Mathematics 231

Lecture 8 Liam O'Brien

Announcements

2

Reading

 Today 	M&M 2.3	117-119
	M&M 2.4	125-132
 Next class 	M&M 2.5	142-151

Evaluating the Regression Model

- Checking Assumptions
- Residual Plots
- \mathbb{R}^2 and Correlation

Assumptions

- The regression line estimates the conditional mean of Y given X=x for any point x if the following assumptions are met.
 - 1. Conditional mean of Y is a linear function of X.
 - 2. Conditional SD of *Y* is constant for all *X*.
- We often make an additional assumption:
 - 3. The conditional distribution of *Y* is a normal distribution for any value of *x*.

Checking Assumptions

Model and Residuals

Data = Predicted Values (Pattern)

(Deviation)

+

Residuals

- **Predicted values:** the part of the data that is explained by the regression model.
- **Residuals**: the part of the data that is not explained by the regression model.

Checking Assumptions

■ In linear regression,

- Fitted line represents the pattern.
- Residuals represent deviations from the pattern.
- Examine the scatter plot of the original data with the regression line superimposed on it.
- Do you see any marked deviations from the line?

6

Residual Plots

- You always need to use a **residual plot** to check to see if model assumptions hold. Plot the residuals against the *x* variable (or predicted values).
- What to look for in a residual plot:
 - There should be no obvious patterns (random scatter about 0).
 - Vertical spread of the points should be approximately the same over the entire range of x-values.

Residual Plots in Stata

- After you run the regression, click on Statistics
 > Linear regression and related >
 Regression diagnostics > Residual versus
 predictor plot
- Enter the name of the explanatory variable in the box.

11

R²: Measure of Fit

- R^2 = squared value of the correlation coefficient
- Since the correlation must be between -1 and 1,
 R² must be between 0 and 1.
- R² has the interpretation of being the proportion of variation in *Y* that is explained by the variation in *X*.

12

R²: Measure of Fit

■ If R² = 0.80, that does not mean that 80% of *Y* is explained by *X*.

15

• This is a common mistake that is made.

Pizza Example

- Small pizza costs \$5.90 plus \$1 per topping.
- 100% of the variation in small pizza prices is due to differences (variation) in the number of toppings.
- Not the same as saying that 100% of the price of small pizzas is due to toppings.

16