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2: Carboniferous of the Black Warrior Basin
Jack C. Pashin and Robert A. Gastaldo

Geologic Setting
The Black Warrior Basin is a late Paleozoic foreland 

basin in Alabama and Mississippi that lies adjacent to 
the juncture of the Appalachian and Ouachita orogenic 
belts (Mellen, 1947; Thomas, 1973, 1977) (Fig. 2.1). The 
basin formed during the early stages of Pangaean super-
continent assembly, and the sedimentary fill reflects the 
tectonic evolution of the basin, as well as climatic chang-
es related to drift through the southern tradewind belt 
into the equatorial zone (Thomas, 1988; Pashin, 1993, 
1994a). The basin has a triangular plan and is bounded 
on the southwest by the Ouachita orogen, on the south-
east by the Appalachian orogen, and on the north by 
the Nashville Dome. A southeast-plunging nose of the 
Nashville Dome separates the Black Warrior Basin from 
the Appalachian Basin (Thomas, 1988). Carboniferous 
strata are preserved throughout the Black Warrior Basin 
and in adjacent parts of the Appalachian thrust belt, 
and these regions originally constituted a single depo-
sitional basin that Thomas (1997) re-
ferred to as the greater Black Warrior 
Basin, which is the subject of this 
paper. Outcrops of these strata are 
accessible in the Appalachian thrust 
belt and the eastern part of the Black 
Warrior Basin, but the western two-
thirds of the basin and adjacent parts 
of the Ouachita orogen are concealed 
below the Mesozoic-Cenozoic fill of 
the Gulf of Mexico Basin.

Intersection of the Appalachian 
and Ouachita orogens at nearly right 
angles had a strong effect on evo-
lution of the Black Warrior Basin 
(Thomas, 1976, 1995) (Fig. 2.1). The 
basin is developed on the Alabama 
Promontory, a protuberance of the 
Laurentian continental margin that 
formed during Early Cambrian 
Iapetan rifting (Thomas, 1977, 1991). 
The southwest margin of the prom-
ontory remained passive until Late 
Mississippian time, when the Black 
Warrior foreland basin was initiated 
by obduction of a Ouachita accretion-
ary prism (Thomas, 1976; Viele and 
Thomas, 1989). Convergence along 
the southeastern, or Appalachian, 
margin of the promontory began 
during the Ordovician Taconic 
Orogeny. Although rift-related base-
ment faults were reactivated at vari-

ous times during the Paleozoic (Thomas, 1968, 1986), it 
was not until the Early Pennsylvanian that an orogenic 
sediment source and subsidence center developed along 
the southeastern margin of the basin (Sestak, 1984; 
Pashin and others, 1991).

Lithostratigraphy
Mississippian System

The Devonian-Mississippian boundary is gen-
erally considered to be at the base of the Maury Shale 
(Fig. 2.2), which contains a late Kinderhookian–early 
Osagean conodont fauna and overlies the black, fis-
sile Chattanooga Shale (Conant and Swanson, 1961; 
Drahovzal, 1967). The Maury is generally thinner than 
1 m and is a gray shale containing glauconite and phos-
phate nodules. Conant and Swanson (1961) considered 
both contacts of the Maury to be disconformable. Above 
the Maury is the Fort Payne Chert, which is a fossilifer-
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Figure 2.1. Tectonic setting of the Black Warrior foreland basin (after Thomas, 1988). 
Reprinted with permission of Geological Society of America.
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ous unit dominated by dark micrite and nodular chert 
(Butts, 1926). The Fort Payne grades upward into the 
Tuscumbia Limestone, which is dominated by calcar-
enite (Thomas, 1972). The Fort Payne generally is con-
sidered to be of Osagean age, whereas the Tuscumbia 
bears Meramecian faunas (Ruppel, 1979). These two 
units thin southwestward from more than 125 m to less 
than 25 m, and as they thin, the Tuscumbia passes into 
a chert-rich facies that is indistinguishable from the Fort 
Payne (Thomas, 1972, 1988).

