Mathematics 231

Lecture 32 Liam O'Brien

Announcements

- Today
 - Multiple Regression
 - Effect Modification

Modifying Variables

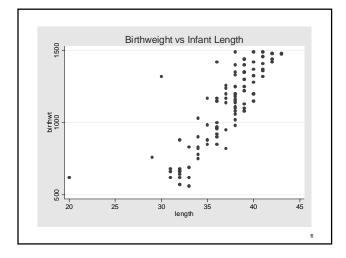
- A modifying variable changes the effect of a predictor on the outcome.
- Modifying variables are included in the model by adding an **interaction term**.
- These are generated by multiplying two covariates (predictors) together.
- When an interaction term is present, you generally want to include its main effects regardless of the p-values associated with them.

Modifying Variables

- For example, if you have two predictors, x1 and x2, the interaction term would be x1*x2.
- If x1*x2 is a statistically significant predictor, then x1 and x2 must also remain individually in the model.
- The effect of x1 on the outcome is dependent upon the value of x2.
- Interactions can include more than two main effects, but their interpretations become difficult.

Example: Birthweights

- Let's consider the birthweight data.
- We already know that toxemia, by itself, is not a significant predictor, but that with gestational age it is.
- Now consider infant length as a predictor of birthweight.



gen lentox=length*toxemia							
regress birt	hwt length to	xemia 1	lentox				
Source	rce SS df MS			Number of obs F(3, 96)			
			3 1665974.25 Prob > 96 23112.7083 R-squar		Prob > F R-squared Adj R-squared	=	0.0000
Total	7216742.75	99	72896.3914		Root MSE		
birthwt	Coef.	Std. H	Err. t	₽> t	[95% Conf.	In	terval]
toxemia	-1192.974	443.15	596 -2.6	9 0.008	48.16738 -2072.639	- 3	13.3094
					7.081609 -1350.262		

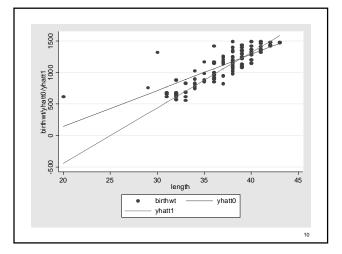
Example: Birthweights

- The effect of infant length on birthweight depends on whether toxemia is present or not.
- E(Y)= -1008+57.5(length)-1193(toxemia)+30.5(length*toxemia)
- For those with toxemia: E(Y)= -2201+88(length)
- For those without toxemia: E(Y)= -1008+57.5(length)

- Knowing the two regression equations (from setting toxemia to 0 and 1), use Stata to generate two sets of predicted values.
- . gen yhatt0=-1008+57.5*length
- . gen yhatt1=-2201+88*length
- Then use the "Overlaid twoway graphs" to place these on the same plot as the observed data.

٩

11



The Effect of a Modifying Variable

- The interaction term has changed the slope.
- The interaction term is of primary interest when its coefficient is significantly different from zero.
- The terms that make up the interaction must be singly included in the model (the main effects).
- Often, these main effects may not individually have coefficients that are significantly different from zero.
- They also often do not have meaningful interpretations if an interaction term is present.

Collinearity

- Collinearity is always present to some degree when you include an interaction term.
- **Collicarity** occurs when two or more explanatory variables are correlated to the extent that they convey essentially the same information about the variation in the response.
- One symptom of collicarity is the instability of the estimated coefficients and their standard errors (i.e., the standard errors become large).

12

Okay, So I'm Confused

- This is the point... there is no set-in-stone method for finding the most appropriate model.
- The goal is to find a model that balances prediction (e.g., a large R²) with parsimony (not too many predictors).
- There are several semi-standard methods for doing this, and may result in different final models.

13

15

Choosing Predictors

- Ideally, we should have some prior knowledge as to which variables might be relevant.
- To study fully all of the predictors, it would be necessary to run a separate regression analysis for each possible combination of variables.
- While such a procedure would be thorough, it would be terribly time consuming.
- More frequently we use a stepwise approach to choose the best-fitting model.

Stepwise Regression

- Most statistical packages have automated routines built in that will perform a systematic method for obtaining the best model.
- The simplest of these are the forward selection and backward selection methods.
- The automated routines are not recommended for use by any self-respecting statistician, but they can be done "manually." We won't do them here.
- The best model results from careful statistical thought, combined with subject matter considerations.

Forward Selection

- Forward selection begins with nothing in the model and introduces one variable at a time.
- The variable that has the smallest p-value for its coefficient is added (or largest test statistic).
- This variable is kept in the model, the from the remaining explanatory variables, we repeat the procedure.
- We do this until no variables, when introduced to the model, have an adequately small p-value (or cause the estimates of the other coefficients to become unstable).

14

Backward Selection

- **Backward selection** begins with all the variables in the model and drops the one with the largest p-value (smallest test statistic).
- From the remaining variables the one with the next largest p-value is dropped.
- We repeat this procedure until all of the remaining variables have small p-values.
- Note that it is entirely possible that the final models will differ depending on whether forward, or backward, selection is used.

17

Stepwise Regression

- More complicated procedures exist in which variables may be added after they have been dropped (or dropped after they've been added), according to certain rules.
- These procedures are called **stepwise regression** procedures, and are generally preferred.
- However, they are difficult to do without using an automated computer routine.

18

• What about interaction terms?