Assignment: 5 Due: Feb 14, 2024 Scott A. Taylor

Exercise 2.5: Prove the following theorem:

Theorem 1. Suppose that $n \in \mathbb{N}$. If n^2 is even then n is even.

Before proving the theorem we recall the definition of even and odd.

Definition 2. A number $n \in \mathbb{Z}$ is even if there exists $m \in \mathbb{Z}$ such that n = 2m. An integer $n \in \mathbb{Z}$ is odd if there exists $m \in \mathbb{Z}$ such that n = 2m+1.

We will also need the following lemma. Its proof requires induction, so we omit it.

Lemma 3. If $n \in \mathbb{Z}$ then n is even or n is odd, but not both.

Proof of Theorem 1. We will prove the contrapositive. We assume that n is not even and we will show that n^2 is not even. Since n is not even, by Lemma 3, n is odd. By Definition 2, there exists $m \in \mathbb{Z}$ such that n = 2m + 1. By algebra we have:

$$n^{2} = (2m+1)^{2}$$

= $4m^{2} + 4m + 1$
= $2(2m^{2} + 2m) + 1$.

Since there exists $k = 2m^2 + 2m \in \mathbb{N}$ such that $n^2 = 2k + 1$, by Definition 2 n^2 is odd. Thus, by Lemma 3, n^2 is not even. Thus, we have shown that if n is not even then n^2 is not even and, by contraposition, that if n^2 is even then n is even.

Theorem 1 appears in [?].

Here are a few other examples of environments you might find useful:

• This

- is a bulleted list
- (1) This is
- (2) a numbered list

In the comments in the .tex file there is an example of how to include a figure.

References

 $[1]\,$ Last Name, First Name $A\,$ Math Book, date, publisher.