to conclude that V [β ] is irreducible and
that ∂V [β ] does not compress in V [β ]. Thus, Q intersects ∂V and an in-
nermost disc of intersection D on Q is a compressing disc for ∂V contained
outside V . (Inessential curves of intersection should first be eliminated by
an innermost disc argument.) If ∂D intersected a meridian curve on ∂V ex-
actly once, ∂D would run exactly once along a regular neighborhood of α .
D then guides an isotopy of α into B, contradicting the construction of S. If
∂D is a meridional curve of ∂V , then W is contained in an S1×S2 summand
of M. If ∂D intersects every meridional curve of ∂V more than once then
W is contained in a lens space connected summand of M. By hypothesis,
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W intersects every reducing sphere in M, so M is S1× S2 or a lens space.
Both possibilities contradict our previous conclusion that M was a homol-
ogy sphere. Hence, M[α] is irreducible, ∂0M[α]∪ T is incompressible in
M[α], and cα = ∅. �

The next section contains more applications of the first sutured manifold
theorem.

7.2. Essential surfaces in the exteriors of bored unknots and split links

Recall that if α is an essential disc in W which cannot be isotoped to be
disjoint from β then Lβ is obtained from Lα by boring (and vice versa).
Our first result generalizes a property of tunnel number 1 knots.

THEOREM 7.5. Suppose that Lα is a knot or link in S3 obtained by bor-
ing a knot or link Lβ using handlebody W. Suppose that either α is non-
separating or that ∂W −∂α is incompressible in N. Suppose also that one
of the following holds:

• Lβ is an unknot
• Lβ is a split link and ∂W −∂β is incompressible in N.

Then there is a minimal genus Seifert surface for Lα which is disjoint from
α .

PROOF. If α is non-separating, γ 6= ∅. Since ∂W − (a∪ γ) consists of
two thrice-punctured spheres each with meridional boundary, it is incom-
pressible in N. If α is non-separating, by hypothesis ∂W − ∂α is incom-
pressible in N. Thus, in either case, by Lemma 4.1, (N,γ ∪ a) is taut. Let
R be an essential disc or sphere in S3[β ] and let Q be the disc or sphere
provided by Corollary 5.2. If Lβ is a split link then since ∂W − ∂β is in-
compressible in N, q̃ > 0. If q̃ = 0 then Lβ is an unknot and Q is disjoint
from β , but since it is a disc, there is no a–boundary compressing disc for
it. Furthermore, in this case, ∂Q must intersect the meridional arcs of a−b.
Thus, whether or not q̃ is zero, Q has no a–boundary compressing discs and
is not disjoint from a. Recall that −2χ(Q) < 0≤ K(Q).

By the first sutured manifold theorem and Lemma 7.1, Lα has a minimal
genus Seifert surface disjoint from α (that is, contained in N). �

COROLLARY 7.6 ([ST2, Proposition 4.2]). If α is a tunnel for a tunnel
number one knot or link Lα , Lα has a minimal genus Seifert surface disjoint
from α .
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PROOF. As noted in the introduction, every tunnel number one knot or
link can be obtained by boring an unknot Lβ using the standard unknotted
genus two handlebody in S3. Conversely, a tunnel for a non-trivial tunnel
number one knot or link is a boring arc for converting the knot or link into
the unknot Lβ . Thus, unless α is separating and ∂W −∂α is compressible
in N, the corollary follows immediately from Theorem 7.5.

We may, therefore, assume that Lα is a split link. The surface ∂W is a genus
two Heegaard surface for S3[α]. If Lα is a split link, S3[α] contains an es-
sential sphere, so by Haken’s Lemma for Heegaard splittings there is an
essential sphere P intersecting the Heegaard surface in a single loop. One
side of the Heegaard surface is a compressionbody with two boundary com-
ponents, each a torus. Thus, P must intersect that compressionbody in the
unique (up to isotopy) essential disc. That disc is parallel to α . ∂W − η̊(P)
has two components each of which is a genus one Heegaard splitting for the
exterior of a component of Lα . The only knot with a genus one Heegaard
splitting for its exterior is the unknot and so Lα is the unlink of two com-
ponents. Since the connected sum of Heegaard splittings is well-defined
α ∩ (S3− η̊(P)) consists of two unknotted arcs. Thus, each component of
Lα bounds a disc disjoint from α and the corollary is proved when Lα is a
split link. �

REMARK. The proof of the previous corollary is not any better than Scharle-
mann and Thompson’s proof. Indeed, their proof is certainly easier to un-
derstand than the arguments of this paper. However, it is interesting to note
that they do rely on a theorem of Gabai which was proved using sutured
manifold theory. The point of Theorem 7.5 is that a rather significant prop-
erty of tunnel number one knots has a natural generalization to knots and
links obtained by boring an unknot.

Using Theorem 7.5, we can reverse the roles of α and β to obtain:

THEOREM 7.7. Suppose that Lβ ⊂ S3 is obtained by boring a split link or
unknot Lα . If Lα is a split link, assume that ∂W − ∂α is incompressible
in N. If Lα is an unknot, assume that there does not exist an essential disc
in S3[α] disjoint from α . Then Lβ is not a split link or unknot and Lβ has
a minimal genus Seifert surface Q properly embedded in S3[β ], which is
disjoint from β and for which one of the following is true:

• −2χ(Q)≥ ∆∂ −ν∂

• There is an a–boundary compressing disc for Q in N

REMARK. Corollary 8.4 rephrases this theorem for rational tangle replace-
ments. Following that theorem, there is an example which shows that the
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possibility that there is an a–boundary compressing disc for Q cannot be
eliminated. Notice that if β is isotopic with fixed endpoints to a non-trivial
arc in Q then there is an a–boundary compressing disc for Q in S3.

PROOF. The Modified Scharlemann Conjecture shows that Lβ is not a
split link or unknot.

By Theorem 7.5, applied with α and β reversed, there is a minimal genus
Seifert surface Q for Lβ which is disjoint from β ; that is, it is contained in
N. The only way in which Q could be disjoint from the meridional arcs of
a− b is if β were separating and Q had boundary on a single component
of Lβ . This contradicts the definition of Seifert surface for Lβ , so Q is not
disjoint from η(a).

If there is an a–boundary compressing disc for Q in N, we are done, so
suppose that no such disc exists. If −2χ(Q) < K(Q) the first sutured man-
ifold theorem and Lemma 7.1 imply that S3[α] is irreducible and that there
is a minimal genus Seifert surface for Lα which is disjoint from α . The
first option means that Lα isn’t a split link and the second that Lα isn’t an
unknot since ∂W −∂α is incompressible. Hence, −2χ(Q)≥ K(Q). Since
Q is disjoint from β , q = q∗ = 0. The given inequality follows from the
definition of K(Q). �

With the stronger assumption that ∂W is incompressible in N, we can re-
strict the possibilities for obtaining a non-hyperbolic knot or link from a
split link by boring.

THEOREM 7.8. Suppose that Lβ is a knot or link obtained by boring the
link Lα using a handlebody W ⊂ S3 with N = S3−W̊ boundary-irreducible.
Suppose that Lα is a split link or that there is no minimal genus Seifert
surface for Lα disjoint from α . If the exterior of Lβ contains an essential
annulus or torus then one of the following holds:

(1) There is an essential torus in N
(2) There is an essential annulus in the exterior of Lβ disjoint from β

and which is either disjoint from or has meridional boundary on
some component of Lβ .

