
 1 

MA397 – Outlier, Influential Point, and Residual Correlation 

Detection in Stata 
 

Goals 

 

We will see how to use Stata’s built-in commands to detect outliers and influential 

points.  We will also see an introduction to time series data in Stata. 

 

Data 

 

For the first part of this exercise we will be using the birthwt.dta dataset found on the 

course webpage at http://www.colby.edu/personal/l/lobrien/ma397.html.   

 

Detecting Outliers 

 

Of course, when looking for outliers, you should always generate residual-vs-fitted value, 

and residual-vs-predictor plots.  Beyond that, Stata will calculate both standardized 

residuals and Studentized (jackknifed) residuals.   

 

Let’s first generate an ID number for each infant in our birthweight data so that we can 

identify them on plots more easily.  Issue the command: 

 

gen id = _n 

 

This created a variable “id” that contains a unique number for each subject.  Run the 

regression using head circumference and length.  Now we can generate the standardized 

residuals by typing: 

 
Quiety regress birthwt headcirc length 
predict stanresid, rstandard 
list id stanresid if abs(stanresid) > 3 

 

We see that there are two observations that are outliers by this criterion: 

 
. list id  stanresid if abs(stanresid) > 3 
 
     +----------------+ 
     | id   stanresid | 
     |----------------| 
  9. |  9    3.580978 | 
 31. | 31   -5.007583 | 
     +----------------+ 

 

Let’s flag the outliers so that we can generate plots and label them, or generate 

separate subplots using different colors, to help them stand out. 

 
. gen outlier = 1 if abs(stanresid) > 3 
(98 missing values generated) 
 
. replace outlier =0 if abs(stanresid) <= 3 
(98 real changes made) 
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We can see the obvious outlier due to head circumference.  The other outlier is due to 

an outlying value with respect to length. 
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Detecting Influential Points 

 

Stata has a built-in command for calculating the leverage of each observation.  One you 

issue it, you can then get a summary of the values to determine the average leverage.  

To obtain these values and their summary statistics, type: 

 
. predict h, lev 
 
. summ h 
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    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
           h |       100         .03    .0410121   .0105366   .3156862 

 

Any observation with leverage values about 0.06 may be influential.  Let’s generate a 

flag variable that indicates this and let’s also plot the data using separate subplots for 

high leverage observations and normal observations. 

 
. gen highlev = 1 if h > 0.06 
(95 missing values generated) 
 
. replace highlev = 0 if h <= 0.06 
(95 real changes made) 
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Stata also allows you to generate a simultaneous plot of residuals and leverage.  Go to 

Graphics > Regression diagnostic plots > Leverage versus squared residual plot.  This 

command takes no arguments to just hit enter.  You obtain a plot that shows the 

leverage on the y-axis and the squared residual on the x-axis.  It places red lines at the 

average value of each.  Once you obtain the plot, click on “Start graph editor” and then 

select Graph > Add horizontal reference line.  Enter 0.06 since that is twice our average 

leverage and hit enter and enter again.  You should obtain: 
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You can easily see the five points of high leverage above the top horizontal red line. 

 

Cook’s Distance 

 

Stata has an option for generating Cook’s distance values after a regression as well.  

After running the regression, type: 

 

predict cooksd, cooksd 

 

This will generate the variable “cooksd” which will contain the Cook’s distance values.  

We can then look up the median value of the F-distribution with k+1 numerator and n-

(k+1) denominator degrees of freedom and generate a flag of whether an observation 

has a high Cook’s distance than this value. 

 
. display invFtail(3,97, .5) 
.79423686 
 
. gen highcookd =1 if cooksd>0.79423686 
(98 missing values generated) 
 
. replace highcookd =0 if cooksd<=0.79423686 
(98 real changes made) 
 

 

Note that we can also generate jackknifed Studentized residuals by using the command: 

 

predict studresid, rstudent 
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If you list these side-by-side with the standardized residuals you will see that they are 

virtually identical.  While this may not always be the case, it oftentimes is.  These follow 

a Student’s t-distribution with (n-1) – (k+1) df. 
 
DFBetas and DFITS 
 
If you are interested to see how each point affects to estimates of the betas, you can ask Stata to 
give you the DFBETAS after the regression.  Type: 
 
. dfbeta 
                      DFheadcirc:  DFbeta(headcirc) 
                        DFlength:  DFbeta(length) 

 
This created two new variables --  one for each beta.  You can now list points that are labeled as 
high by leverage or by Cook’s D. 
 
. list headcirc length birthwt highlev highcookd DFheadcirc DFlength if highlev==1 | 
highcookd==1 
 
     +--------------------------------------------------------------------------+ 
     | headcirc   length   birthwt   highlev   highco~d   DFheadc~c    DFlength | 
     |--------------------------------------------------------------------------| 
  8. |       23       20       620         1          1    1.044203   -1.957564 | 
 19. |       24       29       760         1          0    .0492917   -.1246761 | 
 52. |       27       30      1320         1          0    .9105416   -1.191028 | 
 99. |       33       39      1440         1          0   -.1296314    .0742994 | 
100. |       35       36       900         1          1   -3.429696    2.553895 | 
     +--------------------------------------------------------------------------+ 

 
Notice that those labeled as influential by Cook’s distance have significantly larger DFBETA’s 
than those labeled as high only by leverage. 
 
