Mathematics 231

Lecture 31 Liam O'Brien **Announcements**

■ Reading

■ Today M&M 11

Example: Birthweights

- Consider the birthweight data that we used in class before
- We predicted birthweight with infant length before, but now also consider two new variables.
- Data was also obtained on the presence of toxemia, gestational age, head circumference, and mother's age.
- We next examine the predictive power of head circumference and gestational age on birthweight.

3

Birthweight vs head circumference

Comparison of Predictors

- We see a positive relationship between both predictors and the response.
- This is common and we often look at the correlations among all variables (response and predictors).
- Highly correlated predictors often have overlapping predictive information about the response.

6

Example: Birthweights

. pwcorr birthwt gestage headcirc

ļ	birthwt	gestage :	headcirc
birthwt	1.0000		
DITCHWC	1.0000		
gestage	0.6599	1.0000	
headcirc	0.7988	0.7807	1.0000

Example: Birthweights

Source	SS	df	MS		Number of obs	= 100
					F(1, 98)	= 75.61
Model	3143019.07	1 3143	019.07		Prob > F	0.0000
Residual	4073723.68	98 415	68.609		R-squared	0.4355
					Adj R-squared	0.4298
Total	7216742.75	99 7289	6.3914		Root MSE	= 203.88
birthwt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gestage	70.30993	8.085854	8.70	0.000	54.26382	86.35604
_cons	-932.4039	234.4884	-3.98	0.000	-1397.738	-467.0693

Example: Birthweights

Source	SS	df	MS		Number of obs	
					F(1, 98)	
Model	4605298.87	1 460	5298.87		Prob > F	= 0.0000
Residual	2611443.88	98 266	47.3866		R-squared	= 0.6381
+					Adj R-squared	= 0.6344
Total	7216742.75	99 728	96.3914		Root MSE	= 163.24
birthwt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
headcirc	85.17802	6.479268	13.15	0.000	72.32013	98.03592
_cons	-1154.109	172.1523	-6.70	0.000	-1495.739	-812.478

Example: Birthweights

Model 4629638.61 2 2314819.31			F(2, 97)				SS	Source
Adj R-squared = Total 7216742.75 99 72896.3914 Root MSE =	0.00	-	Prob > F		4819.31	2 231	4629638.61	Model
Total 7216742.75 99 72896.3914 Root MSE =	0.64	-	R-squared		71.1767	97 266	2587104.14	Residual
	0.63	ared =	Adj R-squared					
birthwt Coef. Std. Err. t P> t [95% Conf. 1	163.	=	Root MSE		96.3914	99 728	7216742.75	Total
gestage 9.90101 10.36436 0.96 0.342 -10.66938 headcirc 77.44205 10.37285 7.47 0.000 56.85482								
_cons -1235.533 192.166 -6.43 0.000 -1616.929 -	854.13	29 -8	-1616.929	0.000	-6.43	192.166	-1235.533	_cons

Example: Birthweights

- The usefulness of gestational age as a predictor of birthweight has now become statistically insignificant (at the 0.05 level).
- This is happening because both gestational age and head circumference provide overlapping information on birthweights.
- Notice what happened to R-squared it increased from 0.63 to 0.64 with the addition of head circumference to the model.
- What about the interpretation of the coefficients?

R² and Adjusted R²

- The R² value will always increase with the addition of a new predictor.
- Having too many predictors is BAD, so we penalize the R² value based on the number of predictors in the model – this is the adjusted R^2 .
- Note that adjusted R² decreased slightly.
- This indicates that adding head circumference did not help us predict birthweight much.
- Note that the adjusted R² does not have the same interpretation as R².

R² and Adjusted R²

- Use of the adjusted R² in evaluating regression model is highly controversial.
- It is safe to say, however, that too many predictors (i.e., the kitchen sink model) is NOT a good thing.
- We only have a finite amount of information and want to put as much as possible to work in estimating the error.
- However, we lose a degree of freedom for each predictor.

13

Examining Correlations

pwcorr birthwt gestage length headcirc momage

	birthwt	gestage	length	headcirc	momage
	+				
birthwt	1.0000				
gestage	0.6599	1.0000			
length	0.8156	0.6752	1.0000		
headcirc	0.7988	0.7807	0.7127	1.0000	
momage	0.1546	0.2658	0.2180	0.1321	1.0000

Example: Birthweights

regress birthwt toxemia

Source	SS	df	MS		Number of obs	= 100
	+				F(1, 98)	= 0.01
Model	1005.40823	1 1005	.40823		Prob > F	= 0.9072
Residual	7215737.34	98 7362	9.9729		R-squared	= 0.0001
	+				Adj R-squared	= -0.0101
Total	7216742.75	99 7289	6.3914		Root MSE	= 271.35
l						
birthwt	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
toxemia	7.78481	66.61992	0.12	0.907	-124.4203	139.9899
_cons	1097.215	30.52908	35.94	0.000	1036.631	1157.799
i						

15

Example: Birthweights

Source	SS	df	MS		Number of obs	
	3730907.03 3485835.72				F(2, 97) Prob > F R-squared	= 0.000
+	7216742.75				Adj R-squared Root MSE	1 = 0.507
birthwt	Coef.	Std. Err	. t		[95% Conf.	Interval
			10.19	0.000	67.68234	
					-307.966 -1752.447	

16

Example

- The regression equation is given by: E(birthwt)=-1286+84.1(gestage)-206.6(toxemia)
- The variable "toxemia" is an indicator variable (or dummy variable) that indicates presence of toxemia.
- For those with toxemia: E(birthwt)=-1492+84.1(gestage)
- For those without toxemia: E(birthwt)=-1286+84.1(gestage)

17

Interpreting Coefficients

- Note that the interpretation of any one coefficient is conditional on holding all the other coefficients constant.
- In the case of a binary predictor, we can create two "separate" regression lines based on setting the indicator to 0 or 1.

18