(3) ∆ = 2 and if there is an essential annulus then there is one which
is either disjoint from or has meridional boundary on some com-
ponent of Lβ .

EXAMPLE. Figure 1.6 shows that a composite knot can be obtained from
a split link by a band sum. Thickening the band and the unknot gives us
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W , and the exterior of W is boundary-irreducible. This shows that the third
case can arise.

Both versions of the second conclusion are possible. Figure 7.2 shows a
spine for a genus two handlebody. The “S”-shaped arc is disjoint from an
essential meridional annulus A. Refilling the meridian of that arc creates
a split link with one component a trefoil and the other component an un-
knot. It is not hard to show that the exterior of the handlebody is boundary-
irreducible. Using the “S” shaped arc to perform a band-sum creates a knot
Lβ which is the connected sum of a trefoil and a 61 knot1.

FIGURE 7.2. Performing a rational tangle replacement on
the “S” shaped arc leaves the meridional annulus untouched.

Figure 7.3 shows a split link Lα consisting of a trefoil (drawn so the “ca-
bling” annulus is visible) and an unknot. There is an “S” shaped arc joining
them. On the trefoil the annulus has boundary slope ±6. Use the “S”-
shaped arc to perform a Kirby band move of the unknot over the trefoil
(giving the trefoil a framing of ±6). We now have a new link Lβ with one
component the trefoil. By construction the cabling annulus for the trefoil
persists into Lβ . It is not difficult to show that the exterior of the handlebody
is boundary-irreducible.

It is easy to use a “satellite construction” to concoct an example of the first
possibility. Figure 7.4 shows a spine for a genus two handlebody W inside
a knotted solid torus ∂V . Cutting the edge of the spine containing the local
trefoil produces the unlink Lα in S3. By the Modified Scharlemann Conjec-
ture, ∂V remains essential in the exterior of any knot or link Lβ obtained
from Lα by boring using W . It is easy to show that ∂W is incompressible in
both V −W̊ and S3−W̊ .

PROOF OF THEOREM 7.8. Suppose that there is no essential torus in
N. The Modified Scharlemann Conjecture shows that Lβ is not an unknot

1Thanks to Jiho Kim’s KnotSketcher and Charles Livingston’s KnotFinder for help
with this calculation.
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FIGURE 7.3. Performing a Kirby band move using the “S”
shaped arc leaves the trefoil’s essential annulus untouched.

FIGURE 7.4. An essential torus in the exterior of W .

or split link; consequently, there is no essential disc or sphere in S3[β ].
Let R be an essential annulus or torus in S3[β ] and apply Corollary 5.2,
obtaining a connected surface Q. Since Q is not a sphere or disc and since
−χ(Q) ≤ −χ(R), Q is an annulus or torus. Since the genus of Q is no
higher than the genus of R, if R was an annulus, then Q is an annulus. If Q
is disjoint from β then it is contained in N and must be an annulus by our
initial assumption that N contains no essential torus. In this case, if there
is an a–boundary compression for Q, N would contain an essential disc,
contradicting the assumption that ∂W is incompressible in N.

We may, therefore, assume that there is no a–boundary compressing disc for
Q. If Q is completely disjoint from a, then Q is an annulus which is disjoint
from the meridional arcs of a−b. From our observations about meridional
arcs, this means that Q ⊂ N is an annulus which is either disjoint from or
has meridional boundary on one component of ∂S3[β ].
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Suppose, therefore, that Q is not completely disjoint from a. Notice that
because α is separating, α must intersect any reducing sphere for S3[α]
an odd number of times. Thus, by the first sutured manifold theorem,
−2χ(Q)≥ K(Q). Since χ(Q) = 0 and since K(Q)≥ 0 we have K(Q) = 0.
That is,

q(∆−2)+q∗(∆∗−2)+∆∂ = 0.

Since each term is non-negative, each term must be zero. Hence ∆∂ = 0,
implying that either Q is a torus or it is an annulus with boundary disjoint
from or consisting of meridians on some component of ∂S3[β ]. If q∗ 6= 0,
then β is non-separating and we must have ∆∗ = 2. Since b∗ intersects each
meridional arc of a− b at least twice, this means that there is exactly one
such meridional arc. The number of meridional arcs is even, so this is a
contradiction. If q 6= 0 then we have ∆ = 2. If both q and q∗ are equal to
zero, then since ∆∂ = 0, Q is an annulus disjoint from a, a possibility we
have already considered. �

In the next section, we study rational tangle replacement as a particular type
of boring.



CHAPTER 8

Rational Tangle Replacement

Suppose that Lβ is a knot or link in S3 and that B′ ⊂ S3 is a ball intersecting
Lβ in two strands rβ so that (B′,rβ ) is a rational tangle. We will always
assume that no component of Lβ is disjoint from B′. If (B′,rα) is any other
rational tangle, then the knot or link Lα = (Lβ −B′)∪ rα is obtained by
a rational tangle replacement on Lβ . Let (B,τ) = (S3 − B̊′,Lβ − B̊′) be
the complementary tangle. In section 1.4, the terminology associated to
rational tangle replacement was defined. We now briefly recall some of this
terminology and notation.

Let α and β be trivializing discs for rα and rβ respectively (isotoped to
intersect minimally) and let W = η(Lβ )∪B′ = η(Lα)∪B′. Notice that if
α and β are not disjoint then Lβ and Lα are related by boring using boring
handlebody W . The distance between rα and rβ is defined to be d = ∆/2.
Since S3 is prime and, therefore, has no non-trivial homology sphere con-
nected summands, the first sutured manifold theorem is particularly useful.
Let N = S3−W̊ = B− η̊(τ).

Before stating the applications, we state and prove some lemmas which
allow the terminology of tangle sums and rational tangle replacement to be
converted into the terminology of boring.

8.1. Boring and Rational Tangle Replacement

LEMMA 8.1. Let (B,τ) be a tangle. Suppose that c is an essential separat-
ing curve on ∂B− τ . If ∂N− c is compressible in N then c compresses in
N.

PROOF. Let d be an essential curve in ∂N−c which bounds a disc D⊂
N. Since c is separating and ∂N has genus two, d is a curve in a once-
punctured torus. Thus, it is either non-separating or parallel to c. In the
latter case, we are done, so suppose that d is non-separating. Let D+ and
D− be parallel copies of D so that d is contained in an annulus between ∂D+
and ∂D−. Use a loop which intersects d exactly once to band together D+

73
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and D−, forming a disc D′. The boundary of D′ is an essential separating
curve in the once-punctured torus. ∂D′ is, therefore, parallel to c. Hence, c
compresses in N. �

LEMMA 8.2. Suppose that (B,τ) and (B′,rα) are tangles embedded in S3

with (B′,rα) a rational tangle so that ∂B = ∂B′ and ∂τ = ∂ rα . Suppose
that (B′,rβ ) is rational tangle of distance at least one from (B′,rα). Define
the sutures γ ∪a on ∂N as before. If

• α is non-separating in the handlebody W = B′∪η(τ), or
• if (B,τ) is a prime tangle, or
• if (B,τ) is a rational tangle and ∂α does not bound a trivializing

disc for (B,τ), or
• if ∂α does not compress in (B,τ)

then ∂W−(γ∪a) is incompressible in N. Consequently, (N,γ∪a) is ∅–taut
and (N[a],γ) is α–taut.

