Mathematics 231

Lecture 6
Liam O'Brien

Announcements

- Reading
- Today

M\&M 2.1
83-94
M\&M 2.2
101-104

- Next class

M\&M 2.3
108-121

Methods to Check Normality

- There are many methods that have been developed to check normality.
- Some methods are more sensitive to departures from normality than others.
- Histograms and boxplots provide a graphical method for checking the basic shape and spread of a distribution.
- One more sensitive and common method for checking the assumption of normality is called a normal quantile plot.

Normal Quantile Plots

- Cannot be constructed by hand, but Stata can do them.
- If you were to construct them by hand, you would first order the data.
- Then you would construct a z-score for each point.
- Plot the ordered x versus the z-scores.
- If the data are normal, then they will fall on a straight line.

Interest Question

Normal Quantile Plot for Interest

Politics Question

Quantile Plot for Politics

Quantile Plot for IQ Scores

Linear Relationships and Correlation

- Distinction between categorical and quantitative variables
- Linear relationship between two variables
- Scatter plot
- Correlation

5 - Year Mortality vs DPT Immunization

Positive and Negative Association

- Positive Association: High values of one variable tend to accompany high values of the other variable, and low values of one variable tend to accompany low values of the other variable.
- Negative Association: High values of one variable tend to accompany low values of the other variable and vice versa.
- What type of association do we see in the immunization data?

Caveat

- Association does NOT imply causation!!!
- Association between two variables does not necessarily mean that one variable causes a change in the other.

Linear Relationship

- Do the immunization data show a linear relationship?
- Could you imagine easily fitting a straight line to these data?
- Do you think that line would fit well?

Non-Linear Relationship

Linear Relationship

Measuring Linear Relationships

Measuring Linear Relationships

Measuring Linear Relationships

Correlation Coefficient

- Correlation Coefficient, denoted as \boldsymbol{r} (or ρ), measures the strength of linear association between two quantitative variables.
- Properties:
-r measures linear association
$\square r$ always falls between -1 and +1
$\square r=1$ or -1 only if observations lie exactly along a straight line

Correlation Coefficient: Definition

- Suppose we have a list of n pairs of observations:
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n} y_{n}\right)$
Correlation of X and Y is given by,
$r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)$
where s_{x} and s_{y} are the SDs of X and Y.

Correlation Coefficient

- Additional Properties:
- Sign if r indicates whether there is positive $(+)$ or negative (-) association.
- Absolute value of r measures the strength of the linear relationship.
- r is unaltered by changes in the units of measurement of X and/or Y .
- r has no units of measurement, e.g., $r=0.8$ is not twice as strong as $r=0.4$.

Example: Mortality

- Under 5-mortality rate per 1,000 live births versus percent immunized against DPT.
- correlate immune mortality
(obs=20)
immune mortal~y
---------------+-------------------immune | 1.0000
mortality | $-0.8291 \quad 1.0000$

Example: Mortality

- With $r=-0.83$, there is evidence of a strong negative association between the under-5 mortality rate and percent of children immunized against DPT.
- Note: The correlation does not allow us to estimate how much the under- 5 mortality rate would decrease if a country were to increase the percentage of children immunized by 10%.

Correlation measures LINEAR relationships

