

Conditional Standard Deviation

- Conditional Standard Deviation
- Conditional SD in Regression
- Regression Assumptions
- Predicting Y from X versus Predicting X from Y

Conditional Mean

- The mean SBP of infants with a gestational age of 25 weeks in approximately 42 mm Hg .
- This is the conditional mean given a gestational age of 25 weeks, since it is based only on infants who satisfy some condition (25 weeks gestation).
- The marginal mean SBP is the mean SBP of all infants (47 mm Hg), regardless of gestational age.

Conditional Distributions - One more time

- In general, we can consider the distribution of Y variables (e.g., height) for observations that satisfy some condition $X=x$ (e.g., age equals 25 weeks).
- This is called the conditional distribution of \boldsymbol{Y} given $\boldsymbol{X}=\boldsymbol{x}$.
- In a scatter plot, the conditional distribution of Y given $X=x$ is the distribution of points in the vertical strip above a given value of x.

Linear Regression

- Linear regression fits a straight line to the conditional mean of Y, given X.
- How might we determine the conditional SD at any given $x=$ value?
- For example, what is the conditional SD of SBP for infants with a gestational age of 25 weeks?

Conditional Standard Deviation

- Conditional SD of Y given $\mathrm{X}=\mathrm{x}$:
- In a scatterplot, the conditional standard deviation of Y given $\mathrm{X}=\mathrm{x}$ is the spread of points in the vertical strip above a given value of x.
- The spread is determined relative to the center (mean) of the distribution of points in the vertical strip.

Conditional Standard Deviation

- Conditional SD of Y given $X=x$:
- The spread can be determined by the residuals:

$$
y_{i}-\hat{y}_{i}=y_{i}-\left(a+b x_{i}\right)
$$

- In calculating the SD , should we consider the spread of points only in the vertical strip above the particular value of x (e.g., 25 weeks)?

Recall: Regression Assumptions

- The regression line estimates the conditional mean of Y given $X=x$ for any point x if the following assumptions are met.

1. Conditional mean of Y is a linear function of X.
2. Conditional SD of Y is constant for all X.

- We often make an additional assumption:

3. The conditional distribution of Y is a normal distribution for any value of x.

Conditional Standard Deviation

- Conditional SD of Y given $X=x$:

$$
s_{y \mid x}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}
$$

- Measures the degree of scatter of the points about the regression line (in any give vertical strip).
- In Stata, this is denoted by Root Mean Square Error (MSE).
- This is the variation NOT explained by the linear regression model.

Example: Height and Age

TABLE 2.7	Mean height of Kalama children
Age x in months	Height y in centimeters
18	76.1
19	77.0
20	78.1
21	78.2
22	78.8
23	79.7
24	79.9
25	81.1
26	81.2
27	81.8
28	82.8
29	83.5

Example: SBP and Gestational Age

- Data: SBP and gestational age for 100 infants.
- Mean Gestational age $=28.9$ weeks, $\mathrm{SD}=2.53$ weeks.
- Mean $\mathrm{SBP}=47.1 \mathrm{~mm} \mathrm{Hg}, \mathrm{SD}=11.4 \mathrm{~mm} \mathrm{Hg}$
- Correlation between gestational age and SBP, $r=0.28$.
- Suppose we are interested in predicting SBP from gestational age.

Example: SBP and Gestational Age

- Regression line: $\mathrm{SBP}=10.6+1.26$ (gestational age)

Conditional SD $=11$

Of infants 25 weeks in gestation, what proportion have a SBP between 31 and 53 mm Hg .

Example: SBP and Gestational Age

- If we make assumption (3), then the SBP of 25week old infants have a normal distribution with mean $=10.6+1.26$ (gestational age).
- What's the SD of this conditional distribution? 11 mm Hg .
- Of 25-week old infants, what proportion have an SBP between 31 and 53 mm Hg ?

Recall: The Empirical Rule

- All normal distributions have the following property:
- 68% of the area under the curve lies with σ of the mean.
- 95% of the area of the curve lies within 2σ of the mean.
- 99.7% of the area of the curve lies within 3σ of the mean.

Example: SBP and Gestational Age

- For 25-week old infants, SBP's between 31 and 53 mm Hg are 1 SD above and below the mean (42 mm Hg for 25-week old infants).
- So, 68% of 25 -week old infants have SBP's between 31 and 53 mm Hg .
- Previously: Calculating the proportion of all infants with SBP's between 31 and 53.
- Now: Can calculate for infants of a given age only.

Predicting \mathbf{X} from \mathbf{Y}

- Regression line:

$$
\text { SBP }=10.6+1.26 \text { (gestational age) }
$$

- For an infant 25 weeks into gestation, our prediction for its SBP is

$$
\mathrm{SBP}=10.6+1.26(25)=42 \mathrm{~mm} \mathrm{Hg}
$$

- Now consider an infant with an SBP of 42 mm Hg , what is our prediction of its gestational age?

Predicting \mathbf{X} from \mathbf{Y}

- Consider the scatterplot of SBP (Y) versus gestational age (X).
- Then the conditional mean gestation age of infants with an SBP of 42 mm Hg is the mean of the points within the horizontal strip at $\mathrm{Y}=42$.
- In general, predicting Y from X is NOT the same as predicting X from Y (although the data in this example provide similar regression results).

Example: Poverty and Doctors

- Between 1997 and 1999, data were collected on poverty rates and the number of doctors in each of the 50 states and DC.
- Of interest is how strongly poverty and the number of doctors in related.
- How do we expect these two to relate?