PROOF. If α is non-separating then any compressing disc for ∂W −
(γ ∪ ∂α) would have meridional boundary, implying that S3 had a non-
separating 2–sphere. Thus, we may suppose that α is separating. If (B,τ)
is prime, there is no disc separating the strands of τ . Similarly, if (B,τ) is a
rational tangle but a does not bound a trivializing disc then a does not com-
press in (B,τ). Thus, for the remaining three hypotheses, we may assume
that a does not compress in (B,τ). By Lemma 8.1, ∂N− a is incompress-
ible in N, as desired. By Lemma 4.1, (N,γ ∪ a) is taut and (N[a],γ) is
α–taut. �

One pleasant aspect of working with rational tangle replacements is that we
can make explicit calculations of K(Q). Here are two lemmas which we
jointly call the Tangle Calculations.

TANGLE CALCULATIONS I (β separating). Suppose that Lβ is a link ob-
tained from Lα by a rational tangle replacement of distance d using W. Let
Q be a suitably embedded surface in the exterior S3[β ] of Lβ . Let ∂1Q be
the components of ∂Q on one component of ∂S3[β ] and ∂2Q be the compo-
nents on the other. Let ni be the minimum number of times a component of
∂iQ intersects a meridian of ∂S3[β ].

• If Lα is a link then

K(Q)≥ 2q(d−1)+d(|∂1Q|n1 + |∂2Q|n2).

• If Lα is a knot then

K(Q)≥ 2q(d−1)+(d−1)(|∂1Q|n1 + |∂2Q|n2).
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PROOF. Since Lβ is a link, β is separating. Thus, q∗ = 0. Since a and
b are contained in ∂B′ = ∂B every arc of b−a is an meridional arc. Hence,
ν = 0. By definition 2d = ∆.

Let T be a component of ∂S3[β ]. Without loss of generality, suppose that
the components of ∂Q on T are ∂1Q. Since every arc of a− b is merid-
ional, there exist d meridional arcs on each component of ∂S3[β ]. Thus,
each component of ∂1Q intersects a at least dn1 times. Each component of
∂2Q intersects a at least dn2 times. Consequently, |∂1Q∩ a| ≥ |∂1Q|n1d.
Similarly, |∂2Q∩a| ≥ |∂2Q|n2d. Hence,

∆∂ ≥ d(|∂1Q|n1 + |∂2Q|n2).

If α is non-separating, the curves γ are also meridian curves of Lβ . Thus, γ

is intersected ni times by each component of ∂iQ. Hence, if Lα is a knot,

ν∂ = |∂1Q|n1 + |∂2Q|n2.

The result follows. �

TANGLE CALCULATIONS II (β non-separating). Suppose that Lβ is a knot
obtained from Lα by a rational tangle replacement of distance d using W.
Let Q be a suitably embedded surface in the exterior S3[β ] of Lβ . Suppose
that each component of ∂Q intersects a meridian of ∂S3[β ] n times.

• If Lα is a link then

K(Q)≥ 2q(d−1)+2q∗(2d−1)+2d|∂Q|n.

• If Lβ is a knot then

K(Q)≥ 2(d−1)(q+2q∗)+2(d−1)|∂Q|n.

PROOF. These calculations are similar to the calculations of the previ-
ous lemma, so we make only a few remarks. First, since b∗ and ∂η(b)
cobound a thrice-punctured sphere, every meridional arc of a−b intersects
b∗ at least twice. Since every arc of a− b is meridional, there are ∆ such
arcs. Hence ∆∗ ≥ 4d. Secondly, if Lα is a knot, then b∗ intersects γ twice
and b intersects γ not at all. Thus,

q(∆−ν−2)+q∗(∆∗−ν
∗−2)≥ q(2d−2)+q∗(4d−4).

The given inequality follows. �

Our last observation concerns the implications of an a–boundary compress-
ing disc.
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LEMMA 8.3. Suppose that Q is an incompressible and boundary-incom-
pressible surface in S3[β ] disjoint from β . If all components of ∂Q are
meridians then there does not exist an a–boundary compressing disc join-
ing two components of ∂Q. If ∂Q has components on all components of
∂S3[β ] and no component is a meridian, then if there is an a–boundary
compression for Q in S3−W̊ the arc β is properly isotopic into Q.

PROOF. Notice, first, that if all components of ∂Q are meridians then
∂Q∩a = ∅, since all arcs of a−b are meridional. Thus, if all components
of ∂Q are meridional there can be no a–boundary compressing disc for Q.
Suppose therefore that ∂Q intersects each component of ∂S3[β ] and that
no component of ∂Q is a meridian. Let D be an a–boundary compression.
Let ε = ∂D∩ ∂W . It is a component of a− ∂Q. Since Q is boundary
incompressible in S3[β ], the arc runs at least once across η(b). Since no
component of ∂Q is a meridian and since it intersects each component of
∂S3[β ], each arc of a− ∂Q which runs across η(b) does so exactly once.
Hence, after pushing ε into W slightly, η(β ) can be viewed as a regular
neighborhood of ε . Then D guides an isotopy of β into Q. See Figure
8.1. �

∂Q

β

a

ε

FIGURE 8.1. The arc β is parallel to ε .

8.2. Seifert surfaces

We begin by restating Theorem 7.7 for rational tangles:
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COROLLARY 8.4. Suppose that Lβ ⊂ S3 is obtained by a rational tangle
replacement of distance d ≥ 1 on a split link or unknot Lα . If Lα is a split
link, assume that a is incompressible in B− τ . If Lα is an unknot, assume
that there does not exist an essential disc in S3[α] disjoint from α . Then Lβ

has a minimal genus Seifert surface Q disjoint from β such that one of the
following holds:

• β is properly isotopic into Q
• −χ(Q)≥ d and Lα is a split link
• −χ(Q)≥ d−1 and Lα is an unknot.

PROOF. The assumption that if α is separating then a is incompressible
in B−τ implies (Lemma 8.2) that ∂N−a is incompressible in N. Applying
Theorem 7.7, we produce the Seifert surface Q and either there is an a–
boundary compressing disc for Q ⊂ N or −2χ(Q) ≥ K(Q). If the former
happens, by Lemma 8.3, we conclude that β is properly isotopic into Q.
Suppose, therefore, that −2χ(Q) ≥ K(Q). Using the Tangle Calculations
and the fact that q = q∗ = 0 we see that if Lα is a link, then −2χ(Q)≥ 2d.
If Lα is a knot, then −2χ(Q) ≥ 2(d − 1). The given inequalities follow
immediately. �

A pleasing corollary is Gabai and Scharlemann’s result that genus is super-
additive under band sum. A band sum is a rational tangle replacement of
distance 1 on a split link.

COROLLARY 8.5 (Gabai [G2], Scharlemann [S3]). Suppose that K1#bK2 is
the band sum of knots K1 and K2. Then

genus(K1#bK2)≥ genus(K1)+genus(K2)

with equality only if K1 and K2 have minimal genus Seifert surfaces disjoint
from the band.