The Chesterian Series is cyclic and constitutes the 
bulk of the Mississippian System in the Black Warrior 
Basin, reaching a thickness exceeding 1,100 m adja-
cent to the Ouachita orogen in Mississippi. A subtle 
disconformity separates Meramecian and Chesterian 
strata along the northern margin of the basin (Pashin 
and Rindsberg, 1993) (Figs. 2.2–2.3). Carbonate rocks 
dominate the Chesterian Series in the northeastern part 
of the basin, whereas siliciclastic rocks are prevalent in 
the southwestern part. The Monteagle Limestone is the 
basal Chesterian unit in the northeastern part of the ba-
sin and is dominated by oolitic calcarenite (Handford, 
1978). The Monteagle is generally thinner than 50 m 
and passes southwestward into cyclically interbedded 
shale, sandstone, and limestone of the Pride Mountain 

Formation (Welch, 1958, 1959). The Pride Mountain 
contains two quartzarenite units informally named 
the Lewis sandstone and the Evans sandstone, which 
are important hydrocarbon reservoirs in northeastern 
Mississippi and west-central Alabama (Cleaves, 1983). 
Above the Pride Mountain Formation is the quartzare-
nitic Hartselle Sandstone, which is locally thicker than 
35 m and contains abundant asphaltic hydrocarbons 
(Thomas and Mack, 1982; Wilson, 1987). Together, the 
Pride Mountain Formation and Hartselle Sandstone 
reach a maximum thickness of 120 m.

The Hartselle Sandstone is overlain by the Bangor 
Limestone (Figs. 2.2–2.3), which extends to the top of the 
Chesterian Series in the northeastern part of the basin 
and is locally thicker than 135 m (Thomas, 1972; Thomas 
and others, 1979). The Bangor contains a spectrum of 
carbonate rock types; oolitic and skeletal calcarenite are 
the most characteristic lithologies. The upper part of the 
Bangor can be dolomitic and includes intervals of red 
and greenish-gray mudstone. Although a carbonate fa-
cies dominates the northeastern part of the greater Black 
Warrior Basin, siliciclastic facies of the Floyd Shale and 
Parkwood Formation dominate the southwestern part 
and locally are thicker than 950 m. Facies relationships 
between the carbonate and siliciclastic facies are com-

Figure 2.2. Generalized Mississippian stratigraphy of the Black Warrior Basin along a transect from northeastern Alabama to 
east-central Mississippi (after Pashin, 1994a). Reprinted with permission of Gulf Coast Association of Geological Societies.
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plex. The lower part of the Bangor has clinoform geom-
etry and passes southwestward into dark shale of the 
Floyd Shale (Pashin, 1993; Mars and Thomas, 1999). The 
Floyd Shale coarsens upward into the lower part of the 
Parkwood Formation, which is composed primarily 
of interbedded sandstone and shale, and contains the 
Carter sandstone, which is the most prolific convention-
al hydrocarbon reservoir in the basin. The middle part 
of the Parkwood is dominated by limestone and shale, 
and contains a major carbonate tongue that extends bas-
inward above the lower Parkwood from the main body 
of the Bangor Limestone. Near the base of the Bangor 
tongue is the Millerella limestone, which contains 
 oobiosparite with the distinctive endothyrid Eostaffella 
(Millerella) chesterensis. The upper Parkwood Formation 
is composed primarily of siliciclastic rocks and contains 
some thin, subeconomic coal beds. The upper Parkwood 
intertongues with the youngest Bangor strata in the 
northeastern part of the basin, and sandstone within the 
upper Parkwood ranges in composition from quartza-
renite to litharenite (Mack and others, 1981).

Pennsylvanian System
The Mississippian-Pennsylvanian boundary is in 

the upper Parkwood Formation but has yet to be lo-
cated precisely in the main part of the Black Warrior 
Basin. Foraminifera indicate that the upper part of the 
Bangor Limestone may cross the systemic boundary 
on the southeast-plunging nose of the Nashville Dome 
(Rich, 1980) (Figs. 2.2–2.3). In the Appalachian thrust 
belt, the systemic boundary may be in the upper part of 
the Parkwood Formation, where a macroflora of mixed 
affinity has been identified (Butts, 1926; Jennings and 
Thomas, 1987). The Pennsylvanian part of the Parkwood 
appears to comprise approximately 10 percent of the 
formation in the main part of the Black Warrior Basin, 
whereas approximately 50 percent of the formation is 
of Pennsylvanian age in parts of the Appalachian thrust 
belt. Here, the upper Parkwood is lithologically hetero-
geneous and contains gray shale, sandstone ranging in 
composition from quartzarenite to litharenite, under-
clay, and coal.

