Exam #2

1. True or False?

T F If the vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \) span \(\mathbb{R}^3 \), then the vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) must form a basis of \(\mathbb{R}^3 \).

T F If the rank of a \(7 \times 10 \) matrix \(A \) is 4, then the kernel of \(A \) must be six-dimensional.

T F If \(V \) is the set of all \(2 \times 2 \) matrices \(A \) such that the vector \(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \) is in the image of \(A \), then \(V \) is a subspace of \(\mathbb{R}^{2 \times 2} \).

T F For every subspace \(V \) of \(\mathbb{R}^4 \) there exists a \(4 \times 4 \) matrix \(A \) such that \(V = \text{im}(A) \).

T F There exists a noninvertible \(2 \times 2 \) matrix \(A \) that is similar to \(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \).

2. Are the functions below isomorphisms? You will earn 2 points for each correct answer, and 1 point if you don’t answer. No explanation is needed. We are told that one (and only one) of these functions fails to be linear.

Yes No \(T(A) = SAS^{-1}, \) where \(S = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \), from \(\mathbb{R}^{2 \times 2} \) to \(\mathbb{R}^{2 \times 2} \).

Yes No \(T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5x + 6y \\ 6x + 7y \\ 7x + 8y \\ 8x + 9y \end{bmatrix} \) from \(\mathbb{R}^3 \) to \(\mathbb{R}^{2 \times 2} \).

Yes No \(T(f(x)) = f(x) + 3 \) from \(P_2 \) to \(P_2 \).

Yes No \(T(f(x)) = f(0) + f(1)x + f(2)x^2 \) from \(P_2 \) to \(P_2 \).

Yes No \(T(f(x)) = (x - 1)f(x) \) from \(P \) to \(P \).

3. Find a basis of the subspace \(V \) of \(P_3 \) consisting of all polynomials \(f(x) \) with \(f(1) = f(2) \). Find the dimension of \(V \).
4. If \(b \neq 0 \), find the matrix \(B \) of the linear transformation \(T(\vec{x}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \vec{x} \) from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \) with respect to the basis \(\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix} \). Express the entries in the second column of \(B \) in terms of the determinant of \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and the trace of \(A \) (the trace is the sum of the diagonal entries, \(a + d \)).

Math 253, Spring 2002, Exam #2

5. Let \(V \) be the span of the matrices \(I_2 \) and \(A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \) in \(\mathbb{R}^{2 \times 2} \). Consider the linear transformation \(T(M) = AM \) from \(V \) to \(V \).

a. Compute \(A^2 \). Write your answer as a scalar multiple of matrix \(A \).

b. Find the matrix \(B \) of \(T \) with respect to the basis \(\mathcal{B} = I_2, A \). Use the commutative diagram below.

\[
M = c_1 I_2 + c_2 A \quad \xrightarrow{T} \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \quad \xrightarrow{B}
\]

c. Find a basis of the image of \(T \)

d. Find a basis of the kernel of \(T \)
Exam # 2, Solutions

1. True or False?

 a. F As a counter example, consider \(\vec{v}_1 = \vec{e}_1, \quad \vec{v}_2 = \vec{e}_2, \quad \vec{v}_3 = \vec{0}, \quad \vec{v}_4 = \vec{e}_3 \)

 b. T \(\dim(\ker A) = \# \text{ columns} \) \(- \) \(\rank A \) \(= 10 - 4 = 6 \)

 c. F The zero matrix \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \) isn't in \(V \).

 d. T Pick a basis \(\vec{v}_1, \ldots, \vec{v}_m \) of \(V \). Make \(\vec{v}_1, \ldots, \vec{v}_m \) the first \(m \) columns of \(A \), with the remaining columns (if any) all being \(\vec{0} \) (or otherwise dependent on the \(\vec{v}_i \)).

 e. F The matrix \(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \) is invertible, and any matrix that is similar to an invertible matrix is invertible as well.

2. Are the functions below isomorphisms?

 a. Yes The inverse is \(A = S^{-1}BS \)

 b. No The dimensions of domain and codomain aren't equal.

 c. No That's the nonlinear one; note that \(T(0) = 3 \)

 d. Yes The kernel is 0, since the only polynomial \(f(x) \) in \(P_2 \) with \(f(0) = f(1) = f(2) = 0 \) is the zero polynomial.

 e. No The image isn't all of \(P \), but \(\text{Im}(T) = \{ g \text{ in } P : g(1) = 0 \} \).

3. We are looking for the polynomials \(f(x) = a + bx + cx^2 + dx^3 \) such that \(f(1) = f(2) \), or, \(a + b + c + d = a + 2b + 4c + 8d \), or \(b + 3c + 7d = 0 \), or \(b = -3c - 7d \). These polynomials are of the form \(f(x) = a + (-3c - 7d)x + cx^2 + dx^3 = a \cdot 1 + c(x^2 - 3x) + d(x^3 - 7x) \), so that \(a, x^2 - 3x, x^3 - 7x \) is a basis of \(V \), and \(\dim(V) = 3 \).

4. With \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and \(S = \begin{bmatrix} 0 & b \\ 1 & d \end{bmatrix} \), we have \(B = S^{-1}AS = \frac{1}{b} \begin{bmatrix} -d & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & b \\ 1 & d \end{bmatrix} \)

 \(= \begin{bmatrix} 0 & bc - ad \\ 1 & a + d \end{bmatrix} = \begin{bmatrix} 0 & -\det(A) \\ 1 & \text{trace}(A) \end{bmatrix} \)
Math 253, Spring 2002, Exam #2, Solutions

5. a. \(A^2 = \begin{bmatrix} 7 & 14 \\ 21 & 42 \end{bmatrix} = 7A \)

b. \(T \)

\[M = c_1 I_2 + c_2 A \]

\[T(M) = AM = c_1 A + c_2 A^2 = (c_1 + 7c_2)A \]

\[T \]

\[\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \]

\[B \]

\[\begin{bmatrix} 0 \\ c_1 + 7c_2 \end{bmatrix} \]

Thus \(B = \begin{bmatrix} 0 & 0 \\ 1 & 7 \end{bmatrix} \)

c. A basis of the image of \(B \) is \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \), and a basis of the image of \(T \) is \(A \).

d. A basis of the kernel of \(B \) is \(\begin{bmatrix} 7 \\ -1 \end{bmatrix} \), and a basis of the kernel of \(T \) is \(7I_2 - A = \begin{bmatrix} 6 & -2 \\ -3 & 1 \end{bmatrix} \).