PROOF. The statement holds if the band sum is a connected sum (i.e.
if the band intersects a splitting sphere exactly once), so we may assume
that the band intersects every essential sphere in the exterior of Lα = K1∪
K2 more than once. Let W = η(K1 ∪K2 ∪ b) where b is the band. (Note
the ambiguity associated with the letter ‘b’ in this context.) Let α be a
disc in η(b) intersected once transversally by the core of b. Let β be a
disc intersecting α once and which is “parallel” to the cocore of the band
so that Lβ = K1#bK2. Since the band sum is not a connected sum, ∂W −
∂α is incompressible in S3−W̊ (Lemma 8.2). Applying Corollary 8.4, we
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produce a minimal genus Seifert surface Q for Lβ which is disjoint from β ,
the cocore of the band. The proof now proceeds as in [G2] and [S3]. �

Superadditivity of genus under band sum provides a more interesting esti-
mate of the genus of a knot Lβ obtained by a rational tangle replacement
on a split link than does Corollary 8.4. To see this, notice that the rational
tangle replacement on a split link can be seen as a band sum of knots K1
and K2 with a 2–bridge knot K3 inserted in the middle of the band. By mov-
ing the 2–bridge knot along the band so that it is close to K2, we see that
Lβ = K1#b(K3#K2). Thus, by supperadditivity of genus under band sum,

genus(Lβ )≥ genus(K1)+genus(K3)+genus(K2).

I believe that the result of Corollary 8.4 for Lβ an unknot is genuinely new.
Similar to the previous case, this result can be interpreted as a result about
attaching a band to a 2–bridge knot or link. However, not every such band
attachment can be described as a rational tangle replacement on the unknot.
The application of the Band Sum Genus theorem to rational tangle replace-
ment on a split link is used in the next example to show that the possibility
that β is isotopic into Q cannot be removed from Corollary 8.4.

EXAMPLE. Figure 8.2 depicts the diagram of a 937 knot1 Lβ . The indicated
rational tangle replacement converts Lβ into a split link Lα . The rational
tangle replacement has distance d = 5. In the diagram, it is not difficult to
find a Seifert surface S for Lβ consisting of an annulus and three twisted
bands. Two of the bands have one half twist each and the third has three
half twists. Thus, −χ(S) = 3 and genus(S) = 2. Lβ is the band sum of
the unknot with a figure eight knot. The band is not disjoint from Seifert
surfaces for the unknot and the figure eight knot. Hence, by Corollary 8.5, Q
is a minimal genus Seifert surface for Lβ . It is easy to see that β is isotopic
into Q.

REMARK. Scharlemann and Thompson [ST2] have shown that, in many
cases, a tunnel for a tunnel number 1 knot can be isotoped and slid to lie in
a minimal genus Seifert surface for the knot. Since tunnel number 1 knots
are those knots which are obtained by boring the unknot or unlink using
an unknotted handlebody, perhaps the first possible conclusion of Corollary
8.4 points to a more general phenomenon.

1Thanks to Jiho Kim’s KnotSketcher and Charles Livingston’s KnotFinder for help
with this calculation.
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FIGURE 8.2. The knot Lβ and a rational tangle replacement.

8.3. Planar Surfaces, Punctured Tori, and Rational Tangle
Replacement

We now use sutured manifold techniques to study planar surfaces and punc-
tured tori in the exterior of a knot or link Lβ obtained by rational tangle
replacement on Lα .

THEOREM 8.6. Suppose that Lβ is a knot or link obtained by a rational
tangle replacement of distance d ≥ 1 on the knot or link Lα . Suppose that
either Lα is a knot or that ∂W −∂α does not compress in N. Suppose also
that Lα is a split link, or does not contain a minimal genus Seifert surface
disjoint from α . Then, if Lβ has an essential properly embedded meridional
planar surface with m boundary components, it contains such a surface Q
with |∂Q| ≤ m such that either Q is disjoint from β or

|Q∩β |(d−1)≤ |∂Q|−2

PROOF. Since either ∂W − ∂α is incompressible in N or α is non-
separating, by Lemma 8.2, (N,γ ∪a) is a taut sutured manifold. If Lβ were
a split link or unknot, by the first sutured manifold theorem, Lα would not
be a split link and would have a minimal genus Seifert surface disjoint from
α , a contradiction. Hence Lβ is not a split link or unknot.

Use Corollary 5.2 to obtain the connected planar surface Q ⊂ N[b] and as-
sume that Q is not disjoint from β . Since Q is connected and has euler
characteristic not lower than our original planar surface, |∂Q| ≤ m. The
boundary of Q is meridional, by construction, since each arc of a− b is
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meridional. Since Q is, by assumption, not disjoint from β , q̃ > 0 and there
is no a–boundary compressing disc for Q.

By the first sutured manifold theorem and Lemma 7.1, we conclude that
K(Q)≤−2χ(Q). Since ∂Q is disjoint from a∪ γ , if Lα is a link we obtain:

2q(d−1)+2q∗(2d−1)≤−2χ(Q).

If Lα is a knot, then

2(q+2q∗)(d−1)≤−2χ(Q).

Since 4q∗(d − 1) ≤ 2q∗(2d − 1), we may conclude (whether or not α is
separating) that 2(q + 2q∗)(d− 1) ≤ −2χ(Q). Q is a planar surface with
|∂Q| boundary components, implying that −2χ(Q) = 2|∂Q|−4. Plugging
into our inequality and dividing by two, we obtain

(q+2q∗)(d−1)≤ |∂Q|−2.

A slight isotopy pushing the discs in Q with boundary parallel to b∗ converts
each such disc to two discs each with boundary parallel to b. Hence, after
the isotopy |Q∩β |= q+2q∗. Consequently,

|Q∩β |(d−1)≤ |∂Q|−2

as desired. �

A crossing change or generalized crossing change of a knot K is achieved
by choosing a disc D ⊂ S3 which is pierced twice by K with opposite sign
and by performing a ±1/n Dehn-surgery on ∂D with n ∈ N. If n = 1, the
new knot is obtained by changing the crossing of K. It is easy to see that a
generalized crossing change can be achieved by rational tangle replacement
of distance d = 2n.

COROLLARY 8.7 (Scharlemann [S1], Scharlemann and Thompson [ST1]).
No generalized crossing change on a composite knot will produce the un-
knot.

PROOF. Suppose that Lβ = K1#K2 is an unknotting number one knot
with K1 and K2 non-trivial knots. Let D be a crossing disc for Lβ such that
±1/n surgery on ∂D converts Lβ to the unknot Lα . Let W = η(Lβ ∪D) and
notice that Lα can be obtained from Lβ by a rational tangle replacement of
distance d = 2n. Notice that α is non-separating.

Apply Theorem 8.6 beginning with an essential meridional annulus in S3[β ].
The surface Q is then either an essential annulus or an essential disc. Since
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Lβ is not the unknot, Q is an annulus. If it were disjoint from β , the cross-
ing change would be a crossing change on either K1 or K2 and so would
not convert Lβ into the unknot. The inequality |Q∩β |(d− 1) ≤ |∂Q| − 2
becomes

0≤ |Q∩β |(d−1)≤ 0,

implying that Q is disjoint from η(b) after all. This contradiction shows
that Lβ cannot be a composite unknotting number one knot. �

In fact, in the spirit of Theorem 7.8, the results of this paper can be used to
prove a (weak) version of Scharlemann and Thompson [ST1] about chang-
ing a crossing on a satellite knot. (See Section 8.4). As in Scharlemann and
Thompson’s work, this can be used to give another proof that unknotting
number one knots are prime. The previous corollary, however, is an easier
proof of that fact.

If a non-trivial surgery on a hyperbolic knot or link Lβ ⊂ S3 produces a
manifold containing an essential sphere or torus, it is easy to show that
the exterior of Lβ contains an essential planar surface or punctured torus.
The remaining theorem examines the possibilities for such surfaces in the
exterior of a knot Lβ obtained by rational tangle replacement on a split link
or knot without a minimal genus Seifert surface disjoint from the boring
arc.