The Pottsville Formation contains the youngest 
strata preserved in the greater Black Warrior Basin and 
forms the majority of the foreland basin fill, with thick-
ness locally exceeding 2,500 m (Fig. 2.4). The Pottsville 
sharply overlies the Parkwood Formation in the north-
eastern part of the basin, whereas farther southwest the 
contact is gradational (Thomas, 1974; Pashin, 1993). The 
Pottsville Formation is overlain with an angular un-
conformity by poorly consolidated Cretaceous depos-
its. The Pottsville is composed principally of shale and 
sandstone and contains numerous economic coal zones 
(e.g., Squire, 1890; McCalley, 1900; Rothrock, 1949; 
Culbertson, 1964) (Fig. 2.4). The coal is used extensively 
for electric power generation and metallurgy, and forms 
prolific coalbed methane reservoirs.

Pottsville strata are in three major coal fields 
(Fig. 2.4). The Warrior coal basin corresponds with the 
main part of the Black Warrior Basin, and the Cahaba 
and Coosa Coal Fields are in the Appalachian thrust 
belt. In the Warrior Coal Field, the Pottsville Formation 
contains numerous marine-nonmarine depositional 
cycles, or cyclothems (Fig. 2.5). Each cyclothem begins 
with a ravinement surface that is overlain by an interval 
thinner than 1 m containing condensed marine fossil as-
semblages (Liu and Gastaldo, 1992; Gastaldo and others, 
1993; Pashin, 1998). Above this is a thick (10–100 m) gray 
mudstone unit that coarsens upward into sandstone and 
conglomerate ranging in composition from quartzaren-
ite to litharenite. The sandstone, in turn, is overlain by a 
heterogeneous coal zone that forms the top of each cycle 
and consists of mudstone, sandstone, conglomerate, un-
derclay, and coal.

Pashin and others (1995) subdivided the Pottsville 
Formation of the Cahaba Coal Field into three magna-
facies called the Quartzarenite measures, the Mudstone 
measures, and the Conglomerate measures (Figs. 2.4, 
2.6). The Quartzarenite measures are approximately 
300 m thick and contain two regionally extensive sand-
stone units called the Shades and Pine Members. The 
Mudstone measures are in places thicker than 1,400 m 
and contain gray mudstone, sandstone, underclay, and 
coal. These strata resemble the cyclic, economic coal-
bearing strata of the Warrior Coal Field. The frequency 
of marine deposits decreases markedly upsection, how-
ever. The Conglomerate measures form the upper 750 m 
of the Pottsville, and conglomerate containing extra-
formational lithoclasts is the signature lithology of the 
magnafacies. Conglomerate units are commonly thicker 
than 60 m and are separated by coal zones. Only one 
marine interval has been identified in the conglomerate 
measures.

The Pottsville section in the Coosa Coal Field also 
has been divided into three magnafacies named the 
Quartzarenite measures, the Redbed measures, and 
the Mudstone measures (Pashin, 1997) (Fig. 2.4). The 
Quartzarenite measures are approximately 500 m thick 
and contain abundant quartz pebbles compared to the 
Cahaba Coal Field. The Redbed measures, which are 
approximately 1,200 m thick, are characterized by in-
tervals of brownish-gray (red) mudstone that are up to 
15 m thick (Butts, 1927). Between the red intervals, the 
Redbed measures resemble the Cahaba Mudstone mea-
sures. The Mudstone measures form the upper 1,000 m 
of the Coosa section and resemble the lower part of this 
magnafacies in the Cahaba Coal Field.

The Pottsville Formation of Alabama has long 
been thought to be of Early Pennsylvanian age (Butts, 
1926), but biostratigraphic subdivision has been elusive 
(Cropp, 1960; Upshaw, 1967; Eble and Gillespie, 1989) 
(Figs. 2.2, 2.4). The base of the Pottsville is not dated, 
but palynomorphs from near the top of the Parkwood 
Formation indicate a Namurian C or younger age (Eble 

2: Carboniferous of the Black Warrior Basin
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and others, 1991). Palynomorph and marine inverte-
brates suggest that strata from the Black Creek through 
Brookwood coal zones are of Langsettian age (Eble and 
Gillespie, 1989), although macroflora may suggest that 
some strata are of Duckmantian age (Lyons and oth-
ers, 1985). Several depositional cycles younger than the 
Brookwood coal zone are preserved in the structurally 
deepest parts of the Warrior Coal Field (Henderson and 
Gazzier, 1989), but the age of these strata is unknown. 
Eble and others (1991) suggested on the basis of pa-
lynomorphs that the youngest strata in the Cahaba Coal 
Field are approximately equivalent to the Brookwood 
coal zone in the Warrior field. Presence of marine strata 
throughout the Mudstone measures of the Coosa field 
led Pashin (1997) to suggest that these strata are no 
younger than the Mudstone measures in the Cahaba 
field.

