Mathematics 231

Lecture 9 Liam O'Brien

Announcements

2

Reading

1

 Today 	M&M 2.3	117-119
	M&M 2.4	125-132
 Next class 	M&M 2.5	142-151

Conditional Standard Deviation

- Conditional Standard Deviation
- Conditional SD in Regression
- Regression Assumptions
- Predicting Y from X versus Predicting X from Y

Conditional Mean

- The mean SBP of infants with a gestational age of 25 weeks in approximately 42 mm Hg.
- This is the conditional mean given a gestational age of 25 weeks, since it is based only on infants who satisfy some condition (25 weeks gestation).
- The **marginal** mean SBP is the mean SBP of all infants (47 mm Hg), regardless of gestational age.

Conditional Distributions – One more time

- In general, we can consider the distribution of Y variables (e.g., height) for observations that satisfy some condition X = x (e.g., age equals 25 weeks).
- This is called the conditional distribution of Y given X = x.
- In a scatter plot, the conditional distribution of Y given X = x is the distribution of points in the vertical strip above a given value of x.

6

Linear Regression

- Linear regression fits a straight line to the conditional mean of Y, given X.
- How might we determine the conditional SD at any given x=value?
- For example, what is the conditional SD of SBP for infants with a gestational age of 25 weeks?

Conditional Standard Deviation

- Conditional SD of Y given X = x:
 - In a scatterplot, the conditional standard deviation of Y given X = x is the spread of points in the vertical strip above a given value of x.
- The spread is determined relative to the center (mean) of the distribution of points in the vertical strip.

Conditional Standard Deviation

- Conditional SD of Y given X = x:
- The spread can be determined by the residuals:

$$y_i - \hat{y}_i = y_i - (a + bx_i)$$

In calculating the SD, should we consider the spread of points only in the vertical strip above the particular value of x (e.g., 25 weeks)?

Recall: Regression Assumptions

- The regression line estimates the conditional mean of *Y* given *X*=*x* for any point *x* if the following assumptions are met.
 - 1. Conditional mean of Y is a linear function of X.
 - 2. Conditional SD of Y is constant for all X.
 - We often make an additional assumption:
 - 3. The conditional distribution of *Y* is a normal distribution for any value of *x*.

10

Conditional Standard Deviation

• Conditional SD of Y given X = x:

$$s_{y|x} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

- Measures the degree of scatter of the points about the regression line (in any give vertical strip).
- In Stata, this is denoted by Root Mean Square Error (MSE).

11

• This is the variation NOT explained by the linear regression model.

Example: Height and Age

TABLE 2.7	Mean height of Kalama children
Age x in months	Height y in centimeters
18	76.1
19	77.0
20	78.1
21	78.2
22	78.8
23	79.7
24	79.9
25	81.1
26	81.2
27	81.8
28	82.8
29	83.5

Г

- Data: SBP and gestational age for 100 infants.
- Mean Gestational age = 28.9 weeks, SD = 2.53 weeks.
- Mean SBP = 47.1 mm Hg, SD = 11.4 mm Hg
- Correlation between gestational age and SBP, *r*=0.28.
- Suppose we are interested in predicting SBP from gestational age.

14

16

Example: SBP and Gestational Age

Regression line:

SBP = 10.6 + 1.26 (gestational age)

Conditional SD = 11

Of infants 25 weeks in gestation, what proportion have a SBP between 31 and 53 mm Hg.

Example: SBP and Gestational Age

- If we make assumption (3), then the SBP of 25week old infants have a normal distribution with mean = 10.6 + 1.26 (gestational age).
- What's the SD of this conditional distribution? 11 mm Hg.
- Of 25-week old infants, what proportion have an SBP between 31 and 53 mm Hg?

17

19

Recall: The Empirical Rule

- All normal distributions have the following property:
- 68% of the area under the curve lies with σ of the mean.
- 95% of the area of the curve lies within 2σ of the mean.
- 99.7% of the area of the curve lies within 3σ of the mean.

18

20

Example: SBP and Gestational Age

- For 25-week old infants, SBP's between 31 and 53 mm Hg are 1 SD above and below the mean (42 mm Hg for 25-week old infants).
- So, 68% of 25-week old infants have SBP's between 31 and 53 mm Hg.
- **Previously:** Calculating the proportion of **all** infants with SBP's between 31 and 53.
- Now: Can calculate for infants of a given age only.

Predicting X from Y

- Regression line:
 - SBP = 10.6 + 1.26 (gestational age)
- For an infant 25 weeks into gestation, our prediction for its SBP is

SBP = 10.6 + 1.26 (25) = 42 mm Hg

• Now consider an infant with an SBP of 42 mm Hg, what is our prediction of its gestational age?

Predicting X from Y

- Consider the scatterplot of SBP (Y) versus gestational age (X).
- Then the conditional mean gestation age of infants with an SBP of 42 mm Hg is the mean of the points within the horizontal strip at Y = 42.
- In general, predicting Y from X is NOT the same as predicting X from Y (although the data in this example provide similar regression results).

21

Example: Poverty and Doctors

 Between 1997 and 1999, data were collected on poverty rates and the number of doctors in each of the 50 states and DC.

22

- Of interest is how strongly poverty and the number of doctors in related.
- How do we expect these two to relate?

SS 8670.18752 154011.032	1 867			Number of obs F(1, 48)	
		0.18752		F(1, 48)	= 2.70
		0.18752			
		0 56210		Prob > F R-squared	
				Adj R-squared	
162681.22	49 33	20.0249		Root MSE	
Coef.	Std. Err.			[95% Conf.	Interval]
	-4.375241	-4.375241 2.661601	-4.375241 2.661601 -1.64	-4.375241 2.661601 -1.64 0.107	Coef. Std. Err. t P> t [95% Conf. -4.375241 2.661601 -1.64 0.107 -9.726749 287.0354 33.04209 6.69 0.000 220.5998