THEOREM 8.8. Suppose that Lβ is a knot or link obtained by rational tangle
replacement of distance d ≥ 1 on a knot or link Lα using handlebody W.
Suppose either that α is non-separating or that ∂W −∂α is incompressible
in N. Suppose also that Lα is a split link or does not have a minimal genus
Seifert surface disjoint from α . Then, if Lβ contains an essential planar
surface or punctured torus in its exterior, there is such a surface Q satisfying
one of the following:

(1) Lβ is a link and ∂Q is disjoint from some component of Lβ .
(2) Q is disjoint from β and β is isotopic into Q.
(3) Q has meridional boundary on some component of Lβ

(4) Lβ and Lα are both links, d = 2, and Q is a punctured torus disjoint
from β with integer slope on both components of ∂S3[β ].

(5) Lβ is a link, Lα is a knot, d ≤ 2, and Q is a planar surface.
(6) Lβ is a link, Lα is a knot, d ≤ 3, and Q is a punctured torus.
(7) Lβ is a knot, Lα is a link, d = 1, Q is a punctured torus with ∂Q

having integer slope.
(8) Lβ and Lα are both knots, d = 1 and Q is a planar surface.
(9) Lβ and Lα are both knots, d ≤ 2 and Q is a punctured torus.
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PROOF. Since α is non-separating or ∂W −∂α is incompressible in N,
Lemma 8.2 implies that (N,γ ∪a) is taut. By hypothesis, there is an essen-
tial planar surface or punctured torus in S3[β ]. Apply Corollary 5.2 to obtain
a connected surface Q. Q is a planar surface or a punctured torus. Assume
that none of options (1), (2), or (3) occur. By Lemma 8.3, there is no a–
boundary compressing disc for Q. If Q is disjoint from a then it is disjoint
from all meridional arcs of a−b and so must have meridional boundary or
must be disjoint from some component of ∂S3[β ], contradicting our denial
of (1) and (3). Hence, we may apply the first sutured manifold theorem to
conclude that −2χ(Q) ≥ K(Q). Let s = 2 if Q is a planar surface and let
s = 0 if Q is a punctured torus. We now consider the possibilites for α and
β . We use the notation and results of the Tangle Calculation Lemmas.

Case 1: β and α are both separating. In this case, notice that d ≥ 2.
Since −2χ(Q) =−2s+2(|∂1Q|+ |∂2Q|) we have

−2s+2(|∂1Q|+ |∂2Q|)≥ 2q(d−1)+d(|∂1Q|n1 + |∂2Q|n2).

Rearrange this to obtain

−2s≥ 2q(d−1)+ |∂1Q|(dn1−2)+ |∂2Q|(dn2−2).

If Q is a planar surface, then we must have either dn1 < 2 or dn2 < 2. Since
d, n1, and n2 are all non-zero by hypothesis, we contradict the observation
that d ≥ 2. Hence Q is not a planar surface.

If Q is a punctured torus, then we must have dn1 ≤ 2 and dn2 ≤ 2. Since
d ≥ 2, we must have d = 2 and n1 = n2 = 1. This is conclusion (4).

Case 2: β is separating and α is non-separating. We have

−2s+2(|∂1Q|+ |∂2Q|)≥ 2q(d−1)+(d−1)(|∂1Q|n1 + |∂2Q|n2).

Rearranging, we obtain

−2s≥ 2q(d−1)+ |∂1Q|((d−1)n1−2)+ |∂2Q|((d−1)n2−2).

Therefore, we have (d−1)n1 ≤ 2 or (d−1)n2 ≤ 2. If Q is a planar surface
the inequalities are strict. This produces conclusion (5). Otherwise, we
obtain conclusion (6).

Case 3: β is non-separating and α is separating. Now we have,

−2s+2|∂Q| ≥ 2q(d−1)+2q∗(2d−1)+2d|∂Q|n.

Rearranging we find

−2s≥ 2q(d−1)+2q∗(2d−1)+ |∂Q|(2dn−2).
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Since d, n, and |∂Q| are all positive, s = 0 and d = n = 1. This is conclusion
(7).

Case 4: β and α are both non-separating. Finally, we have

−2s≥ 2(q+2q∗)(d−1)+2|∂Q|((d−1)n−1)

If s = 2, then (d−1)n < 1 implying d = 1. If s = 0, then (d−1)n≤ 1. This
implies d ≤ 2. These are conclusions (8) and (9). �

8.4. More Classical Results

Our final look at rational tangle replacement will be to provide new proofs
of several results of Eudave-Muñoz and others. The introduction listed six
theorems, of which we can reprove five. The original proofs of all six theo-
rems relied heavily on very complicated combinatorial arguments. In some
sense, the arguments given here are more complicated in that they rely on
sutured manifold theory and the additional work of this thesis. The present
arguments, however, have the advantage of unifying most of the previous
results. There is the additional hope that new proofs of the classical results
can pave the way for proofs of related unsolved problems in knot theory.
We begin by proving the five theorems just mentioned; they will be re-
peated here for the convenience of the reader. Weakened forms of two more
theorems of Eudave-Muñoz will be given new proofs subsequently. All of
the proofs in this section are very similar to prior proofs. We give them for
completeness and to demonstrate the relative ease (given the machinery)
with which they can be proven.

THEOREM (EM 2). If (B,τ) is prime, if Lα is a split link, and if Lβ is
composite then d(α,β )≤ 1.

PROOF. Since (B,τ) is prime, by Lemma 8.2, (S3[α],γ) is α–taut and
(N,γ ∪ a) is ∅–taut. Let R be an essential meridional annulus in S3[β ].
Apply Corollary 5.2 to obtain an essential annulus or disc Q. If Q is a disc,
it must have meridional boundary since it was obtained by an a–boundary
compression of a meridional annulus and all arcs of a− b are meridional.
This cannot occur since S3 has no non-separating 2–spheres. Hence, Q is
an essential meridional annulus. If Q were disjoint from β it would be
contained in (B,τ). The boundary of Q, in that case, must be on a single
string of τ and so τ would contain a local knot, contradicting the assumption
that (B,τ) is prime. Thus q̃(Q) > 0. We may now apply either of the first or
second sutured manifold theorems to conclude that −2χ(Q) ≥ K(Q) ≥ 0.
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Since Q is an annulus, we have K(Q) = 0 which by the Tangle Calculations
implies that d ≤ 1. �

THEOREM (EM 3). If (B,τ) is any tangle and if Lα and Lβ are split links,
then rα = rβ .

PROOF. It suffices to show that α and β are disjoint. Suppose first that
both ∂N−∂α and ∂N−∂β are compressible in N = B− η̊(τ). By Lemma
8.1, since α is separating, a = ∂α compresses in N. That is, there is a disc
Da in B with boundary a separating the strings of τ . Similarly, there is a
disc Db in B with boundary b = ∂β separating the strings of τ . An easy
innermost disc/outermost arc argument shows that Da and Db are isotopic.
In particular, a and b are isotopic in ∂B− τ which implies that rα = rβ .

Thus we may assume, without loss of generality, that ∂W −∂α is not com-
pressible in N. Let R be an essential sphere in S3[β ] and apply Corollary 5.2
to obtain an essential sphere or disc Q. Since a− b consists of meridional
arcs, Q is not disjoint from η(a). If Q is a disc disjoint from β , there is
no a–boundary compressing disc for Q. If Q is a sphere, q̃ > 0. Thus, we
may apply either the first or second sutured manifold theorem to conclude
that S3[α] is irreducible or that α and β are disjoint. If the latter is true,
rα = rβ . �

THEOREM (BS 4). If (B,τ) is a prime tangle and if Lα and Lβ are both
unknots, then rα = rβ .

