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FIGURE 1: From left to right, we have the abstract graph type of θ-graphs,
handcuff graphs, the tetrahedral graph, θn-graphs, and bouquets.

Beginning courses in graph theory prove many wonderful theorems about
planar graphs. An even more wonderful theory arises when we put planar
graphs (which we’ll henceforth refer to as abstractly planar graphs) into
3-dimensional space. One way of doing this is to choose an embedding of an
abstractly planar graph G in the sphere S2 and then include S2 into the 3-
sphere S3 = R3 ∪ {∞} (tamely). As an abstractly planar graph may have
several planar embeddings, we may wonder if we can end up with different
embeddings in S3. It turns out, however, that in S3 all planar embeddings
give rise to equivalent (that is, ambient isotopic) spatial graphs [17]. Such
spatial graphs are called trivial. A non-trivial spatial graph is knotted. Are
there knotted embeddings? Yes there are!

Some of the most important spatial graphs have very few vertices and
edges, and are thus abstractly planar. Important classes include spatial θ-
graphs, θn-graphs, handcuff graphs, bouquets, and the tetrahedral graph. We
depict the abstract graph type for these graphs in Figure 1. Dylan Thurston
[29] has shown that the trivial θ-graph, the trivial tetrahedron graph, the
unknot, and minimally twisted Möbius bands, together with a small collection
of operations, are enough to generate all (framed) trivalent spatial graphs.
Handcuff graphs and θ-graphs both show up in the theory of tunnel number
one knots and links [4]. The theory of bouquets with n-petals is closely related
to the theory of tangles with 2n-arcs, as can be seen by looking at the exterior
of a vertex. The hyperbolic spatial graphs of lowest volume [8] also fall into
these classes. Spatial θ and θn graphs have received the most attention in the
literature, however.

One reason spatial θ-graphs are so prevalent is that we can create one by
attaching an arc to a knot so that the endpoints of the arc are distinct points
on the knot. This construction arises naturally in knot theory, where the arc
may record some information about the knot. Typical examples include knot
tunnels or an arc which records the location of some crossing change, as in
the first two diagrams of Figure 2. Attaching an arc to a knot K to produce
a spatial θ-graph G guarantees that K is a cycle in G; that is, a constituent
knot. What can we say about the other constituent knots? Perhaps supris-
ingly, Kinoshita [14] showed that, given three knots, there is a spatial θ-graph
whose three constituent knots are precisely the three given knots. An example
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FIGURE 2: Four examples of spatial θ-graphs. From left to right: a trefoil
knot with tunnel (in red); a knot with an arc (in red) marking the location of
a crossing change; a θ-graph whose every constituent knot is a figure 8 knot;
the Kinoshita graph.

of a θ-graph whose three constituent knots are all the Figure 8 knot is shown
in Figure 2. Kinoshita’s construction can be applied recursively to construct
θn-graphs whose constituent knots are specified beforehand.

The trivial θ-graph has every cycle an unknot. Are there other θ-graphs
with this property? A spatial graph having the property that no collection
of disjoint cycles is a non-trivial link is a ravel. Similarly, a spatial graph
which has the property that every proper subgraph is trivial has the Brun-
nian property. A knotted graph with the Brunnian property is Brunnian,
almost unknotted, or minimally knotted. A θ-graph is Brunnian if and
only if it is a ravel; but the same is not necessarily true for other graphs.

Kinoshita [13] also provided the first example of a Brunnian θ-graph, now
named after him. It is the rightmost diagram in Figure 2. Wolcott [30] later
generalized this construction to a family now known as the Kinoshita-Wolcott
graphs. More examples of Brunnian θ-graphs are given in [16] and [10]. Suzuki
[24] generalized Kinoshita’s construction to θn graphs. Every abstractly planar
graph without degree zero and degree one vertices has a Brunnian spatial
embedding [12, 32]. Ravels are of interest to chemists [3]; Flapan and Miller
[6] have constructed many examples.

How can we be sure that Kinoshita’s graph really is knotted, or indeed that
any given spatial embedding of an abstractly planar graph really is knotted?

An equivalence between spatial graphs takes the constituent knots of one
to the constituent knots of the other (see [11]). Thus, if one spatial graph has
a constituent knot K and another has no constituent knot of the same knot
type, the graphs can’t be equivalent. This doesn’t help us show minimally
knotted spatial graphs are knotted, though; we need other tools. As always
in knot theory, we might ask for an invariant and there are some very nice
invariants available. In general, Brunnian graphs and ravels provide good tests
for the strength of invariants of spatial graphs. The three most popular are
the Yamada polynomial [33], Litherland’s version of the Alexander polynomial
[15], and Thompson’s polynomial invariant [28]. This last polynomial is defined
recursively, but is zero if and only if the graph is trivial. It is based on an earlier
algorithm of Scharlemann and Thompson [22] for determining if a spatial



3

graph is unknotted. Their results were also adapted by Wu [31], who showed
that a spatial graph is unknotted if and only if each cycle bounds a disc disjoint
from the rest of the graph.

