

Announcements

- Reading
- Today M\&M 2.3 108-121
- Next class M\&M 2.3 117-119

M\&M 2.4 125-132

Linear Relationships \& Regression

Response and Explanatory Variables

- Linear relationship between two variables.
- Response and explanatory variables.
- Regression line.
- Least squares criterion.
- A response variable, denoted as Y, measures the outcome of an experiment, survey, or study. Y is the variable we want to explain or predict.
- An explanatory variable, denoted as X, is a variable that may affect, explain or predict (but not necessarily cause) the response variable.

Example: Height and Age

TABLE 2.7	Mean height of Kalama children
Age x in months	Height y in centimeters
18	76.1
19	77.0
20	78.1
21	78.2
22	78.8
23	79.7
24	79.9
25	81.1
26	81.2
27	88.8
28	88.8
29	83.5

Conditional Distributions

- In general, we can consider the distribution of Y variables (e.g., height) for observations that satisfy some condition $X=x$ (e.g., age equals 28 months).
- This is called the conditional distribution of \boldsymbol{Y} given $\boldsymbol{X}=\boldsymbol{x}$.
- In a scatter plot, the conditional distribution of Y given $X=x$ is the distribution of points in the vertical strip above a given value of x.

Conditional Mean

- Conditional distributions have center, spread, and shape properties like all distributions.
- The mean value of Y in the vertical strip above a given value x is called the conditional mean of \boldsymbol{Y} given $\boldsymbol{X}=\boldsymbol{x}$.

Linear Regression

- Linear regression is used to explain or predict Y using X.
- It quantifies the relationship between the two variables in terms of a straight line.
- Suppose we have n pairs of Y and X,

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n} y_{n}\right)
$$

- How can we find the straight line that best "fits" or describes these data?

Linear Regression

- This line has an equation of the form:
$\hat{y}_{i}=a+b x_{i}$
where $\hat{y}_{i}(\mathrm{y}$-hat $)$ is the predicted value of Y,
a is the y-intercept (the value of Y when $X=0$), and b is the slope of the line.

Definition 1

- For any particular value, x_{i}, the predicted (or fitted) value is:
$\hat{y}_{i}=a+b x_{i}$
and is the y-value of the line at x_{i}.

Definition 2

- The vertical deviation from a point to the line (the difference between the observed and predicted values of Y, or the error) is called the residual.
$y_{i}-\hat{y}_{i}=y_{i}-\left(a+b x_{i}\right)$
residual $=\varepsilon_{i}=$ observed $y_{i}-$ predicted y_{i}

Least Squares Criterion

- The "best fit" line is defined as the line that minimizes the sum of the squared residuals.
- We want the values of a and b that minimizes the following quantity,

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(a+b x_{i}\right)\right)^{2}
$$

Least Squares Intercept and Slope

- The values of a and b that minimize this quantity are,
$b=r \frac{s_{y}}{s_{x}}$
$a=\bar{y}-b \bar{x}$
where r is the correaltion coefficient.

Assumptions

- The regression line estimates the conditional mean of Y given $X=x$ for any point x if the following assumptions are met.

1. Conditional mean of Y is a linear function of X.
2. Conditional SD of Y is constant for all X.

- We often make an additional assumption:

3. The conditional distribution of Y is a normal distribution for any value of x.

Example: Height and Age