If you would like to see how the predicted values from the entire data set differ from the 
jackknifed predicted values, you can also obtain those by typing: 
 
predict dfits, dfits 
 
The results will generally parallel those seen by looking at the DFBETAs: 
 
. list birthwt highlev highcookd DFheadcirc DFlength dfits if highlev==1 | 
highcookd==1 
 
     +------------------------------------------------------------------+ 
     | birthwt   highlev   highco~d   DFheadc~c    DFlength       dfits | 
     |------------------------------------------------------------------| 
  8. |     620         1          1    1.044203   -1.957564    2.053299 | 
 19. |     760         1          0    .0492917   -.1246761    .1486323 | 
 52. |    1320         1          0    .9105416   -1.191028    1.260319 | 
 99. |    1440         1          0   -.1296314    .0742994   -.1386995 | 
100. |     900         1          1   -3.429696    2.553895   -3.499185 | 
     +------------------------------------------------------------------+ 
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Partial Residual Plots 
 
Recall that partial residuals consider the residual values based on predicted values that do not 
consider the independent variable under consideration.  Plotting the partial residuals will often 
lead to a better understanding of the true relationship between the response and the independent 
variable.  To generate these in Stata, go to Graphics > Regression diagnostic plots > 
Component plus residual plot and choose the independent variable you want to consider.  The 
plots for head circumference and length are below:  
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Notice that both plots look linear indicating our assumption of linearity for the deterministic part 
of the model is accurate. 
 
General Test for Heteroscedasrticity 
 
There are many tests available for detecting heteroscedasticity.  One such test is called the Cook-
Weisberg or Breusch-Pagan test.  Its null hypothesis is that the variances of the residuals are 
constant for all values of the independent variables, while its alternative is that the variances are 
not equal.  To generate this test, you can simply type “hettest” after running the regression.  This 
considers the residuals versus the fitted values.  The command “hettest, rhs” considers the 
residuals against the independent variables.  For the birthweight data we have, 
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. hettest 
 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity  
         Ho: Constant variance 
         Variables: fitted values of birthwt 
 
         chi2(1)      =     0.22 
         Prob > chi2  =   0.6413 
 
. hettest, rhs 
 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity  
         Ho: Constant variance 
         Variables: headcirc length 
 
         chi2(2)      =   123.59 
         Prob > chi2  =   0.0000 

 
 
You can see that the homogeneity of variances assumption is violated when considering the 
independent variables, but this is not detected when considering only the fitted values.  Be 
careful to look at both tests.  They are extremely sensitive to the normality assumption of the 
residuals. 
 
Introduction to Time Series Data 
 
Time series data occur when observations are made on the same subjects repeatedly through 
time.  Often there are seasonal variations or cyclical components to such data.  For this example, 
consider the sales35.dta file on the course webpage.  It contains sales data over a 350year period.  
If we regress sales on year we obtain: 
 
. regress sales year 
 
      Source |       SS       df       MS              Number of obs =      35 
-------------+------------------------------           F(  1,    33) = 1615.72 
       Model |  65875.2068     1  65875.2068           Prob > F      =  0.0000 
    Residual |  1345.45362    33  40.7713217           R-squared     =  0.9800 
-------------+------------------------------           Adj R-squared =  0.9794 
       Total |  67220.6604    34  1977.07825           Root MSE      =  6.3852 
 
------------------------------------------------------------------------------ 
       sales |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        year |    4.29563   .1068669    40.20   0.000     4.078208    4.513053 
       _cons |   .4015129   2.205708     0.18   0.857    -4.086034     4.88906 
------------------------------------------------------------------------------ 

 
The residual plot looking at year is on the top of the next page.  You can clearly see the cyclical 
nature in the data.  To properly analyze this data set, we need to declare it as a time series data 
set in Stata. 
 
 
 
 



 8 

 

-1
0

-5
0

5
10

15
R

es
id

ua
ls

0 10 20 30 40
year

 
 
To declare a time series data set in Stata, go to Statistics > Time series > Setup and utilities > 
Declare dataset to be time series and enter the time variable (year in this case) in the box. 
 
. tsset year 
        time variable:  year, 1 to 35 
                delta:  1 unit 

 
Now we can use the special built-in time series tests and commands such as that for the Durbin-
Watson test.  To generate the d-statistic, type: 
 
. tsset year 
        time variable:  year, 1 to 35 
                delta:  1 unit 
 
. regress sales year 
 
      Source |       SS       df       MS              Number of obs =      35 
-------------+------------------------------           F(  1,    33) = 1615.72 
       Model |  65875.2068     1  65875.2068           Prob > F      =  0.0000 
    Residual |  1345.45362    33  40.7713217           R-squared     =  0.9800 
-------------+------------------------------           Adj R-squared =  0.9794 
       Total |  67220.6604    34  1977.07825           Root MSE      =  6.3852 
 
------------------------------------------------------------------------------ 
       sales |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        year |    4.29563   .1068669    40.20   0.000     4.078208    4.513053 
       _cons |   .4015129   2.205708     0.18   0.857    -4.086034     4.88906 
------------------------------------------------------------------------------ 

 
. estat dwatson 
 
Durbin-Watson d-statistic(  2,    35) =  .8207266 
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By using Table 8 in Appendix C, we can determine that this is d is less than the lower cutoff with 
an alpha of 0.05.  So there is evidence of positive correlation among the residuals.  We would 
need to control fopr this correlation to obtain accurate confidence intervals and hypothesis tests.  
This test is sensitive to the normality assumption of the residuals. 