PROOF. Suppose that rα 6= rβ so that d ≥ 1. As in the proof of Theorem
(EM 2), (N,γ ∪ a) is ∅–taut. Let R be an essential disc in S3[β ]. Let Q
be a disc obtained by an application of Corollary 5.2. As in the proof of
Theorem (EM 3), Q is not disjoint from a and if it is disjoint from β there is
no a–boundary compressing disc. The first sutured manifold theorem then
guarantees that there is a minimal genus Seifert surface for Lα which is
disjoint from α . If Lα is an unknot, this surface S is a disc. Consider S∩∂B.
Since S∩α = ∅, the intersection consists of two arcs. If the outermost discs
of S−∂B were located in B, at least one of the strands of τ is isotopic into
∂B in the complement of the other strand. Thus, there would be a disc
separating the strands of τ , contrary to the hypothesis that (B,τ) is prime.
Thus, the two strands of τ are parallel in B by the middle rectangle of S−
∂B. Reversing the roles of α and β in the preceding argument, we see that
the two strands of τ are isotopic by a disc disjoint from ∂β . Consequently
b and a are parallel in ∂B− τ . Hence, α and β are parallel, contrary to our
initial assumption that d ≥ 1. �
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THEOREM (S 5). If (B,τ) is any tangle and Lβ is a trivial knot and Lα a
split link then (B,τ) is a rational tangle and d ≤ 1.

PROOF. Notice first that (B,τ) can have no local knots since Lβ is the
unknot. Thus, if ∂W − ∂α is compressible in N, (B,τ) is a rational tangle
with trivializing disc having boundary ∂α (Lemma 8.1).

Suppose that ∂W −∂α is incompressible in N. Use Corollary 5.2 to choose
a disc Q in S3[β ]. By the first or second sutured manifold theorems, S3[α]
is irreducible, a contradiction.

Thus, (B,τ) is a rational tangle. It remains to prove that d ≤ 1. Since Lβ

is the unknot, a double-branched cover of S3 with branch set Lβ is S3. The
preimage B̃ of B is an unknotted solid torus. There is a correspondence be-
tween rational tangle replacement and Dehn-surgery in the double-branched
cover. Replacing (B′,rβ ) with (B′,rα) converts the double-branched cover
to a lens space, S3 or S1 × S2. In the double branched cover, the Dehn
surgery is achieved by making a curve in ∂ B̃ which intersects a meridian of
B̃ d times bound a disc in the complementary solid torus. Since Lα is a split
link, the double branched cover of S3 over Lα is reducible. Thus, it must be
S1×S2 and d must be one, as desired. �

REMARK. In the proof of (S 5), note that even without proving d ≤ 1,
we have provided a new proof of Scharlemann’s band sum theorem [S1]:
If K = K1#bK2 is the unknot then the band sum is the connected sum of
unknots. To see this note that W is η(K1∪K2∪b) where b is the band. The
tangle (B,τ) is (S3 − η̊(b),(K1 ∪K2)− η̊(b)). Since ∂β is a loop which
encircles the band, ∂β only bounds a disc in (B,τ) when the band sum is a
connected sum and K1 and K2 are unknots.

THEOREM (EM 6). If (B,τ) is prime and Lβ is a composite knot or link
and Lα is the unknot, then d ≤ 1.

PROOF. Suppose d ≥ 1. First, suppose that there is no essential disc in
S3[α] which is disjoint from α . Let Q be the result of applying Corollary
5.2 to an essential meridional annulus in S3[β ]. Since Lβ is not the unknot,
Q is also a meridional annulus. It cannot be contained in B, since (B,τ) is
prime. By Theorem 8.6,

|Q∩β |(d−1)≤ 0.

Hence, d = 1, as desired.

Suppose, therefore, that S3[α] contains an essential disc which is disjoint
from α . As in (BS 4), the two strands of τ must be parallel. Let A be an
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FIGURE 8.3. Enlarging a disc of parallelism to an annulus

annulus in B− τ made by doubling and slightly enlarging the disc of paral-
lelism (see Figure 8.3). Since (B,τ) is prime, A is an essential annulus in
B− τ . Let D± be the two discs in ∂B with boundary ∂A and which contain
∂τ . Create a torus T = A∪ (∂B− (D+∪D−)). By an isotopy, we may as-
sume that T and Q are disjoint or intersect in circles which are essential in
both. If the former, then Q⊂ B and we contradict the assumption that (B,τ)
has no local knots. Since every S2 ⊂ S3 separates, there are two circles of
Q∩T which are outermost on Q. (That is, the circles adjacent to ∂Q are
distinct.) By cutting and pasting T and Q along those circles we can turn T
into two meridional annuli. Continuing in this way to eliminate in pairs cir-
cles of Q∩T we turn T into a collection of meridional annuli disjoint from
the original torus T . Equivalently, we see that the torus T was formed by
tubing together meridional annuli. Hence, there is an essential meridional
annulus for Lβ contained in B (since (B′,rβ ) is a rational tangle). This,
however, contradicts the assumption that (B,τ) was prime. �

We now prove weak versions of two more theorems of Eudave-Muñoz
[EM4]. There are several reasons why these versions are weaker.

(1) We are not allowing τ to contain circles in addition to the two
arcs. Our methods could easily be extended to take care of this
situation, since the main theorems allow ∂N to have additional
torus components.

(2) It is not a priori clear that the conversion of a surface R to a surface
Q of the same topological type using Corollary 5.2 can always be
accomplished by an isotopy. A closer analysis of the methods of
that theorem might show that in all situations of interest (e.g. if
S3[β ] does not contain an essential disc) it can be.
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(3) In several of the possible conclusions of the first theorem we leave
out certain very strong statements. More will be said about this
after the proof.

Finally, a knot or link is doubly composite if there is an essential Conway
sphere dividing the knot or link into two prime tangles.

THEOREM 8.9 (Eudave-Muñoz). Suppose that (B,τ) is prime and that Lβ

is doubly composite. Let Lα be obtained by a rational tangle replacement
of distance d from Lβ . Then one of the following holds

(1) There is an essential Conway sphere for Lβ contained in B.
(2) d ≤ 1
(3) S3−Lα is irreducible and there is a minimal genus Seifert surface

for Lα which is disjoint from α (i.e. intersects ∂B in two arcs only).
(4) d = 3 and there is an essential Conway sphere for Lβ intersecting

∂B in exactly one circle.
(5) d = 2 and there is an essential Conway sphere for Lβ intersecting

∂B in two circles.
(6) d = 2 and there is an essential Conway sphere for Lβ intersecting

∂B in one circle.

PROOF. Since (B,τ) is prime, by Lemma 8.2, (N,γ∪a) is taut. Let R be
an essential Conway sphere for Lβ dividing Lβ into two prime tangles. Ap-
ply Corollary 5.2 to obtain an essential connected meridional planar surface
Q with no more boundary components than R. (The surface is guaranteed to
be meridional, since all arcs of a−b are meridional.) Since every 2–sphere
in S3 separates, Q has either 2 or 4 boundary components. If Q were an
annulus it would be disjoint from the Conway sphere and would contradict
the assumption that the Conway sphere divided Lβ into two prime tangles.
Hence, Q is a Conway sphere. Assume that the first two possibilities do not
occur, so that Q∩β 6= 0 and d ≥ 2. From the Tangle Equations, we see that
K(Q)≥ 2(d−1)(q+2q∗). Also, −2χ(Q) = 4. If −2χ(q) < K(Q) then by
the first sutured manifold theorem and Lemma 7.1 there is a Seifert surface
for Lα disjoint from α , and so (3) holds. Clearly this occurs if d ≥ 3 since
q+2q∗ ≥ 1. We may, therefore, assume that −2χ(Q)≥ K(Q). Hence:

2≥ (d−1)(q+2q∗).