We can also turn to other tools from topology and algebra. Kinoshita and
Suzuki used Alexander ideals to prove the non-triviality of their Brunnian
graphs. Though, McAtee, Silver, and Williams [19] point out that Suzuki’s
proof contains an error. The first complete proof of their non-triviality is
likely given by Scharlemann [21], using topological techniques stemming from
the braid groups. In [20, Example 22], the topology of surfaces containing the
spatial graph is used to prove the Kinoshita graph is knotted, and in [19],
quandle colorings are used. In [10], a combination of handlebody theory and
rational tangles are applied to an infinite family of θ-graphs. One popular and
beautifully simple approach for θn-graphs is to use branched covers. Livingston
[16] uses these to prove Suzuki’s graphs are non-trivial and Calcut and Metcalf-
Burton [2] use them to show Kinoshita’s graph is prime, in a sense which we
now explore.

Whenever mathematicians are introduced to some new mathematical ob-
ject, we want to be able to create more of them and to understand how the
object fits into the larger context of known mathematics. For the remainder,
we take up the question of creating new spatial graphs from old ones and
understanding how spatial graphs are related to knot theory and 3-manifold
theory.

Throughout the study of manifolds, the connected sum is one of the most
important methods of combining two manifolds. Classical results show that if
the summands are oriented and connected, there’s a unique way of summing
two manifolds. For spatial graphs, on the other hand, there are potentially
many more options. For starters, we have a choice of where to perform the
sum. Given two spatial graphs G1 and G2 in distinct copies of S3, we make the
choice by picking summing points p1 and p2 in each copy of S3 for i = 1, 2.
We can pick the points both to be disjoint from the graphs, we can pick them
to be contained in the interiors of edges in the graphs, or we can pick them
both to be vertices of the graphs having the same degree. We’ll denote the
result by G1#kG2 where k = 0 if the points are disjoint from the graphs;
k = 2 if the points are interior to edges; and, otherwise, k is the degree of the
vertices1. Figure 3 depicts the the case when k = 0 (the distant sum), k = 2
(the connected sum), and k = 3 (the trivalent vertex sum). Even for a
fixed k, in general, G1#kG2 is not uniquely defined. Summing operations are
associative. If G is equivalent to G1#kG2 and neither is a trivial θk-graph,
then we say that G is k-composite. If G is neither trivial nor k-composite,
it is k-prime.

For simplicity, let’s consider only spatial θ-graphs. We also assume our
θ-graphs are oriented. To orient a θ-graph, choose one vertex as source, one
vertex as sink, and color the edges red, blue, and green. We then restrict #3 so

1This creates some ambiguity when k = 2, but we will ignore this.
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FIGURE 3: From top to bottom we have the distant sum, the connected
sum, and the trivalent vertex sum of two spatial θ-graphs.

that, when forming M1#3M2, the summing point p1 is the sink vertex of G1,
the summing point p2 is the source vertex of G2, and the gluing map takes red,
blue, and green endpoints to red, blue and green endpoints respectively. Under
the operation #3, the set G of oriented θ-graphs in S3 is particularly rich. The
operation #3 is well-defined [30] and it makes the set G into a semigroup with
the trivial graph as the identity. The center of the semigroup consists of the
θ-graphs which are a connected sum of a trivial θ-graph and a knot. Elements
of G have a 3-prime factorizations which are unique up to summing with
elements of the center [18]. Conjecturally [9], (3-manifold, graph) pairs more
generally have unique factorizations.

For θ-graphs, the property of being Brunnian also persists under #k. In-
deed, for G1, G2 ∈M, every trivalent vertex sum, G1#3G2 is Brunnian if and
only if G1 and G2 are both Brunnian. (Exercise!) For general spatial graphs,
the property of being Brunnian may not persist under trivalent vertex sum.
(Another exercise!) The property of being a ravel does persist under trivalent
vertex sum. However, for k ≥ 4, the property of being a ravel need not persist
under #k, as there are knots with essential tangle decompositions; such knots
result from summing bouquets. Even for θk graphs, we may choose the gluing
homeomorphism to be a complicated element of the mapping class group of
the punctured sphere, in which case we may end up with knotted cycles after
performing the sum.