Depositional History
Mississippian System

The Devonian-Mississippian transition was 
marked by cessation of Chattanooga black-shale dep-
osition and accumulation of the thin, phosphatic, and 
glauconitic Maury Shale (Fig. 2.2), thus signaling re-
gional oxygenation, extreme condensation, and per-
haps upwelling during Kinderhookian time (Pashin, 
1993). Carbonate ramp deposition dominated Osagean 
and Meramecian time, as exemplified by the Fort Payne 
Chert and Tuscumbia Limestone. The Fort Payne is con-
sidered a lower ramp deposit. Abundant chert, sponge 

spicules, and a crinoid-bryozoan fauna indicate cool wa-
ter, and upwelling along the Ouachita margin is thought 
to have been a source of silica and nutrients (Gutschick 
and Sandberg, 1983). The Tuscumbia Limestone con-
tains mid- and upper-ramp deposits and includes a 
skeletal-shoaled bank rim (Fisher, 1987).

The mixed carbonate-siliciclastic deposits of the 
Chesterian Series reflect major changes of the tectonic 
and paleoceanographic setting of the Black Warrior 
Basin (Figs. 2.2–2.3). The disconformity at the base of 
the Pride Mountain Formation marks inception of ma-
jor Ouachita orogenesis on the Alabama Promontory 
(Pashin and Rindsberg, 1993), and part of the Pride 
Mountain Formation, which includes the Lewis sand-
stone, was deposited as part of a lowstand wedge (Stapor 
and Cleaves, 1992). At this time, carbonate ramp depos-
its, as embodied by the oolitic Monteagle Limestone, 
retreated to the extreme northeastern part of the basin. 
The Pride Mountain Formation and Hartselle Sandstone 
contain mainly beach and tidal facies. The source of the 
siliciclastics is controversial; some workers favor craton-
ic sources (e.g., Cleaves and Broussard, 1980; Driese and 
others, 1994) and others favor sources in the Ouachita 
orogen (e.g., Thomas, 1974; Thomas and Mack, 1982).

The Bangor Limestone indicates renewed progra-
dation of a shoal-rimmed carbonate ramp into the basin 
(Thomas and others, 1979), although the dark, organ-
ic-rich Floyd Shale suggests that circulation in lower 
ramp environments became restricted by tectonic clo-
sure (Pashin, 1993) (Figs. 2.2–2.3). The lower Parkwood 
Formation is of deltaic origin and includes delta-de-
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Figure 2.6. Paleonvironmental interpretation of Pottsville magnafacies in the Cahaba Coal Field (after Pashin and others, 1995). 
See explanation on next page. Reprinted with permission of the Geological Survey of Alabama.
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Figure 2.6. Paleonvironmental interpretation of Pottsville magnafacies in the Cahaba Coal Field (after Pashin and others, 1995). 
Explanation—Continued from previous page. Reprinted with permission of the Geological Survey of Alabama.

structive beach facies (Pashin and Kugler, 1992). Again, 
some workers postulate cratonic sediment sources (e.g., 
Welch, 1978; Cleaves, 1983), and others postulate oro-
genic sources (e.g., Thomas, 1988; Mars and Thomas, 
1999). The middle Parkwood heralds marine transgres-
sion and a brief return to regionally extensive carbonate 
sedimentation. The upper Parkwood represents a re-
newed progradation of deltaic sediment that spans the 
Mississippian-Pennsylvanian boundary (Thomas, 1972; 
Thomas and others, 1991).

