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Approximately 4 wk after the birth of
our son, I accompanied my wife to our
son’s 1-mo visit to the pediatrician’s

office. Our son was prodded, measured, and
weighed in the usual manner, and I was
delighted to learn that my son’s height
placed him at the 95th percentile. This
seemed to me a very fitting place on the
distribution for the son of a statistician.
However, on our next visit to the pediatri-
cian’s office some months later, we learned
that our son’s height no longer placed him at
the 95th percentile but rather at the 90th
percentile. With this news, my wife asked
the pediatrician what could be the possible
reason for the decline. Before our pediatri-
cian had a chance to respond, I helpfully
opined that there was probably a very sim-
ple explanation: regression to the mean.
“Regression to the what?” my wife ex-
claimed, while rolling her eyes toward
heaven. Our pediatrician was, or at least
pretended to be, somewhat more receptive
to this explanation and asked what I meant
by “regression to the mean.” She had re-
cently heard one of her colleagues use this
expression and was curious as to what it
meant. Ignoring the bewildered expression
on my wife’s face, I sat back and prepared
to give a concise explanation of this com-
mon yet fascinating statistical phenomenon.
Alas, albeit to the obvious relief of my wife,
my minitutorial on regression was inter-
rupted when the receptionist appeared with
the next little tyke waiting to be examined
by our pediatrician, and I never had the
opportunity to complete my explanation.
Not to be deterred, I decided to put pen to
paper and produce this column.

The origins of the expressionregression
to the meancan be traced back to the late
19th century.1 Sir Francis Galton, a cousin
of Charles Darwin, first coined the term to
explain a curious conundrum that he en-
countered in his studies of human genetics.
Galton was interested in the heritability of
height, and he studied the relation between
the height of parents and the height of their
offspring. To be more precise, he related the
heights of children to what he referred to as

the mid-parent height, an average of the
height of both parents.* Galton found that
parents and their offspring had approxi-
mately the same mean or average height.
However, he also observed that the off-
spring of tall parents tended on average to
be somewhat shorter than their parents.
Similarly, the offspring of parents of short
stature tended on average to be somewhat
taller than their parents. Galton termed this
phenomenonregression towards medioc-
rity, later replacing the wordmediocrity
with mean(for a fascinating historical ac-
count of regression to the mean, see
Stigler2).

What Galton had discovered was that if
parents were subdivided into groups of
equal height and the mean height of their
offspring was determined, the means for all
of the different subgroups could be plotted
along a straight line. This line later became
known as theregression line. The precise
impact of regression to the mean can best be
understood by examining the formula for
the slope of the regression line. Recall from
an previous column3 that the simple linear
regression equation is given by:

E~YuX 5 x! 5 a 1 bx

where Y denotes the dependent variable
(e.g., height of offspring),X denotes the
independent variable (e.g., height of par-
ents), andE(Y u X 5 x) denotes the mean of
Ys for a given valuex.

The regression equation can also be ex-
pressed as:

E~YuX 5 x! 5 my 1 rsy/sx~ x 2 mx!

wheremy andmx are the mean ofY andX, r
denotes the correlation betweenY and X,
andsy andsx are the standard deviations of
Y and X, respectively. For the purposes of
our discussion, we can simply assume thatY
and X have been measured on a common
scale and thatsy 5 sx. The expression for
the regression equation then simplifies to:

E~YuX 5 x! 5 my 1 r~ x 2 mx!.

What is clear from the latter expression
is that unlessr 5 1 (i.e., all values ofY and
X fall along a straight line), the mean ofY
for a given valuex will on average deviate
less frommy than doesx from mx. That is,
for any given value ofX, that is, sayd units
from its mean (i.e.,d 5 x 2 mx), the pre-
dicted value ofY is only rd units frommy.
Note also that this expression implies that
the impact of regression to the mean is
related to bothd, the distance ofx from mx,
and the strength of the association between
Y and X. The largerd is the greater the
regression effect. Also, with 0, u r u , 1,
the weaker the correlation betweenY andX,
the greater the impact of regression to the
mean.

Regression to the mean is ubiquitous in
medical research, and its effect can very
easily lead the unwary researcher astray. It
most commonly occurs in studies in which
subjects are selected because they have ex-
treme values on a variable. On reflection,
this in not an unusual occurrence in many
studies in which patients are enrolled only if
they meet certain eligibility criteria. That is,
patients are eligible to participate in the
study only if they screen high on a marker
for disease progression or some other vari-
able that is thought to be related to the
disease. By virtue of regression to the mean,
we can therefore expect to see a mean re-
duction from the pretreatment response, re-
gardless of the efficacy of the treatment. For
example, subjects with high low-density
lipid (LDL) cholesterol levels, say greater
than 160 mg/dL, may be enrolled in a study
to receive treatment to lower cholesterol.
After treatment with an experimental drug,
the subjects have their LDL cholesterol lev-
els measured for a second time. However,
even if the subjects had not received any
treatment, we would expect to see a reduc-
tion in LDL cholesterol levels due entirely
to regression to the mean. That is, the mean
LDL cholesterol levels at the second occa-
sion would be expected to be closer to the
overall mean in the general population. It
should be clear from this example that fail-
ure to acknowledge the impact of regression
to the mean in the analysis will lead to a
biased estimate of the effect of treatment. In
general, the impact of regression to the
mean can be eliminated either through the
use of randomization with an appropriate
control group or by various statistical meth-
ods that separate any genuine reduction due
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*Galton defined the mid-parent height as (father’s
height 1 [1.08 3 mother’s height])/2. Galton
multiplied the mother’s height by 1.08 instead of
the expected 1.0 because this was the ratio of the
mean height of men to the mean height of
women.
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to treatment from the effect of regression to
the mean.

In summary, regression to the mean is a
fascinating and very common phenomenon.
It is also one that is often not well under-
stood. Regression to the mean will neces-
sarily occur when there is a non-perfect
correlation among two variables (i.e., al-
most all of the time). Whenever two vari-
ables have a correlation less than 1, cases
that have extreme values on one of the vari-
ables will, on average, have less extreme
values on the other variable. This means
that, when the same variable is measured on
two occasions, cases that are extreme on the
first occasion will be somewhat less extreme
on the second occasion. Thus, it was not so
surprising to find that my son’s height was
less extreme on his subsequent visit to the
pediatrition. Over time, low scores on the

first occasions will, on average, improve,
whereas high scores will decline.

Regression to the mean is such a com-
mon phenomenon that one need look no
further than the very journal you are now
reading for an example.4,5 Before publica-
tion, manuscripts submitted to this journal
are peer reviewed by experts to determine
the overall quality of the papers. However,
we all know that referees do not always
agree on the merits of a manuscript. Their
assessments are subject to measurement er-
ror and are certainly not perfectly correlated
with the true (but, perhaps, unobservable)
quality of the manuscript. Acknowledging
that referees’ assessments are not entirely
perfect but the best yardstick that is avail-
able, the editor, even of this journal, is far
more likely to be persuaded to publish a
manuscript that has received positive re-

views from all of the referees involved.
However, this necessarily means that, due to
regression to the mean, the papers that fi-
nally appear in each issue ofNutrition are
probably not quite as good as our dear editor
would like to believe!
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