Suppose that d = 3. Then 1 ≥ q + 2q∗ ≥ 1, implying conclusion (4). If
d = 2, then 2≥ q+2q∗ ≥ 1, implying that if q∗ > 0 then q = 0 and q∗ = 1.
If q∗ = 1 then a slight isotopy of Q moves the intersection curve of Q parallel
to b∗ to two intersection curves both parallel to b. Thus (5) or (6) holds. �
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REMARK. Now that the theorem has been proven it’s worth remarking on
the third much more significant reason why our version is weaker than
Eudave-Muñoz’s. Eudave-Muñoz is able to conclude that in cases (4) and
(5), S3[α] is irreducible and there is a minimal genus Seifert surface for Lα

which is always intersected in the same direction by α . In these cases, since
−2χ(Q) ≥ K(Q) the methods of this paper cannot give these conclusions.
However, these conclusions are very similar to the sorts of results given by
an application of the second sutured manifold theorem. This suggests that
perhaps the inequality−2χ(Q)≥K(Q) in the second sutured manifold the-
orem could be made strict. Also, since these conclusions are different than
what would be given by the first sutured manifold theorem, perhaps the in-
equality must always be strict in that theorem. That is, perhaps the second
sutured manifold theorem can be strengthed in a way that the first one can’t
be. Eudave-Muñoz first proves a slightly stronger version of the theorem
above (using different sutured manifold theorems) and then gives a sepa-
rate lengthy combinatorial argument to obtain the much stronger version of
conclusions (4) and (5).

We may also obtain a version of [EM2, Theorem 1.4]. This theorem gen-
eralizes a theorem of Scharlemann and Thompson [ST1]. It can be used to
give another proof that unknotting number one knots are prime.

THEOREM 8.10 (Eudave-Muñoz). Suppose that (B,τ) is prime and Lβ is a
satellite knot or link. Then one of the following holds:

• There is an essential torus in the exterior of Lβ which is contained
in B.

• d ≤ 1.
• Lα has a minimal genus Seifert surface S for which S∩∂B consists

of two arcs (i.e. S is disjoint from α).

PROOF. Since (B,τ) is prime, by Lemma 8.2, (N,γ ∪ a) is taut. Let R
be an essential torus in S3[β ] and apply Corollary 5.2 to obtain a surface Q.
Since Lα and Lβ are related by a rational tangle replacement, Q is either an
essential meridional annulus or an essential torus. Q cannot be an essential
meridional annulus disjoint from β since (B,τ) is prime. If it is a torus
disjoint from β then it is contained in B, the first conclusion. Thus, we may
assume that q̃ > 0. If 0 = −2χ(Q) < K(Q), by the first sutured manifold
theorem, the third possible conclusion holds. Suppose, therefore, that 0 ≥
K(Q). Thus,

0 = K(Q)≥ 2(d−1)(q+2q∗)≥ 0
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and q̃ > 0, we conclude that d = 1. This is the second possible conclusion.
�



CHAPTER 9

Intersections of ∅–taut Surfaces

The previous applications have shown that in many situations the first su-
tured manifold theorem is more useful than the second sutured manifold
theorem. There are, however, two situations when the second is more use-
ful. The first situation is when there is in N[a] an essential separating sphere
intersected twice by α . The second is when we wish to study a homology
class in H2(N[a],∂N[a]) which is not represented by a surface disjoint from
α . The propositions of this section consist of observations which can dra-
matically simplify the combinatorics of such a situation. Let N be a com-
pact, orientable 3–manifold with F ⊂ ∂M a genus 2 boundary component.
Let a,b⊂ F be essential curves which cannot be isotoped to be disjoint and
suppose that (N[a],γ) is α–taut, as in Chapter 4.

9.1. Intersection Graphs

PROPOSITION 9.1. Let (N[a],γ) and b be as above and suppose that z ∈
H2(N[a],∂N[a]) is a non-trivial homology class. Suppose that N[a] does
not contain an essential disc disjoint from α . Then z is represented by an
embedded conditioned α–taut surface P. Furthermore, for any such P , ei-
ther P is disjoint from α or P = P∩N contains no b–boundary compressing
discs or b–torsion 2g–gons.

PROOF. Let P be a conditioned α–taut surface. (Such a surface is guar-
anteed to exist by Theorem 2.1.) Suppose that P is not disjoint from α .
Recall from the definition of “α–taut” that α intersects P always with the
same sign. Suppose that D is a b–torsion 2g–gon for P. If g = 1, D is a
b–boundary compressing disc for P. Let εi be the arcs ∂D∩F . Let R be the
rectangle containing the εi from the definition of b–torsion 2g–gon. Sup-
pose that the ends of R are on components of ∂P−∂P. The endpoints of the
εi have signs arising from the intersection of ∂D with ∂P. Since α always
intersects P with the same sign an arc εi has the same sign of intersection at
both its head and tail. Since the arcs are all parallel, all heads and tails of all
the εi have the same sign of intersection. However, an arc of ∂D∩P must
have opposite signs of intersection, arising as it does from the intersection
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of two surfaces. This implies that the head of some εi has a sign different
from the tail of some εi, a contradiction. Hence, at least one end of R must
lie on a component of ∂P.

If one end of R is on ∂P−∂P denote that component by a1 and call the disc
which it bounds in P, α1. If both ends of R are on ∂P, let α1 = ∅. Attach R
to P−α1 creating a surface P̃. The disc D is contained in N and, therefore,
had interior disjoint from α . Compress P̃ using D and continue to call the
result P̃.

An easy calculation shows that if α1 6= ∅, then χ(P̃) = χ(P) but |α ∩ P̃|=
|α ∩P|−1. Similarly, if α1 = ∅, then −χ(P̃) =−χ(P)−1 and |α ∩ P̃| =
|α ∩P|. If χα(P) 6= |α ∩P|−χ(P) then a component of P is a disc disjoint
from α or a sphere intersected by α once. Either of these contradict our
hypotheses on N[a]. Hence, χα(P) = |α ∩P|−χ(P).

Similarly, χα(P̃) = |α ∩ P̃| − χ(P̃). Hence, χα(P̃) = χα(P)− 1. Since α

always intersects P̃ with the same sign, P is not α–taut, a contradiction.
Hence, there are no b–torsion 2g–gons for P. �

REMARK. As Scharlemann notes in [S5], when a and b are non-separating
it can be difficult to use combinatorial methods to analyze the intersection
of surfaces in N[a] and N[b]. The primary reason for this is the need to
work with a∗ and b∗ boundary components on the surfaces. The previous
proposition shows that when the surfaces in question are α–taut and β–taut
and not disjoint from α and β , respectively, there is no need to consider a∗

and b∗ curves.