Pennsylvanian System
Paleogeographic reconstructions indicate that the 

Black Warrior Basin migrated through the southern 
tradewind belt into the equatorial rainy belt during the 
Carboniferous (Scotese and Golonka, 1992). This migra-
tion is reflected in the transition from a thick carbonate 
succession containing red, vertic paleosols to a siliciclas-
tic-dominated succession containing coal and underclay 
(Pashin, 1994a). This transition indicates a change from 
a semi-humid or semi-arid climate to the everwet equa-
torial climate that prevailed in eastern North America 
during the Early Pennsylvanian (Cecil, 1990). In con-
cert with this climatic change was development of the 
sub-Absaroka cratonic sequence boundary, which cor-
responds with the base of the Pottsville Formation in the 
greater Black Warrior Basin (Thomas, 1988). Pottsville 
strata are locally in contact with Mississippian strata 
(Henry and others, 1985), but the sub-Absaroka bound-
ary is developed within the Pennsylvanian System across 
most of the greater basin, having minimal time value 
and minimal paleotopographic relief (Thomas, 1988). 
The sub-Absaroka sequence boundary marks a signifi-
cant tectonic reorganization of the main Black Warrior 
Basin in which an Appalachian subsidence center was 
superimposed on the older Ouachita foreland basin. 
It was not until deposition of the Mary Lee coal zone 
(Fig. 2.4) that the Appalachian orogen began supplying 
a significant quantity of coarse-grained sediment to the 
main part of the Black Warrior Basin (Pashin, 1999).

McCalley (1900) recognized the clustering of coal 
beds into discrete zones, and Butts (1926) recognized 

evidence for repeated marine transgressions and re-
gressions during Pottsville deposition. The Warrior 
coal basin played a central role in the development of 
fluvial-deltaic and barrier-shoreline facies models for 
Pennsylvanian coal-bearing strata (e.g., Ferm and oth-
ers, 1967; Hobday, 1974; Ferm and Weisenfluh, 1989). It 
was not until recently, however, that investigators ac-
knowledged the importance of allogenic depositional 
cyclicity in these strata (e.g., Gastaldo and others, 1993; 
Pashin, 1994a; Demko and Gastaldo, 1996). Following 
the lead of Liu and Gastaldo (1992), Pashin (1994a, b, 
1998) defined 13 regionally extensive, flooding-surface-
bounded depositional cycles between the base of the 
Pottsville and the top of the Brookwood coal zone (Figs. 
2.4–2.5). Although there is considerable geochronologic 
uncertainty, these cycles appear to be the products of 
glacial-eustatic forcing associated with Milankovitch or-
bital eccentricity (Fig. 2.2).

Similar forcing mechanisms were probably ac-
tive in the Quartzarenite and Mudstone measures of 
the Cahaba Coal Field (Fig. 2.6), but evidence for pro-
gressive terrestrialization stands in stark contrast to the 
persistent cyclicity in the Warrior coal basin. Indeed, 
extraformational conglomerate in the Conglomerate 
measures has been interpreted as bedload-dominated 
fluvial deposits (Osborne, 1991), and the intervening 
coal zones are thought to contain anastomosed fluvial 
deposits (Pashin and others, 1995). There is evidence for 
limited tectonic translation of the Cahaba thrust sheet 
and direct evidence for growth strata in the Sequatchie 
Anticline of the Warrior coal field (Pashin, 1994c, 1998). 
Consequently, Pashin and others (1995) suggested that 
accumulation of sediment behind an uplifting blind 
thrust ridge facilitated terrestrialization of the Cahaba 
field while permitting free oscillation of the shoreline in 
the Warrior field.

The Cahaba and Coosa Coal Fields contain the 
thickest successions of Lower Pennsylvanian strata 
in the United States. Considering that the youngest 
strata in the Coosa field may be no younger than the 
Mudstone measures in the Warrior field (Fig. 2.4), the 
tectonic subsidence rate must have been remarkable in 
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the Coosa Synclinorium, perhaps exceeding 400 m/my. 
Depositional history in the Coosa Coal Field roughly 
paralleled that in the quartzarenite measures and mud-
stone measures of the Cahaba Coal Field, but the Coosa 
redbeds represent a unique facies in the Pennsylvanian 
strata of North America. On the basis of extreme oxida-
tion and possible occurrences of plinthite, Pashin (1997) 
and Bearce and Kassaw (1999) interpreted the redbeds 
as lateritic paleosols that formed upland of the major 
peat swamps that flourished in the Warrior and Cahaba 
Coal Fields.
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