How can we construct infinitely many 3-prime Brunnian θ-graphs? The
Kinoshita and Kinoshita-Wolcott graphs are 3-prime [15, 2], as are the Brun-
nian θ-graphs found in [10] (see [27] for an indication of how this might be
proved). Here is a very general method (essentially found in [23]) which likely
produces arbitrarily complicated Brunnian θ-graphs, most of which are prob-
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FIGURE 4: The left side shows how to form G(B). W e take the union of G
and ∂B, but wherever an edge of G intersects B as on the left, we replace it
with either of the pictured two “belt buckles.” On the right, we see that using
the indicated belt to buckle the trivial theta-graph produces the trivalent
vertex sum of the Kinoshita graph with its mirror image.

ably 3-prime. For a spatial graph G ⊂ S3, a new spatial graph G(B), called
a buckling of G, is determined by a choice of oriented annulus B, called a
belt, intersecting G in interval fibers. We create G(B) as follows. At each in-
tersection arc α between B and G we replace a neighborhood of α in S3 with
a belt buckle as on the left of Figure 4 and include the remaining portions
of ∂B as part of G(B). The right of Figure 4 shows how a certain buckling of
the trivial θ-graph produces the trivalent vertex sum of the Kinoshita graph
with its mirror image.

Not very much is known about how buckling affects a spatial graph. It is
not difficult to see, however, that G and G(B) are abstractly isomorphic and
that if e is an edge of G intersecting the band B, then the subgraphs G(B)−e
and G− e are equivalent. In particular, if G has the Brunnian property, and
if B intersects every edge of G, then G(B) also has the Brunnian property. It
seems difficult to determine whether or not G(B) is trivial. Nevertheless, we
conjecture:

Conjecture 1 There is no θ-graph G in S3 such that there is a belt B inter-
secting all the edges of G with G(B) either the trivial θ-graph or the Kinoshita
graph.

It seems plausible that the knot type of the core of the belt B is relevant to
deciding, for a particular G, if G(B) is non-trivial. In [10], there is an example
of a buckling which produces a graph with the Brunnian property having an
essential torus in its exterior (and, hence, is non-hyperbolic and non-trivial).

Finally, we consider the topology and geometry of the exteriors of G ∈ G.
The graph G may be hyperbolic with parabolic meridians [8]. This means
that the complement of the edges in the exterior of the vertices of G supports
a complete hyperbolic metric with annular cusps. It follows from work of
Thurston (see [8, Corollary 2.5]) that G ∈ G is hyperbolic with parabolic
meridians if and only if it is 2-prime and the exterior of G does not contain an
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FIGURE 5: Four different spines for a genus 2 handlebody

essential torus. In particular, if G ⊂ S3 is a Brunnian θ-graph, then (S3, G) is
hyperbolic with parabolic meridians whenever its exterior does not contain an
essential torus. Thurston’s work can also be used to show that if G = G1#3G2

is some trivalent vertex sum of non-trivial elements of G, then G is hyperbolic
with parabolic meridians if and only if both G1 and G2 are. This suggests
that volume vol(G) is a particularly interesting invariant for G ∈ G. We ask
(based on [1]):

Question 1 Suppose that Gi ∈ G for i = 1, 2 are both hyperbolic with
parabolic meridians. How different can vol(G1#3G2) and vol(G1) + vol(G2)
be?

Finally, we consider the uniqueness up to homeomorphism of the exterior
of spatial graphs. A regular neighborhood of a spatial graph is called a han-
dlebody and the graph is called a spine for the handlebody. Handlebodies
may have many different spines. Indeed, if the genus of the handlebody is
at least 2, it will have infinitely many spines. Figure 5 depicts four different
spines for a genus 2 handlebody. We say that two spatial graphs G and G′

are neighborhood-equivalent if they have isotopic regular neighborhoods.
Neighborhood-equivalent spatial graphs have homeomorphic exteriors. In par-
ticular, spatial graphs are not determined by their complements, unlike knots
in S3 [7].

If two spatial graphs are neighborhood-equivalent, we can also ask how
their constituent knots are related. For θ-graphs, this question was studied
extensively in [25, 26], where it was connected to an operation on knots and
2-component links called boring. Rational tangle replacement on knots (an
important operation in studying DNA, see e.g. [5]) is an example of boring.
One interesting result (see [26, Theorem 6.5]) is that no two non-equivalent
Brunnian θ-graphs are neighborhood equivalent. This suggests that Brunnian
θ-graphs may be determined by their complements.

Conjecture 2 If two Brunnian θ-graphs have homeomorphic exteriors, then
they are equivalent.

In general, the topology of Brunnian graphs (not necessarily, θ-graphs) is
an area ripe for further study.
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