The remainder of this section develops notation for studying the intersection
graphs of such surfaces. Let P⊂N[a] be an α–taut surface and let Q⊂N[b]
be a β–taut surface. Suppose that P and Q are not disjoint from α and β

respectively. By Proposition 9.1 there is no b–torsion 2g–gon for P = P∩N
and no a–torson 2g–gon for Q = Q∩N.

In section 3.2, we defined intersection graphs between Q and a disc D.
We now define, in a similar fashion, intersection graphs between P and
Q. Orient P (respectively, Q) so that all boundary components of ∂P−∂P
(∂Q−∂Q, respectively) are parallel on η(α) (η(β ), respectively). The in-
tersection of P and Q forms graphs Λα and Λβ on P and Q. A component
of ∂P− ∂P or ∂Q− ∂Q is called an interior boundary component. The
vertex of Λα or Λβ to which it corresponds is called an interior vertex.

Label the components of ∂Q ∩ η(a) as 1 . . .µQ and the components of
∂P∩η(b) as 1 . . .µP. The labels should be in order around η(a) and η(b).
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An endpoint of an edge on an interior vertex of Λα corresponds to an arc
of ∂Q∩ ∂η(α). Give the endpoint of the edge the label associated to that
arc. Similarly, label all endpoints of edges on interior vertics of Λβ . A
Scharlemann cycle is a type of cycle which bounds a disc in P (Q, respec-
tively). The interior of the disc must be disjoint from Λα (Λβ ) and all of the
vertices of the cycle must be interior vertices. Furthermore, the cycle can
be oriented so that the tail end of each edge has the same label. This is the
same notion of Scharlemann cycle as in Section 3.3.2, but adapted to the,
possibly non-planar, surfaces P and Q.

LEMMA 9.2. There is no Scharlemann cycle in Λα or Λβ .

PROOF. Were there a trivial loop at an interior vertex or a Scharlemann
cycle in Λα or Λβ , the interior would be an a or b–torsion 2g–gon, contra-
dicting Proposition 9.1. �

The next lemma may be useful at some point in the future. It shows that if
P is a disc, the presence of loops is strongly restricted:

LEMMA 9.3. If P is a disc, then every loop in Λα is based at ∂P.

PROOF. Suppose that P is a disc and that there is a loop based at an inte-
rior vertex of Λα . A component X of the complement of the loop in P does
not contain ∂P. The loop is an x–cycle and Lemma 3.10 then guarantees
the existence of a Scharlemann cycle in X , contrary to Lemma 9.2. �

9.2. When the exterior of W is anannular.

We conclude this section with an application to refilling meridians of a
genus 2 handlebody whose exterior is irreducible, boundary-irreducible,
and anannular. It is based on the ideas in [SW]. Suppose that M is the
exterior of a link in S3. Suppose that W ⊂ M is a genus 2 handlebody em-
bedded in M. Let N = M−W̊ .

THEOREM 9.4. Suppose that N is irreducible, boundary-irreducible and
anannular. Suppose that α and β are non-separating meridians of W such
that ∆ > 0. Suppose that neither M[α] nor M[β ] contain an essential disc
or sphere. Suppose also that in H2(M[α],∂M) there is a homology class
za which cannot be represented by a surface disjoint from α and that in
H2(M[β ],∂M) there is a homology class zb which cannot be represented
by a surface disjoint from β . Then there is a ∅–taut surface P ⊂ M[α]
representing za intersecting α p times and an ∅–taut surface Q ⊂ M[β ]
representing zb intersecting β q times such that one of the following occurs:
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(1) −2χ(P)≥ p(Mb(a)−2)
(2) −2χ(Q)≥ q(Ma(b)−2)
(3) All of the following occur:

• Q is β–taut
• P is α–taut.
• pq∆≤ 18(p−χ(P))(q−χ(Q))
• ∆ < 9

2Ma(b)Mb(a)

PROOF. Notice that the right hand side of the inequalities in (1) and (2)
are K(P) and K(Q) respectively. Choose a taut representative in M[β ] for
zb and apply Theorem 5.1, obtaining Q. Since negative euler characteristic
is not increased and M[β ] does not contain an essential disc or sphere, Q is
also taut. If (1) holds, we are done, so assume that−2χ(Q) < K(Q). Recall
that Q is not disjoint from α . Apply the second sutured manifold theorem
to obtain a surface P⊂M[α] representing za. (The surface P is the surface S
in the statement of that theorem.) P is both α–taut and ∅–taut. If (2) holds,
we are done, so assume −2χ(P) < K(P). Applying the second sutured
manifold theorem again, with α and β reversed, we find a β–taut and ∅–
taut surface in M[β ] representing zb. We may call this surface Q, forgetting
the previous one. Consider the the graphs formed by the intersection of P
and Q; let Λα be the graph on P and Λβ the graph on Q. Lemma 9.2 assures
us that there is no trivial loop based at an interior vertex of either graph.

LEMMA 9.5.
pq∆≤ 18(p−χ(P))(q−χ(Q))

PROOF OF LEMMA 9.5. By [SW, Lemma 2.1], if two edges of P∩Q
are parallel in both Λα and Λβ , there is an essential annulus in N, contrary
to our assumption that N is anannular. The proof proceeds as in [SW].

Each interior boundary component of P intersects ∂Q, q∆ times. Thus
|∂Q∩∂P| ≥ pq∆. Therefore, Λα and Λβ each have at least pq∆/2 edges.

Claim: Λα has at least pq∆

6(p−χ(P)) mutually parallel edges.

This claim is similar to work in [GLi]. Let Λ′ be the graph obtained by
combining each set of parallel edges of Λα into a single edge. Since Λ′ has
no loops at interior vertices and no parallel edges, by applying the formula
for the euler characteristic of a closed surface we obtain:

χ(P)+ |∂P| = V −E +F
≤ p+ |∂P|−E +(2/3)E
= p+ |∂P|− (1/3)E
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V , E, and F represent the number of vertices, edges, and faces of Λ′. Thus,
E ≤ 3(p−χ(P)). Let n be the largest number of mutually parallel edges in
Λα . Then, since there are at least pq∆/2 edges in Λα , we have

pq∆/(2n)≤ E ≤ 3(p−χ(P)).

The claim follows.

A similar argument shows that if a graph in Q has more than 3(q− χ(Q))
edges than two of them are parallel. Hence, since there are no mutually
parallel edges in Λα and Λβ we must have:

pq∆

6(p−χ(P))
≤ 3(q−χ(Q))

whence the lemma and the first inequality of Conclusion 3 follow. �

We now proceed with the proof of the theorem. Since we are assuming that
neither (1) nor (2) hold, we have

−χ(P) < K(P)/2 = p(Mb(a)−2)/2

−χ(Q) < K(Q)/2 = q(Ma(b)−2)/2

Plugging into the inequality from the lemma, we obtain

pq∆ < 18pq
(

1+
Mb(a)−2

2

)(
1+

Ma(b)−2
2

)
.

Since neither p nor q is zero, we divide and simplify to obtain:

∆ < 9Mb(a)Ma(b)/2.

�

REMARK. The point of the previous theorem is that, under the specified
conditions, either we obtain a bound on the euler characteristic of surfaces
representing the homology classes za or zb or we obtain a restriction on the
number of non-meridional arcs of a− b and b− a. For example, suppose
that discs α and β are chosen so that za is represented by a once-punctured
torus, and so that Mb(a) = Ma(b) = 6. Then −2χ(P) = 2 < 4p = K(P).
Then if zb is also represented by a once punctured torus, we have ∆ < 162.
Since ∆ is even, this implies ∆≤ 160.
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