

Linear Transformations, Standardizing, and the Normal Distribution

- Linear transformations: Impact on shape, center, and spread
- Standardizing
- Introduction to the normal (or Gaussian) distribution

Example: Linear Transformation

- Temperature: Celsius to Fahrenheit
${ }^{0} F=32+\frac{9}{5}\left({ }^{0} C\right)$
- Currency: Euro to U.S. dollar

1 USD $=0.814$ Euros

Linear Transformation

- Let's pretend that we have nothing better to do but to imagine we have a set of n observations, $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$.
- What we want is a set of variables, y_{i}, related to x_{i} by,

$$
y_{i}=a+b\left(x_{i}\right)
$$

Examples: Linear Transformation

- Temperature: Celsius to Fahrenheit

$$
\begin{aligned}
& { }^{0} F=32+\frac{9}{5}\left({ }^{0} C\right) \\
& y=a+b x \\
& a=32 ; \quad b=\frac{9}{5}
\end{aligned}
$$

Examples: Linear Transformation

Linear Transformations

$$
y_{i}=a+b x_{i}
$$

- A linear transformation is one that changes the data by adding a constant, multiplying by a constant, or both.
- Can we tell what will happen to the mean and standard deviation of the data is they undergo a linear transformation? Yes.

Effect of Linear Transformations on Measures of Location

$$
y=a+b x
$$

$$
\text { mean of } y=a+b(\text { mean of } x)
$$

median of $y=a+b($ median of $x)$

Effect of Linear Transformations on Measures of Spread

SD of $y=|b|(\operatorname{SD}$ of $x)$
variance of $y=b^{2}$ (variance of x)

IQR of $y=|b|(\operatorname{IQR}$ of $x)$
Note that measures of spread are not affected by the addition of a constant!

Standardizing

- Question: How far is an observation from the mean?
- Example: From a previous statistics class final exam, the mean grade was 66 , with $s=12$.
- Let's say that Tom scores 78 and Lisa scores 84.
- Tom's score was 12 points above the mean, while Lisa's was 18 above the mean.
- How similar/different are these two scores?

Standardizing

- We need to consider the spread of the data when answering this question.
- Consider how many SD's the scores are away from the mean.
- Since $1 \mathrm{SD}=12$ points, Tom's score is 1 SD above the mean.
■ Lisa's is 1.5 SD's above the mean (since 1.5 SD's $=1.5 * 12$ points $=18$ points).

Standardizing

- To compute how many standard deviations away from the mean a score is, we:

1. Subtract the mean from the score.
2. Divide the result in (1) by the standard deviation.

- This tells us how far a score is away from the mean score, in terms of the SD.
- This linear transformation is called standardizing.

Normal Distribution

- Normal distribution is an idealized mathematical model for some distributions of data.
- Originally developed by A. DeMoivre in 1733, but named after C.F. Gauss.

Normal Distribution

- Properties:
- All normal distributions have the same bell shape.
- They differ in their center and spread, however.
- Center: Mean (denoted by $\boldsymbol{\mu}$)
- Spread: SD (denoted by $\boldsymbol{\sigma}$)
- The different notation between what we used before for the mean and SD (), comes from a subtlety that we'll cover soon. For now, you can consider the notation interchangeable.

Additional Properties

- The curve is symmetric about its mean.
- The curve is unimodal (it has 1 peak only).
- Mean $=$ Median $=$ Mode
- The curve changes concavity at the points:
- Special Case: The standard normal distribution has mean $=0$, and $\mathrm{SD}=1$.
- Total area under the curve is 1 .

How "Normal" is Normal?

- Much effort has been poured into proving that all variables follow a normal distribution.
- "...the Law of Error upon which these Normal Values are based...finds a footing wherever the individual peculiarities are wholly due to the combined influence of a multitude of accidents..." Francis Galton, Natural Inheritance, 1889, pp. 54-55.

How "Normal" is Normal?

- Many variables do follow an approximately normal distribution. These include IQ scores, weight, height, blood pressure, cholesterol level.
- Many don't typically follow a normal distribution. Counts, income, expenditure are examples.
- So, if most people in the course are ECON majors, why are we talking about this?

Implications of Being Normal

- We will make the assumption that data are normal for the majority of things that we do.
- If it's not normal, we'll make it normal (well, sometimes).
- In fact, it can be shown that certain variables that are highly non-normal, can be analyzed using techniques that require a normality assumption, and that this is valid.
- We will return to this idea when we talk about sampling methods.

