Mathematics 231

Lecture 7 Liam O'Brien

Announcements

2

Reading

 Today 	M&M 2.3	108-121
 Next class 	M&M 2.3	117-119
	M&M 2.4	125-132

Linear Relationships & Regression

- Linear relationship between two variables.
- Response and explanatory variables.
- Regression line.
- Least squares criterion.

Response and Explanatory Variables

- A **response variable**, denoted as *Y*, measures the outcome of an experiment, survey, or study. *Y* is the variable we want to explain or predict.
- An explanatory variable, denoted as X, is a variable that may affect, explain or predict (but not necessarily cause) the response variable.

Example: I	Height a	nd Age
TABLE 2.7	Mean height of Kalama children	
Age <i>x</i> in months	Height y in centimeters	
18 19	76.1 77.0	
20 21	78.1 78.2	
22 23	78.8 79.7	
24 25 26	79.9 81.1 81.2	
20 27 28	81.8 82.8	
29	83.5	
		6

Conditional Distributions

- In general, we can consider the distribution of *Y* variables (e.g., height) for observations that satisfy some condition *X* = *x* (e.g., age equals 28 months).
- This is called the **conditional distribution of** *Y* given *X* = *x*.
- In a scatter plot, the conditional distribution of Y given X = x is the distribution of points in the vertical strip above a given value of x.

8

Linear Regression

- Linear regression is used to explain or predict *Y* using *X*.
- It quantifies the relationship between the two variables in terms of a straight line.
- Suppose we have n pairs of Y and X,

 $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_n y_n)$

• How can we find the straight line that best "fits" or describes these data?

11

Linear Regression

- This line has an equation of the form:
 - $\hat{y}_i = a + bx_i$

where \hat{y}_i (y-hat) is the predicted

value of Y,

a is the y-intercept (the value of Y

when X = 0),

and b is the slope of the line.

12

Definition 1

• For any particular value, x_i, the **predicted (or fitted)** value is:

$$\hat{y}_i = a + bx_i$$

and is the y-value of the line at x_i .

14

16

Definition 2

• The vertical deviation from a point to the line (the difference between the observed and predicted values of *Y*, or the error) is called the **residual**.

 $y_i - \hat{y}_i = y_i - (a + bx_i)$ residual = ε_i = observed y_i - predicted y_i

- The "best fit" line is defined as the line that minimizes the sum of the squared residuals.
- We want the values of *a* and *b* that minimizes the following quantity,

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (a + bx_i))^2$$

Least Squares Intercept and Slope

• The values of *a* and *b* that minimize this quantity are,

$$b = r \frac{s_y}{s_x}$$

 $a = \overline{y} - b\overline{x}$

where r is the correaltion coefficient.

19

- The regression line estimates the conditional mean of Y given X=x for any point x if the following assumptions are met.
 - 1. Conditional mean of Y is a linear function of X.
 - 2. Conditional SD of *Y* is constant for all *X*.
- We often make an additional assumption:
- 3. The conditional distribution of *Y* is a normal distribution for any value of *x*.

20

18

TABLE 2.7	Mean height of Kalama children
Age <i>x</i> in months	Height y in centimeters
18	76.1
19	77.0
20	78.1
21	78.2
22	78.8
23	79.7
24	79.9
25	81.1
26	81.2
27	81.8
28	82.8
29	83.5

Example: Height and Age

Model 57.6548678 1 57.6548678 Prob > F 0.000 Residual .655171562 10 0.65517156 Prob > F 0.000 Total 58.3100394 11 5.30091267 Root MSE = .2559 height Coef. Std. Err. t P> t [95% Conf. Interval] age .6349653 .0214047 29.66 0.000 5872726 .682656 _cons 64.92832 .508409 127.71 0.000 63.79551 66.06111	Source	SS	df	MS			Number of obs	=	12
Residual .655171562 10 .065517156 R-squared = 0.983 Total 58.3100394 11 5.30091267 Root MSE = .2559 height Coef. Std. Err. t P> t [95% Conf. Interval] age .6349653 .0214047 29.66 0.000 .5872726 .662651 _cons 64.92832 .508409 127.71 0.000 63.79551 66.06112	Model	57.6548678	1	57.6548	678		F(1, 10) Prob > F	-	0.0000
Adj R-squared = 0.987 Total 58.3100394 11 5.30091267 Root MSE = .25594 height Coef. Std. Err. t P> t [95% Conf. Interval] age .6349653 .0214047 29.66 0.000 .5872726 .682651 cons 64.92832 .508409 127.71 0.000 63.79551 66.06112	Residual	.655171562	10	.065517	156		R-squared	=	0.9888
Total 58.3100394 11 5.30091267 Root MSE = .2559 height Coef. Std. Err. t P> t [95% Conf. Interval age 64.92832 .508409 127.71 0.000 63.79551 66.06112	+						Adj R-squared	=	0.9876
height Coef. Std. Err. t P> t [95% Conf. Interval age .6349653 .0214047 29.66 0.000 .5872726 .682651 _cons 64.92832 .508409 127.71 0.000 63.79551 66.06112	Total	58.3100394	11	5.30091	267		Root MSE	=	.25596
age 6349653 .0214047 29.66 0.000 .5872726 .68265 _cons 64.92832 .508409 127.71 0.000 63.79551 66.06112	height	Coef.	Std.	Err.	t.	P> t	[95% Conf.	In	terval]
_cons 64.92832 .508409 127.71 0.000 63.79551 66.06117	age	.6349653	.0214	047 2	9.66	0.000	.5872726		.682658
	_cons	64.92832	.508	409 12	7.71	0.000	63.79551	б	6.06112

